ST pid,
SIS,

N

N hin

Gesfadrs,. e e R m—

Patterns, and
Practice

Build powerful code by mastering PHP’s
object-oriented enhancements, design

patterns, and essential development tools
Fifth Edition

Matt Zandstra

Apress’

PHP Objects, Patterns, and Practice

Matt Zandstra
Liverpool, Merseyside
United Kingdom

ISBN-13 (pbk): 978-1-4842-1995-9 ISBN-13 (electronic): 978-1-4842-1996-6
DOI110.1007/978-1-4842-1996-6

Library of Congress Control Number: 2016961297
Copyright © 2016 by Matt Zandstra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr

Acquisitions Editor: Louise Corrigan

Technical Reviewer: Paul Tregoing

Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,
Jonathan Gennick, Todd Green, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Nancy Chen

Copy Editor: Patrick Meador

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global, image courtesy of Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,

e-mail orders-ny@springer-sbm.com, or visit waw. springer.com. Apress Media, LLC is a California

LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at waw.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

orders-ny@springer-sbm.com
www.springer.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

For Louise, who is the whole point.

Contents at a Glance

About the AUthOr ... ————————— Xxi
About the Tecnical ReVIEWETcccursssnsssssnsssssnsssssnnssssnsssssnsssssnsssssnsssssnnssssnnssssnnnsss Xxiii
Acknowledgments.......cccccrimisssssmsmnmmmmmsssssssssssnnsssesssssssssssnsnsssesssssssnsnsnnnssesssssssnnnnnns XXV
INtroduction ... ——————,—_——— XXvii
o 1 L 0] T 1 1
Chapter 1: PHP: Design and Management.........cccueemmmsnmmssssnmsssssssssssssssssssssasssssnnss 3
Chapter 2: PHP and Objects..........ccccummissmmmmmmssssnnnmmsssssnmmsssssssnsssssssssssssssssssssssssnnnssns 9
Chapter 3: Object BaSICS .uuuueeerrrsssnnnsrssssnnsssssssnsssssssssnnsssssssnsnsssssnnsnssssssnnssssssnnnnss 15
Chapter 4: Advanced Featuresccccuemmmmmnsemnmmmssssssnmmsssssssmsssssssssssssssssssssssnnns 47
Chapter 5: Object TOOIS........ccccrurmssnnmnmmssssnnnmsssssnnnnsssssnnnnessssnnnnsssssnnnnsssssnnnnsssssnnnnss 99
Chapter 6: Objects and DeSIgNccccvusseemnmmssssnsnsmsssssssssssssssssssssssssssssssnnnsssssnnnnss 133
Part II: Patternsccoinnmmmmmmmmmmsmmmes s s s, 155
Chapter 7: What Are Design Patterns? Why Use Them?........c.ccccnmnsssennnnssssnnnnns 157
Chapter 8: Some Pattern PrinCiplesccuuunseemmmmmmmmsssssssssssssnssssssssssssssssssssssssssns 165
Chapter 9: Generating ObJectS.......ccccvrsremmnrmsssnnnnmsssnsnsmsssssnsnsssssnssesssssnnsessssnnnnes 179
Chapter 10: Patterns for Flexible Object Programming.......cccssesmsssesssssasssssansns 211
Chapter 11: Performing and Representing Taskscuuussemesmmmsmsssssssssssnnssssssssnns 235
Chapter 12: Enterprise Patterns........cccccnmnnsesmmnmssssnmmmsssnmmsssssssssssssssssssnn 277
Chapter 13: Database Patterns..........ccccmmnnemnmmmnsesnmmssssnmssssnssssmma———ms 327

CONTENTS AT A GLANCE

Part ll: PractiCecccsummsssmmnmmssssnsnmnssssnnnsnssssnnnnsssssnnsnsssssnnnnsssssnnnnns 375
Chapter 14: Good (and Bad) PractiCeccusseemmmssssnsnsmssssnsnsssssssnnsssssssnnsssssnnnnss 377
Chapter 15: PHP Standardsccceeemmmmmmmmmmssssssssnmmmsmmsssssssssssssssssssssssssssssssssnns 385
Chapter 16: PHP Using and Creating Components with Composerc..cuunu. 399
Chapter 17: Version Control with Gitccesemmmmnsssmmnmmmmsssnmmmssssmmsssnsmmmssnns 411
Chapter 18: Testing with PHPUNIt...........cccccinnemmmnnnsemmmnnmssssnmmssssnmsssssnsssssnsns 435
Chapter 19: Automated Build with Phingcccccuneemmmnnnsemmmnnssssnmnnssssnmssssnnns 465
Chapter 20: Vagrant.........ccuccemmmnmssnnmmmmssssmmmsssssnmmssssssssssssssssessssssssssssnssssssssnnnnes 487
Chapter 21: Continuous Integration...........cccusemmmnnsssnnnmnnssssnnmmnsssnmmssssnmsssnn 497
Chapter 22: Objects, Patterns, Practice..........cccovnnmmmmmmssssmmnmnssssssnmsssssssnnsssssnnns 525
Chapter 23: Appendix A: Bibliography........ccccuscmmiemmmssssmmmssssmsssssmssssssssssssssssnsns 535
Chapter 24: Appendix B: A Simple Parserccccovummmmsssssssnnmmssmmsssssssssssssssnns 539
INAEX i ————————————S—_—__—_—_——_ 565

vi

Contents

About the AUthOrccvvsrismmmrs e ——————S_—_—_ Xxi
About the Tecnical REVIEWENcuccuusesmssmsssmsssmssmsssmsssmssssssssssssassssssssssssssasssnsssnnnns Xxiii
AcknowledgmeENnts.......cccerrmsssssnmssnnsmessssssssssssnssssssssssssssssnnnsssssssssssnnnnnnnnsssssssssnnnnnns XXV
INtroduction ... ———————— XXvii

o 1 L 0] 1T 1 N, |

Chapter 1: PHP: Design and Management.........c.ccuucemmmnnsssnnnmmnssssssmmssssssssssssssssnnns 3
B LIN 2d (0] 0]= 3
PHP and Other LANQUAQJES.........ccccrverrerreriessenersesses s e s s s e sss e ssssssssssnssssssssssssssssssnses 4
ADOUL THIS BOOKcoveereeerericsnscsse s ss e ss s s sns s s sse s s sss e snsssssssnssssnssnsens 6
04 6
PALLEIMS ... R R R e AR e R e R e R e R e R e R e R e R e R e R e R e R e R e nrenn 6
0 T [6
What’s New in the Fifth EQitiON ... seseenes 7
111110 TR RSRS 8
Chapter 2: PHP and ODbjectS......uuuuemmmmmmmmmmmmmsmssssssnmmmmsmsssssssssssssssssssssssssssssssssssssnns 9
The Accidental Success 0f PHP ODJECES........cccccverrierennscse e sss s e 9
In the Beginning: PHP/F..........u sttt 9
SYNTACHIC SUGAI: PHP 3.....c.eecee ettt et e s e e 9
PHP 4 and the Quiet REVOIULION...........c.ceriiieerrrrrccr et sn e s 10
Change EMDraced: PHP 5. se s se st s st sss s sessssssn s 11
PHP 7: ClOSING The GAPceeereiriccririse i se s as ettt st et sa st 12
Advocacy and Agnosticism: The Object Debate.........cccceeeveeeeececccece e 12
1111 0P 2SS 13

CONTENTS

Chapter 3: Object BaSiCSccuummmsmmmmmmmmmmmmmmsss 19

Classes and ODJECEScccecierrirerr e ne e 15
L 1 1 N 15
A First ODJECT (OF TWO) ...eceeeeeccececerer e sr e e s a e e sn s s a e n e nennnnis 16
Setting Properties in @ Classccuvvreerrriessenses s sns s e s s s e snssnnnes 17
Working With METhodSccvcerveririrrrrr e sa s snenns 19
Creating @ ConstruCtor MELNOM..........cccerererercrerere s s e s e e sesae e s e rae e sae e aenesaenanaens 21
Arguments and TYPES ...c.coeeererrerrerrererersessessessessessessessessessessessessesssssssssssessesassssssnssnnsnns 22
PHMITIVE TYPES ..cveeiecireris e a s a s s e e p s bt b e e s e s e s n e n e e ne e nnnnnnnnas 22
Taking the Hint: ODjECT TYPES....ccccccricercrere e r e s 26
10 LT 172 o TN 30
The INheritance ProbIBM ... 30
Working With INNEILANCE.ceceeerereeererir et 35
Public, Private, and Protected: Managing Access 10 YOur ClassSes........cccuvvrererererienessesssesnesessesenaens 41
R 141 P2 S 46
Chapter 4: Advanced Featuresccccuuemmmmmmsssnnmmmsssssnmmssssssssmsssssssssssssssssssssssnnnns 47
Static Methods and Properties.......cccvvererverrerieeresisesessessesssessesssessssssesssesssssssssesssssaes 47
CoNStaNt PrOPEILIES......cccererierirsece s sa s s e ene e 51
ADSEIACE ClASSES.......covrereeirernssrre s 51
INEEITACES ...cveeccc i ————————— 53
TrAIES. .uucrisccrr e —————————— 35
A Problem for Traits 10 SOIVE ... —————— 56
Defining and USiNg @ TraiL.........ccccoieiriennicrscse e sn e ne s e snnnens 57
Using More than One Trail ... e sr e snn e 58
Combining Traits and INTErfaCESccccevrereriecre e s e nnn e 58
Managing Method Name Conflicts with insteadof............ccooevreerrennininr s 59
Aliasing overridden trait Methods ..o ——————— 61
Using static methods in traits........ccoveecncne e 61

viii

CONTENTS

AccesSing HOSt Class Propertiesccovveverererererererenseressersssessesessesassessssessssesssssssessssessssessssessssssssnssaes 62
Defining Abstract Methods in TraitS........ccccevevirininnnn e sr e sr e sr e sa e saesaens 63
Changing Access Rights 10 Trait MEthods...........cccveevrierriererre e ssesesaesesaesasaens 64
Late Static Bindings: The static KEyWOrdccoeeeeeeeeecece e 65
g L1010 T T 0] S 68
(=] 00 TR 70
Final Classes and Methods.............cccvcnrninn e 77
The Internal Error Class..........cornmnnnsss s sassenens 78
Working With INtrCePLOrS.........ccvvvvririr st sa e sn e 79
Defining Destructor Methodsccvevsrnernensensssesses s e 85
Copying Objects With __ ClONE()......ccceeerererrerrerre e sn e sn s nnenne e 87
Defining String Values for Your ODJEcCtS........ccccvvvvrvrinnnvrrrrr e 90
Callbacks, Anonymous Functions, and CIOSUIEScceceveereererrenreesensssssssesssssssssssassssses 91
ANONYMOUS CIASSEScveeeererrerrerrerrere s ssessesaessessesaesaessessesressesasssssrssassrssnssasssssnesnnnnnns 95
R 111 0P S 97
Chapter 5: Object TOOIS.........cccurmsssmnnmmssssnnnmmssssnsnmmsssssnnssssssssssssssssnnnsssssnnnnsssssnnnnns 99
PHP and PacCKagesc.cceeverreeriernerienre s sses s see s sssessessne e s sns s e ssnessessnsssnssnssssssnens 99
PHP Packages and NameSPACESccceeeererrereressessessessessessessesssssessesssssssssssesssssesssssessesssssssssssessansans 99
AULOI0AD ...t 108
The Class and Object FUNCLIONSccccvcrverrenrer s sn e 112
LOOKING fOF CIASSES ...euvevererererersesersesersessssersssessesessssesssssssessssessssessesessessssessssessssesssssssssssssssssesassessenenes 113
Learning About an ODJECTE OF ClaSS.......ccceurrererrersererseserssseresessersssessesessesesssssssessssessesessssssssssssessssesseneres 113
Getting a Fully Qualified String Reference 10 @ Classc.cvvevrrererererersresseressessesessesessesessesessesseens 115
Learning ADOUt MEthods..........covvnininnininnini s ———————— 115
Learning ADOUL PrOPEITIESccvvererererere s s sas s e sa s sn e sassa e sr e sa e e sa e st se s sa e a e sa s snesne s 117
Learning ADOUL INNEITANCEcovevveieirec e sa s 117
Method INVOCALION ... ———————————— 118

ix

CONTENTS

The REfIECHON AP ...t 119
GEHING STAMEM ... 120
Time t0 ROII UP YOUE SIBBVESc.covrereeciririeciresise s ssssns 120
EXAMINING @ CIASS ..ucoerreieecrerisseeesesse s e se s se s se s s ss s sss s e s ssssssessssssnssssssssasnnns 122
EXamining MethOUSc.cceeeerireccrirescrir e nns 124
Examining Method ArgUMENTS.........coieeeerireiercririrese s sss s sessssnssnnns 126
UsSing the REflECHION API ... 127

E3 1111 P2 7 131

Chapter 6: Objects and DeSIgNccccuseeenmmssssnsnmmssssssnmsssssssnssssssnnnssssssnnnsssssnnnnss 133

Defining Code DeSIONccvvevverreriererserserer s se e sn s sn s sa s sn s sn s sn e saesnenns 133

Object-Oriented and Procedural Programmingcccceceeeeeeesesssssssssssessssssssssssssnnenns 134
RESPONSIDITY ...t 138
CONBSION.....ecee b b 138
011 o] 1o T 139
OFENOGONAIILYc.ceeeeeccee e e e e s s e e s ae e e s s Re e e e s ns e e sesnnnnnnas 139

ChOO0SING YOUF CIASSESccvvoeruererserresrsseresssssesessessnsesns 139

o0 0T 0] 1 S 140

ENCAPSUIALION........e et nn 142

Forget HOw t0 DO ..o 142

FOUP SINPOSES ...ceeririrer et se e sn e sn s sn e sn e sn e sn e sn e snnn e 143
COUE DUPHCALION.cueeeeeererererereererrererse st seres e rsesersesesaesassesassesas e saesesae e sae e saesassesaeesaesesasanaeanseranneres 143
The Class Who Knew T00 MUCH ... ssssssssssssssssns 143
The Jack Of All TrAUEScccvrererisrrsrissss b 144
Conditional STAtBMENTS ..o ——————— 144

LI LT SRS 144
ClasS DIAQramS.......cceeeiererieririereese e rs st e s e bt b e e e e Re e e A e R e e R e e Re e s Rene e e e R e e ns 144
SEQUENCE DIAGIAMSc.coeeeieeccrerieee st a s e e e e A s e e e s Re e e sn e s e e s nnnnas 151

SUMMEANY ...ttt a s ae e e n e s e a e e ne e s nnnnnnnnas 153

CONTENTS

[1 0 | 1] g L, |1+

Chapter 7: What Are Design Patterns? Why Use Them?..........cccvvnmmmmmnnnnnnssssnns 157
What Are Design Patterns?..........coeeicnnnicnsserssssesssese s sesssssesnsnens 157
A Design Pattern OVEIVIEW..........ccevererererecsse s see s sessassae s saesessasssssasssssassassassassasnns 159
NAME .. ———————————————————————— 159
THE PIODIBM ... ———————— 159
THE SOIULION....ciiccrtr e —————— 159
CONSEUUBIICES ...cuvererrererrerersersrserseserseersessrsessssessesersssssssssssssssessssessensssessssessssessssessesesssssssessnsessnserseneres 160
The Gang of Four FOrmat...........cccocvcrcrcscsssss s 160
Why Use DesSign PatternS?ccoeeiiernnmnesissessesssessssessessssssssssssssssessssssssssssssssssssens 161
A Design Pattern Defines @ ProbIem...........c.ocooriennneeccrrcc e 161
A Design Pattern Defines @ SOIULION..........occecrerriesererne s snns 161
Design Patterns Are Language Independentcccovreeenneiencnnnescssse e 161
Patterns Define @ VOCADUIAIYcccoveeeerirniercnirre et nnns 161
Patterns Are Tried and TESTBA ... 162
Patterns Are Designed for COllabOration............cooveeererenencnesesesesesese e 162
Design Patterns Promote GOOU DESIGN.........ccccecrerrrenerereneeresessesesesssssesessssssesesssssssessssssssesssssnsssnns 162
Design Patterns are Used By Popular FrameWOrKSccccovrenenenensnesesnssesesesessesssesessssssesesssseenns 162
PHP and Design Patterns ... 162
BT 111 112 SRS 163
Chapter 8: Some Pattern PrinCiplescccuumsssmsemnmmmmmmmssssssssssssmssssssssssssssssssssssns 165
The Pattern Revelation ... 165
Composition and INNEITANCE...........cceeerererrre e sre e 166
THE PIODIBM ... 166
USING COMPOSITION.......ccovivieecririereccres e e s s e e s ne e e e nnnnnnes 169
DT o1 0] 1 o SR 172
THE PIODIBM ... —————————— 172
Lo0SENING YOUF COUPIING ..eveveeereeereerereererseseserseseraesesassessesassessssessesessesesssssssessssessssessssssssassesassesssnenes 173

xi

CONTENTS

Code to an Interface, Not to an Implementation............cccccvvevirrercnrerces s s 175
The Concept that Variesccvvvvririnnennerserses s se e ses s e e s ssssassssses 176
PatternitiS.....cccoe i ———————————— 177
LTI 2 U1 (=] 4 177
Patterns for Generating ODJECESoccceerirriiercrrrese e 177
Patterns for Organizing Objects and CIASSESccccecrererererereresesesesssssesessssssesesssssssesessssssesesssssssnns 177
Task-0riented PAttErns...........coorrnrrrrrrr e 177
ENterpriSe PAHEINS......covov e e 178
Database PAtLeINS ... s 178
E3 1111 P2 7 178
Chapter 9: Generating ObJects........ccccunnemmmmnnssmnnmmssssnsnmmmsssnnmmssssssmsssssnsann 179
Problems and Solutions in Generating ODJECEScccorerrrerrsererssererssese e 179
The Singleton Pattern..........cccocvcecrcssrsr s 184
QLTI 50 (0] 0] (=T O 184
IMPIEMENTALION.......c e e a e e e s a e e e e e s a e e e e e e e e e e e na e e e s 185
CONSEUUBIICES ...cveuerreerseessesesesseessesessesessesss e ssesessesessssessesesse s s et sse st sse st ssesEsRese e e eRe e e Re e e Re e s Reneeseneeneans 187
Factory Method Pattern.............coreneeeerr e 187
THE PIODIBM ... 188
IMPIEMENTALION. ...t e ne e e 191
CONSEBUUEIICEScovveueeerseseesessssesssessssssssesessssssssssssssssssssssessssssssssssssssessnsssssassnssssssssssssssssessssssssenssnsns 193
Abstract Factory Pattern ... 193
THE ProBIBIM ... 194
1] 0] L=T 41 T=T 0= 1] 195
CONSEUUEINICES ...cveuerrerersererserssserseserseersessssessssersesersssssssssssssssessssessesssessssssssesssssssesessensssessssessssersenees 197
PrOtOLYPE ..o ——————————————— 199
QLTI 50 (0] 0] (=T O 199
IMPIEMENTALION.......c e e a e e e s a e e e e e s a e e e e e e e e e e e na e e e s 200
Pushing to the Edge: Service LOCAtor..........c.ccovverrnerenmnsersnsseseseseess s e sssesnes 203

xii

CONTENTS

Splendid Isolation: Dependency INJECHION.........cccvcererrrernsrers s 205
THE PIODIBM ... 205
IMPIEMENTALION. ... e e s e 206
CONSEUUBIICES ...cuveuerreeruerereressesseessesessesessesesessssessesessssesssssssessssessesessesessessssessssessesessensssesessessssessenenns 208

E3 1111 P2 7 209

Chapter 10: Patterns for Flexible Object Programming.........cscsmsssesssssnsssssansns 211

Structuring Classes to Allow Flexible ObJECESccccvvrrerrrrerrerrerser e ses e 211

The Composite Pattern..........ccccvcvcrcrcssrss e s 211
THE PIODIBM ... ——————————— 212
IMPIEMENTALION. ... e s a e e e s a e sa e e e s a e e e sa e e e e e e e naenne s 214
CONSEUUBIICES ...cveueereerreressesesesseessesessessssesss e ssssessesessssessesesse s s et sse st esesessesbsResEeaeeRe e e Re e e Re e s Reneeseneeneens 218
COMPOSIte IN SUMMANYcuooeieceercrec et b s e se e sp e p e s 222

The Decorator Pattern ... s 222
THE PIODIBM ... 222
IMPIEMENTALION. ... e e s e 225
CONSEUUBIICES ...cuveuerreeruereraeressessesessesessesessesssessssessesessesessesessessssessesessesessessssessssessesessesssessssessssessenenns 229

The Facade Pattern ... 229
THE PIODIBM ... ————————— 230
1] 0] L=T 40T 0 =1 231
00T T 0T 3o 232

BT 111 112 SRS 233

Chapter 11: Performing and Representing Tasksccccussseessmssssnsnssssssnnsssssssnnns 235

The Interpreter Pattern..........ccocvcvcecrcscsces s 235
THE PIODIBM ... ——————————— 235
IMPIEMENTALION.......c e e a e s a e s a e s r e sa e sa e a e sa e e e e e na e na e naenn e s 236
101 Gy 0] =] G g T USSR 245

The Strategy Pattern ... 245
THE PIODIBM ... 246
IMPIEMENTALION. ... e e s e 247

xiii

CONTENTS

The ODSEIVEr PALIEINccccieeeicrerrcrese et 250
IMPIEMENTALION. ...t e ne e e 253
The VIiSitor Pattern........c.couiinnnssss s 259
THE PIODIBM ... ——————————— 259
1] 0] L=T 40 T=T 0] =1 261
VISIEON ISSUBS ...vvvviassciriissssnis s 266
The Command Pattern..........cccovninn s 267
THE PIODIBM ... ——————————— 267
IMPIEMENTALION.......c e e a e e e s a e e e e e s a e e e e e e e e e e e na e e e s 267
The NUll ODJECTE PALEINccceeeireretrcrese et 272
THE PIODIBM ... 272
IMPIEMENTALION. ...t e ne e e 275
SUMMAIY ..t s 276
Chapter 12: Enterprise Patterns.........cccccunnnmmemmmmmmmmmmmsssssssssnsnssssssssssssssssmnns 277
ArchiteCture OVEIVIBW.......cccocvererermrsssisissise s s 277
THE PABINS ... 277
ApPlications and LAYEIS ... 278
Cheating Before We Startccoeeeeereccscccsecesre e ssesnesnesns s s snssnssnssnsnnns 280
L0 (TR 280
IMPIEMENTALION.......cceceecec e a e e e s a e s e e e e s a e e e e e e e e e e e e e nne s 282
The Presentation LAYEc.ccoveerenerierensenesessessesssesesssssesssssssssssesssssssssssssssssssssnsssens 286
0T 0] (0] T 286
APPICAtION CONTIOIIEE ...t r e nnnr s 297
PagE CONTIONIET ...t ae e s ne e e nn e e e 310
Template View and VIEW HEIPE ...ttt ssssns 315
The BuSIiNeSS LOGIC LAYccvververreriersersersessersessessessessessessessss s sssssssssssssessssssssnsssssns 317
L L0 ET T (0 T) 318
DOMAIN MOBL.......civiiiiirriri s 322
SUMMANY ...ttt s s s s sr s s sa s e s n s n s s e sr e r s e e nr s nn e e e e e nnenn e e e nnennennennennnnnnnnnnnan 326

xiv

CONTENTS

Chapter 13: Database Patterns........cccccimmmmmmsssssnnnnmmmmmssssssssnnnssssssssssssssssssssnss 327

LTI D L W - S 327
Data MaAPPETccecererirer st ne e sn e nr e nn e n e nn e nnennennenan 327
THE PIODIBM ... 328
IMPIEMENTALION. ... e e 328
CONSBUUEIICEScovveueeererseesessssessessssessesessssssessssasesssssssssssssssssassssssssssnsssssassssssssassssssssssessssssssenssnsns 342
(0L Ly o OSSR 343
THE PIODIBM . —————— 343
1] 0] L= 40T 0= 344
CONSEUUBIICES ...cuveuerrerereereraersrserseersesersessssesssserssserseersssssssssssessssessesessesssesssessssessesssssssssssassessssersenees 347
0T 0 R 0] 4 SRS 347
THE PIODIBM ... ———————————— 348
IMPIEMENTALION.......e e e e e e e e e e e a e e s 348
CONSEBOUEIICES ...uvevververuersersersessessessessessessessesssssssssssesssssssssssessssssssesssssssssssssssssessessessesssssessessesssssssssssenes 352
I 4T 0 Vo OSSOSO 352
THE PIODIBM ... ———————————— 352
IMPIEMENTALION.......e e e e e e e e e e e a e e s 353
CONSEBOUEIICES ...uvevververuersersersessessessessessessessessesssssessessssssssssssssssssssesssssssssssssssssessessessesssssessensessessssssssenes 355
Domain Object FACLOrY........ccccvcercercercire st sn e 355
THE PIODIBM ... 355
IMPIEMENTALION. ... s e e s e 356
CONSEBUUBIICEScovveueeereeseesessssessesssssssesssssssssssssassssssssssssssssssasssssssessnssssssssnssssssssssssssssessssssssenssnsns 357
The Identity ODJECTcccvverrrirrrrr e 359
THE PIODIBM . —————— 359
1] 0] L= 40T 0= 359
CONSEUUBIICES ...cuveuereereraereraerersersesersesersessssersssersesersesrsssssssssssessssessensessessssssssessssessessssssssssassesssserseneres 365
The Selection Factory and Update Factory Patterns..........cccceevvveenccnnsncnnccncnnnnens 365
THE PIODIBM ... ———————————— 366
IMPIEMENTALION.......e e e e e e e e e e e a e e s 366
CONSEBOUEIICES ...uvevververuersersersessessessessessessessesssssssssssesssssssssssessssssssesssssssssssssssssessessessesssssessessesssssssssssenes 370

XV

CONTENTS

What's Left of Data Mapper NOW?.........ocvcrcrrrrnnereresses e e e s e 370
E3 1111 P2 7 373

Part Hll: PractiCecueeevirrmmessmmssmssmmsmnsssnssnssssnsnssssnsnnsssssnnssssnnnnsssnens 3 79

Chapter 14: Good (and Bad) PractiCeccssssammmssanssssansssssnsssssnsssssnsssssnsssssnnnss 377
310 1 B0 T S 377
BOrrowing @ WHEEIcoceeercrircrer s sn e sn s snennnnns 378
PIAYiNG NICEcccieeeererresrsesessere s ss s ss s s s s s sn s sn s sn s sna s nnes 379
GIVING YOUT COUE WINQS....ueevereereerrereereersesssssessessssssssssssssssasssssssssssssssssssssssssssssssssssssssnns 380
STANAANTS ... 380
VaGraNt ... e n e nne s 381
TESHING....ceicrei e 381
Continuous INtEGration...........ccovcererriiernsmness s 382
RS0 2 T 383
Chapter 15: PHP Standardsccccunmmmmmmmsssssnmmmsssssnmmsssssssmssssssssssssssssnssssssnnnns 385
Why STaNdards? ... s 385
What Are PHP Standards Recommendations?cccooeccerrvcnernesesessesesesesesesesesenns 386

WHY PSR iN PArtICUIAI?cveeereeerte e sereres e seseseesessesessesassessssessesessssassesassesassesssssssssssessssesssnssasnsnaes 386

WHO AFE PSRS TOI? ... e eseseseseseseseesesesesesenenenes 387
COdiNG WIth STYIE ... sr e sr e n e sr s sn e nnennnnans 387

PSR-1 Basic Coding Standardccccorriienirirrecrerrecse s se s 388

PSR-2 CodiNg StYIE GUILE........c.cueeerereeeerireee e se s sn s sa s ns s 390

Checking and FiXing YOUF COTEccoceereruieeririsec e se s se s se s 393
PSR-4 AUTOI0AAINGcovevieeererieiseres e 395

The Rules that Mater t0 US........cccoereerernecririreescsesse s e ssssssssssessns 395
E3 1111 P2 7 398
Chapter 16: PHP Using and Creating Components with Composerc.cceuu 399
What IS COMPOSEI?c.eerieererieerierrsesee e sse e ssessesssessessssssssssssassssesssssssssssssssssssassanessees 399
INSTAIlING COMPOSEN......cceeeeeereererrecrersesre e sse e sse e ssesresresresresnssresresresrssnesnesnsnnnnnesnnnnans 400

xvi

CONTENTS

Installing @ (Set 0f) PACKAGE(S).....ccrerrrerersmrrerersersnsessesessessesessessssessesessessessssessssssssssnsesns 400
Installing a Package from the Command LiNe..........cccovreeerernenenesnesesesesssse s sesesssseesens 401
L= 5710 LSOO 401
FEOUITE-TBV ...ttt sttt e e e e e e e e s e e e Re e e Re e et A e e e e e e ae e e aereeaeneenens 402
Composer and AULOI0AMccccevveererieerierieerer e s s s s e saessnesanesaesanesaenns 403
Creating Your OWN PacCKagecccceererrerressessessesssssessesssssessssssssssssssssssssssssssssssssssssnsans 404
Adding Package INfOrmation ... e sa e s 404
PlatfOrm PACKAGES.......ccueurueirererreeesessee e se s sa e e s b s sasns e e ns e s e 405
Distribution Through PackagiStc.cceuserenmrernsesenrssessssssesesse s ssessssessesessessssesnes 406
LGS o1 T T 00T 17 LR 409
BT 111 12 SRS 410
Chapter 17: Version Control with Gitccesceemmmnssmmnmnnsssmmmmmssssmmsssnmmans 411
Why Use Version CONtrol? ... s sessssssssnens 411
6123 1] 410 T TSR 412
Using an Online Git REPOSITOrY........cceverererrrrereereesss e see s ssssasssessssaesessaesassassassassssnnns 413
Configuring @ Git SEIVEXcoeeeeeeecerrecre e sresn s snesn e sn e nesnssnennennnnans 415
Creating the Remote RepOSItOry.......ccceciernirnnre e sn e s 415
Beginning @ ProjECL.........ccoiieienirereiresisse e e s 417
Cloning the REPOSITOTYcoceerrrecirereeseresrsse e n s ss s e snnnnnes 420
Updating and CommItting.........cccevrererenenenenrss e ses e sessessasssssessassessassassassssssssassnnns 420
Adding and Removing Files and DireCtories.........cccceeeeererereesesssessesse e ses s sessessennns 424
D (o T o I W OO STRSR 424
REMOVING @ FlB ...t e e e p e p e e 424
AdAINg @ DIFECIONY ...t s e s s r e s a e e e e e R e ne e nnas 425
ReMOVING DIFBCIOMIES ... e e n s 425
Tagging @ REIBASEcccvererireriresresiseses et sas s sn s ne s nne e 426
Branching @ PrOJECT........ccccvvervrieriererser sttt se s sn s sn s se s sn s sn s sn s sn e sns e 427
BT 111 12 SRS 433

xvii

CONTENTS

Chapter 18: Testing with PHPUNIt...........ccccinemmmnnnsemmmnnmssssnmnsssssmnssssnsssssnsns 435
Functional Tests and Unit TESES ..o 435
Testing Dy HaNG.........ccooiccc e 436
INtroducing PHPURILcooreeece s e e s e e e sassaesassassassassnssassnsnnns 438
Creating @ TESt CASEcccvurvererrereerereererserersesesersesersesesassessesassesassessesessesessssssessssessesessssssesassesssserssneres 439
ASSErtion METhOUS.......cociririiis i ———— 441
TESHING EXCEOPLIONS......coveeereeererereree s rer e e s e ses s ae s ae e sae e s e ras e saesesassesaesasaesaesesassesaesesaeassesannesasnenaes 442
RUNNING TEST SUITES ...eveeerereeereere ettt s s s e s sa e ae s s e sae e s e s sa e e e e sae e s aenanaenaenees 443
CONSITAINTS ..vvvcccs s 444
MOCKS @N0 STUDScviiiritriics s 446
Tests Succeed When They Falilccccoveverererererere s reree e sessesassesassesassessssesaesassessssessssesas 449
WHEING WED TESESccceiercerererir s 452
Refactoring a Web Application for TEStNGccccceerrennicsnicsssc s 452
SImMPIE WD TESHING ...vveeeeecrcccccirer e r e r e r e e nenn e nrnne s 454
INtroduCiNg SEIENIUM ..o e e p e r e s 456
N1 0 (0 0 110 | 463
E3 1111 P2 7S 464
Chapter 19: Automated Build with Phingcccccuneemmmnnnsemmmmnssssnmmssssnmssssnnns 465
L L E3N 011110 S 465
Getting and Installing PRINGccoeeierrirccrcrr e 466
Composing the Build DOCUMENL.........ccoceeeeererece e sessnesnesnssnssne e nns 466
L= L 1 OO RT 468
(0] 1] LT TSRS 470
L7701 SRR SR 477
LT T 482
E3 1111 1P 7SS 485
Chapter 20: Vagrant.........cccccmmmnmssmnmmmssssmmmmssssmmmssssssmssssssnesssssssesssssssssssssnnnnns 487
THE ProbIEm ...ttt ——————— 487
LN 1T (o S 488
Choosing and Installing a Vagrant BoXccouvreninnnienncsnscse s sessesssssssssessssessssesns 488

xviii

CONTENTS

Mounting Local Directories on the Vagrant BoXcccuceenrennnenensssesssesesessesenennes 490
(03T T3 S 491
Setting Up the WED SEIVEN.......cccv ettt reresesesss e ssesessesessesassesassesassessssssasssssesassessenesssnsssenanaens 492
SELHNG UP MYSQL....ceeeeeeereeererererererseessesessesessesassesssessssesssssssessssessssessssssssssssessssessssessenssssssssesansens 493
Configuring @ HOSE NAIME.........cceeeereerererererererse e raesessesessesas e ssesessesessssassesassesassesassesassessesassesasneres 494
L L L 1o T T N 0L SRS 495
SUMMEAIY ...ttt e s e e saesn s e r e e s e a e e s ne e s snnnnnnnnns 496
Chapter 21: Continuous Integration...........coccememmmmnmmmssssssssssmnnmmessssssssssssemmn.s 497
What Is Continuous INtegration?cceceeeniernnmnesnsese s sessessesessens 497
Preparing @ PrOJECE fOF Glovoeeceeeeeeccrtreecr et 498
INStalling JENKINS PIUG=iNSccovvveeerireecrtseescs e sassssssnnes 509
Setting up the Git PUDIC KEYcovvveecrerieceerise et s 511
INSEAlING @ PrOJECT.......coveeeeeeeerieteeir e s e nennn e e 511
RUNNING the FirSt BUIldcoovieeeecccceeees s 516
Configuring the REPOIS........covureeiererireecreree s s nan s e e 517
THOYENING BUILUS.....ceceeeeeeeccirire e e r e e a e e nnans 520
E3 1111 1P 7 523
Chapter 22: Objects, Patterns, Practice..........cccevnnmmmmmnsssnnnnnssssnnmnssssssnnsssssnnns 525
00T o OSSR 525
01 526
Encapsulation and Delegationcccevrrevrrerereresersnerersssessssessesessesessessssessssessssesssssssssassessssesseneres 526
T+ 1o 3o 526
3T U= o]) 527
AESTNELICSevvecc e ———————————————— 527
PatterNS... ..ot ————————————— 527
What Patterns BUY US........cccoe i 528
Patterns and PrinCiples 0f DESIGN ..o e e 529
o T (T PSSR 530
L TSP 530
STANUAIUS ... nr s 531

Xix

CONTENTS

VEISION CONTIOL ... ne e e e e e s 531
AUtOMALEd BUII ... s 531
CoNtiNUOUS INTEGIALIONeeeeeecreeereerere st s e e s e se e e s s ae e sae e sae e sae e s e e e e sae e sae e saeranneraenees 532
WHEAE T MISSEA ...t 532

L1 11 R 533
Chapter 23: Appendix A: Bibliography.......cccuseemmmssssssnsssssssssssssssssssssssssssssssssnsns 535
500G S 535
T (T T 535
R3] (13T 536
Chapter 24: Appendix B: A Simple Parserccccovusmmmssssssssnmsmsmmmmssssssssssssssnns 539
TRE SCANNEY ...ttt e s se s n e e 539
THE PAISEEeceicesireesc st s se s a s se s nnn s 948
INA@X.ciiieiiesrinsnsssnes s s ——————————————_—_ 565

XX

About the Author

Matt Zandstra has worked as a web programmer, consultant, and writer for over two decades. He was a
senior developer at Yahoo! working both in London and Silicon Valley. He now earns his living as a freelance
consultant and writer. Before writing PHP Objects, Patterns, and Practice, he was the author of three editions
of SAMS Teach Yourself PHP in 24 Hours (Sams Publishing, 1999) and a contributor to DHTML Unleashed
(Sams.net Publishing, 1997). He has written articles for Linux Magazine, Zend.com, IBM DeveloperWorks,
and phpl|architect Magazine, among others. Matt also studies literature and writes fiction. He holds MA
degrees in Creative Writing from both Manchester University and the University of East Anglia. When he’s
not studying or freelancing at various locations around the UK, Matt lives in Brighton with his wife, Louise,
and two children, Holly and Jake.

xxi

About the Technical Reviewer

Paul Tregoing has worked in ops and development in a variety of
environments for nearly twenty years. He worked at Yahoo! for five years
as a senior developer on the frontpage team, there he generated his first
PHP using Perl. Other employers include Bloomberg, Schlumberger and
the British Antarctic Survey, where he became intimate with thousands of
penguins.

He now works as a freelance engineer for various clients, small and
large, building multi-tiered web apps using PHP, Javascript, and many
other technologies. Paul is a voracious consumer of science fiction and
fantasy, and harbours not-so-secret ambitions to try his hand at writing in
the near future. He lives in Cambridge, UK with this wife and children.

xxiii

Acknowledgments

As always, I have benefited from the support of many people while working on this edition. But as always,
I must also look back to the book’s origins. I tried out some of this book’s underlying concepts in a talk in
Brighton, back when we were all first marveling at the shiny possibilities of PHP 5. Thanks to Andy Budd,
who hosted the talk, and to the vibrant Brighton developer community. Thanks also to Jessey White-Cinis,
who was at that meeting and who put me in touch with Martin Streicher at Apress.

Once again, this time around the Apress team has provided enormous support, feedback, and
encouragement. I am lucky to have benefited from such professionalism.

When I proposed this edition, I blithely promised I would update all the code to comply with the latest
style guidelines. I'm very lucky to have had my friend and colleague, Paul Tregoing, working on this edition
as Technical Reviewer. Not only has he kept me to my commitment, he has waded into the code itself to zap
many, many standards violations, showing commitment above and beyond the call of duty! Furthermore,
this edition has greatly benefited from Paul’s knowledge, insight, and attention to detail—many thanks Paul!

Thanks and love to my wife, Louise, and to our children, Holly and Jake, for many much needed
distractions. Thanks to Steven Metsker for his kind permission to reimplement in PHP a simplified version of
the parser API he presented in his book, Building Parsers in Java (Addison-Wesley Professional, 2001).

I write to music and, in previous editions of this book, I remembered the great D], John Peel, champion
of the underground and the eclectic. The soundtrack for this edition was largely provided by BBC Radio 3’s
contemporary music show, Late Junction, played on a loop. Thanks to them for keeping things weird.

XXV

Introduction

When I first conceived of this book, object-oriented design in PHP was an esoteric topic. The intervening
years have not only seen the inexorable rise of PHP as an object-oriented language, but also the march of
the framework. Frameworks are incredibly useful, of course. They manage the guts and the glue of many
(perhaps, these days, most) web applications. What'’s more, they often exemplify precisely the principles of
design that this book explores.

There is, though, a danger for developers here, as there is in all useful APIs. This is the fear that one
might find oneself relegated to userland, forced to wait for remote gurus to fix bugs or add features at their
whim. It’s a short step from this standpoint to a kind of exile in which one is left regarding the innards of a
framework as advanced magic, and one’s own work as not much more than a minor adornment stuck up on
top of a mighty unknowable infrastructure.

Although I'm an inveterate reinventor of wheels, the thrust of my argument is not that we should all
throw away our frameworks and build MVC applications from scratch (at least not always). It is rather that,
as developers, we should understand the problems that frameworks solve, and the strategies they use to
solve them. We should be able to evaluate frameworks not only functionally but in terms of the design
decisions their creators have made, and to judge the quality of their implementations. And yes, when the
conditions are right, we should go ahead and build our own spare and focused applications, and, over time,
compile our own libraries of reusable code.

I hope this book goes some way toward helping PHP developers apply design-oriented insights to their
platforms and libraries, and provides some the conceptual tools needed when it’s time to go it alone.

xxvii

PART I

Objects

CHAPTER 1

PHP: Design and Management W,

In July 2004 PHP 5.0 was released. This version introduced a suite of radical enhancements. Perhaps first
among these was radically improved support for object-oriented programming. This stimulated much
interest in objects and design within the PHP community. In fact, this was an intensification of a process that
began when version 4 first made object-oriented programming with PHP a serious reality.

In this chapter, I look at some of the needs that coding with objects can address. I very briefly
summarize some aspects of the evolution of patterns and related practices.

I also outline the topics covered by this book.

I will look at the following:

e The evolution of disaster: A project goes bad.

e Design and PHP: How object-oriented design techniques took root in the PHP
community.

e This book: Objects. Patterns. Practice.

The Problem

The problem is that PHP is just too easy. It tempts you to try out your ideas, and flatters you with good
results. You write much of your code straight into your web pages, because PHP is designed to support that.
You add utility functions (such as database access code) to files that can be included from page to page, and
before you know it you have a working web application.

You are well on the road to ruin. You don’t realize this, of course, because your site looks fantastic. It
performs well, your clients are happy, and your users are spending money.

Trouble strikes when you go back to the code to begin a new phase. Now you have a larger team, some
more users, a bigger budget. Yet, without warning, things begin to go wrong. It’s as if your project has been
poisoned.

Your new programmer is struggling to understand code that is second nature to you, although perhaps
a little byzantine in its twists and turns. She is taking longer than you expected to reach full strength as a
team member.

A simple change, estimated at a day, takes three days when you discover that you must update 20 or
more web pages as a result.

One of your coders saves his version of a file over major changes you made to the same code some time
earlier. The loss is not discovered for three days, by which time you have amended your own local copy. It
takes a day to sort out the mess, holding up a third developer who was also working on the file.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-1996-6_1)
contains supplementary material, which is available to authorized users.

© Matt Zandstra 2016 3
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_1

http://dx.doi.org/10.1007/978-1-4842-1996-6_1

CHAPTER 1 * PHP: DESIGN AND MANAGEMENT

Because of the application’s popularity, you need to shift the code to a new server. The project has to
be installed by hand, and you discover that file paths, database names, and passwords are hard-coded into
many source files. You halt work during the move because you don’t want to overwrite the configuration
changes the migration requires. The estimated two hours becomes eight as it is revealed that someone
did something clever involving the Apache module ModRewrite, and the application now requires this to
operate properly.

You finally launch phase 2. All is well for a day and a half. The first bug report comes in as you are about
to leave the office. The client phones minutes later to complain. Her report is similar to the first, but a little
more scrutiny reveals that it is a different bug causing similar behavior. You remember the simple change
back at the start of the phase that necessitated extensive modifications throughout the rest of the project.

You realize that not all of the required modifications are in place. This is either because they were
omitted to start with or because the files in question were overwritten in merge collisions. You hurriedly
make the modifications needed to fix the bugs. You're in too much of a hurry to test the changes, but they are
a simple matter of copy-and-paste, so what can go wrong?

The next morning you arrive at the office to find that a shopping basket module has been down all
night. The last-minute changes you made omitted a leading quotation mark, rendering the code unusable.
Of course, while you were asleep, potential customers in other time zones were wide awake and ready to
spend money at your store. You fix the problem, mollify the client, and gather the team for another day’s
firefighting.

This everyday tale of coding folk may seem a little over the top, but I have seen all these things happen
over and over again. Many PHP projects start their life small and evolve into monsters.

Because the presentation layer also contains application logic, duplication creeps in early as database
queries, authentication checks, form processing, and more are copied from page to page. Every time a
change is required to one of these blocks of code, it must be made everywhere that the code is found, or bugs
will surely follow.

Lack of documentation makes the code hard to read, and lack of testing allows obscure bugs to go
undiscovered until deployment. The changing nature of a client’s business often means that code evolves
away from its original purpose until it is performing tasks for which it is fundamentally unsuited. Because
such code has often evolved as a seething, intermingled lump, it is hard, if not impossible, to switch out and
rewrite parts of it to suit the new purpose.

Now, none of this is bad news if you are a freelance PHP consultant. Assessing and fixing a system like
this can fund expensive espresso drinks and DVD box sets for six months or more. More seriously, though,
problems of this sort can mean the difference between a business’s success or failure.

PHP and Other Languages

PHP’s phenomenal popularity meant that its boundaries were tested early and hard. As you will see in the
next chapter, PHP started life as a set of macros for managing personal home pages. With the advent of PHP
3 and, to a greater extent, PHP 4, the language rapidly became the successful power behind large enterprise
websites. In many ways, however, the legacy of PHP’s beginnings carried through into script design and
project management. In some quarters, PHP retained an unfair reputation as a hobbyist language, best
suited for presentation tasks.

About this time (around the turn of the millennium), new ideas were gaining currency in other coding
communities. An interest in object-oriented design galvanized the Java community. Since Java is an object-
oriented language, you may think that this is a redundancy. Java provides a grain that is easier to work
with than against, of course, but using classes and objects does not in itself determine a particular design
approach.

The concept of the design pattern as a way of describing a problem, together with the essence of its
solution, was first discussed in the 1970s. Perhaps aptly, the idea originated in the field of architecture, not
computer science. By the early 1990s, object-oriented programmers were using the same technique to name
and describe problems of software design. The seminal book on design patterns, Design Patterns: Elements

4

CHAPTER 1 © PHP: DESIGN AND MANAGEMENT

of Reusable Object-Oriented Software (Addison-Wesley Professional, 1995) by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides (henceforth referred to in this book by their affectionate nickname,

the Gang of Four), is still indispensable today. The patterns it contains are a required first step for anyone
starting out in this field, which is why most of the patterns in this book are drawn from it.

The Java language itself deployed many core patterns in its API but it wasn’t until the late 1990s that
design patterns seeped into the consciousness of the coding community at large. Patterns quickly infected the
computer sections of Main Street bookstores, and the first flame wars began on mailing lists and in forums.

Whether you think that patterns are a powerful way of communicating craft knowledge or largely hot air
(and, given the title of this book, you can probably guess where I stand on that issue), it is hard to deny that
the emphasis on software design they have encouraged is beneficial in itself.

Related topics also grew in prominence. Among them was eXtreme Programming (XP), championed by
Kent Beck. XP is an approach to projects that encourages flexible, design-oriented, highly focused planning
and execution.

Prominent among XP’s principles is an insistence that testing is crucial to a project’s success. Tests
should be automated, run often, and preferably designed before their target code is written.

XP also dictates that projects should be broken down into small (very small) iterations. Both code and
requirements should be scrutinized at all times. Architecture and design should be a shared and constant
issue, leading to the frequent revision of code.

If XP was the militant wing of the design movement, then the moderate tendency is well represented
by one of the best books about programming that I have ever read: The Pragmatic Programmer: From
Journeyman to Master by Andrew Hunt and David Thomas (Addison-Wesley Professional, 1999).

XP was deemed a tad cultish by some, but it grew out of two decades of object-oriented practice at the
highest level, and its principles were widely cannibalized. In particular, code revision, known as refactoring,
was taken up as a powerful adjunct to patterns. Refactoring has evolved since the 1980s, but it was codified
in Martin Fowler’s catalog of refactorings, Refactoring: Improving the Design of Existing Code (Addison-
Wesley Professional), which was published in 1999 and defined the field.

Testing, too, became a hot issue with the rise to prominence of XP and patterns. The importance
of automated tests was further underlined by the release of the powerful JUnit test platform, which
became a key weapon in the Java programmer’s armory. A landmark article on the subject, “Test Infected:
Programmers Love Writing Tests” by Kent Beck and Erich Gamma (http://junit.sourceforge.net/doc/
testinfected/testing.htm), gives an excellent introduction to the topic and remains hugely influential.

PHP 4 was released at about this time, bringing with it improvements in efficiency and, crucially,
enhanced support for objects. These enhancements made fully object-oriented projects a possibility.
Programmers embraced this feature, somewhat to the surprise of Zend founders Zeev Suraski and Andi
Gutmans, who had joined Rasmus Lerdorf to manage PHP development. As you shall see in the next chapter,
PHP’s object support was by no means perfect. But with discipline and careful use of syntax, one could really
begin to think in objects and PHP at the same time.

Nevertheless, design disasters such as the one depicted at the start of this chapter remained common.
Design culture was some way off, and almost nonexistent in books about PHP. Online, however, the interest
was clear. Leon Atkinson wrote a piece about PHP and patterns for Zend in 2001, and Harry Fuecks launched
his journal at www. phppatterns.com (now defunct) in 2002. Pattern-based framework projects such as
BinaryCloud began to emerge, as well as tools for automated testing and documentation.

The release of the first PHP 5 beta in 2003 ensured the future of PHP as a language for object-oriented
programming. The Zend 2 Engine provided greatly improved object support. Equally important, it sent a
signal that objects and object-oriented design were now central to the PHP project.

Over the years, PHP 5 has continued to evolve and improve, incorporating important new features such
as namespaces and closures. During this time, it has secured its reputation as the best choice for server-side
web programming.

PHP 7, released in December 2015, represents a continuation of this trend. In particular it provides
support for scalar and return type declarations—two features that many developers (together with previous
editions of this book) have been clamoring for over the years. If you don’t know what that means or why it's
important, read on!

http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/doc/testinfected/testing.htm
http://www.phppatterns.com/

CHAPTER 1 * PHP: DESIGN AND MANAGEMENT

About This Book

This book does not attempt to break new ground in the field of object-oriented design; in that respect,

it perches precariously on the shoulders of giants. Instead, I examine, in the context of PHP, some well-
established design principles and some key patterns (particularly those inscribed in Design Patterns, the
classic Gang of Four book). Finally, I move beyond the strict limits of code to look at tools and techniques
that can help to ensure the success of a project. Aside from this introduction and a brief conclusion, the book
is divided into three main parts: objects, patterns, and practice.

Objects

I begin Part 2 with a quick look at the history of PHP and objects, charting their shift from afterthought in
PHP 3 to core feature in PHP 5.

You can still be an experienced and successful PHP programmer with little or no knowledge of objects.
For this reason, I start from first principles to explain objects, classes, and inheritance. Even at this early
stage, I look at some of the object enhancements that PHP 5 and PHP 7 introduced.

The basics established, I delve deeper into our topic, examining PHP’s more advanced object-oriented
features. I also devote a chapter to the tools that PHP provides to help you work with objects and classes.

It is not enough, however, to know how to declare a class, and to use it to instantiate an object. You
must first choose the right participants for your system and decide the best ways for them to interact. These
choices are much harder to describe and to learn than the bald facts about object tools and syntax. I finish
Part 2 with an introduction to object-oriented design with PHP.

Patterns

A pattern describes a problem in software design and provides the kernel of a solution. “Solution” here does
not mean the kind of cut-and-paste code that you might find in a cookbook (excellent though cookbooks are
as resources for the programmer). Instead, a design pattern describes an approach that can be taken to solve
a problem. A sample implementation may be given, but it is less important than the concept that it serves to
illustrate.

Part 3 begins by defining design patterns and describing their structure. I also look at some of the
reasons behind their popularity.

Patterns tend to promote and follow certain core design principles. An understanding of these can help
in analyzing a pattern’s motivation, and can usefully be applied to all programming. I discuss some of these
principles. I also examine the Unified Modeling Language (UML), a platform-independent way of describing
classes and their interactions.

Although this book is not a pattern catalog, I examine some of the most famous and useful patterns.

I describe the problem that each pattern addresses, analyze the solution, and present an implementation
example in PHP.

Practice

Even a beautifully balanced architecture will fail if it is not managed correctly. In Part 4, I look at the tools
available to help you create a framework that ensures the success of your project. If the rest of the book is
about the practice of design and programming, Part 4 is about the practice of managing your code. The tools
that I examine can form a support structure for a project, helping to track bugs as they occur, promoting
collaboration among programmers, and providing ease of installation and clarity of code.

I have already discussed the power of the automated test. I kick off Part 4 with an introductory chapter
that gives an overview of problems and solutions in this area.

CHAPTER 1 © PHP: DESIGN AND MANAGEMENT

Many programmers are guilty of giving in to the impulse to do everything themselves. Composer,
together with Packagist, its main repository, offers access to thousands of dependency managed packages
that can be stitched into projects with ease. I look at the tradeoffs between implementing a feature yourself
and deploying a Composer package.

While I'm on the topic of Composer, I look at the installation mechanism that makes the deployment of
a package as simple as a single command.

Code is about collaboration. This fact can be rewarding. It can also be a complete nightmare. Git is a
version control system that enables many programmers to work together on the same codebase without
overwriting one another’s work. It lets you grab snapshots of your project at any stage in development, see
who has made which changes, and split the project into mergeable branches. Git will save your project one
day.

When people and libraries collaborate, they often bring different conventions and styles to the party.
While this is healthy, it can also undermine interoperability. Words like conform and comply give me the
shivers, but it is undeniable that the creativity of the Internet is underpinned by standards. By obeying
certain conventions, we are freed to play in an unimaginably vast sandbox. So, in a new chapter, I explore
PHP standards, how they can help us, and how and why we should, yes, comply.

Two facts seem inevitable. First, bugs often recur in the same region of code, making some work days an
exercise in déja vu. Second, often improvements break as much as, or more than, they fix. Automated testing
can address both of these issues, providing an early warning system for problems in your code. I introduce
PHPUnit, a powerful implementation of the so-called xUnit test platform designed first for Smalltalk but
ported now to many languages, notably Java. Ilook in particular at PHPUnit’s features and more generally at
the benefits, and some of the costs, of testing.

Applications are messy. They may need files to be installed in nonstandard locations, or want to set
up databases, or need to patch server configuration. In short, applications need stuffto be done during
installation. Phing is a faithful port of a Java tool called Ant. Phing and Ant interpret a build file and process
your source files in any way you tell them to. This usually means copying them from a source directory to
various target locations around your system, but, as your needs get more complex, Phing scales effortlessly
to meet them.

Some companies enforce development platforms—but in many cases teams end up running an array
of different operating systems. Contractors arrive wielding PC laptops (hello Paul Tregoing, fifth edition tech
editor), some team members evangelize endlessly for their favorite Linux distro (that’s me and my Fedora),
and many hold out for yet another sexy-looking PowerBook (the coffee bar and meeting room use of which
doesn’t at all make you look like just another node in a hipster Borg army). All of these will run a LAMP stack
with varying degrees of ease. Ideally, though, developers should run their code in environments that closely
resemble the ultimate production system. I examine Vagrant, an application which uses virtualization
so that team members can keep their idiosyncratic development platforms but run project code on a
production-like system.

Testing and build are all very well, but you have to install and run your tests, and keep on doing so in
order to reap the benefits. It’s easy to become complacent and let things slide if you don’t automate your
builds and tests. Ilook at some tools and techniques that are lumped together in the category “continuous
integration” that will help you do just that.

What'’s New in the Fifth Edition

PHP is a living language, and as such it’s under constant review and development. This new edition, too,
has been reviewed and thoroughly updated to take account of changes and new opportunities. I cover
new features such as anonymous classes, and the long-awaited scalar argument hints and return types.
Examples use PHP 7 features where appropriate, so be aware that you will need to run code against the PHP
7 interpreter—or be ready to do some work to downgrade.

In previous editions, I included a chapter on the PEAR package repository. Composer and the Packagist
repository are plainly now the standard for PHP development, and I have rewritten the chapter accordingly.

7

CHAPTER 1 * PHP: DESIGN AND MANAGEMENT

It seems that I've switched my version control coverage for every other edition or so of this book. I'm
glad to say that I'm sticking with Git this time round. I have, however, spent some more time looking at Git
repositories like GitHub since these are increasingly used by developers.

Iinclude a new chapter on the previously mentioned Vagrant.

In another new chapter, I examine PHP Standards. Since I endorse the value of complying with a style
guide, I have reworked every code example in the book to meet the PSR-1 and PSR-2 standards. This was a
much bigger commitment than I realized, and tech editor Paul Tregoing has worked valiantly to keep me
honest.

Summary

This is a book about object-oriented design and programming. It is also about tools for managing a PHP
codebase from collaboration through to deployment.

These two themes address the same problem from different but complementary angles. The primary
aim is to build systems that achieve their objectives and lend themselves well to collaborative development.

A secondary goal lies in the aesthetics of software systems. As programmers, we build machines that
have shape and action. We invest many hours of our working day, and many days of our lives, writing these
shapes into being. We want the tools we build, whether individual classes and objects, software components,
or end products, to form an elegant whole. The process of version control, testing, documentation, and
build does more than support this objective: it is part of the shape we want to achieve. Just as we want clean
and clever code, we want a codebase that is designed well for developers and users alike. The mechanics of
sharing, reading, and deploying the project should be as important as the code itself.

CHAPTER 2

PHP and Objects

Objects were not always a key part of the PHP project. In fact, they were once described as an afterthought
by PHP’s designers.

As afterthoughts go, this one has proved remarkably resilient. In this chapter, I introduce this book’s
coverage of objects by summarizing the development of PHP’s object-oriented features.

We will look at the following:

e PHP/FI2.0: PHP, but not as we know it

e PHP 3: Objects make their first appearance

e PHP 4: Object-oriented programming grows up
e PHP 5: Objects at the heart of the language

e PHP 7:Closing the gap

The Accidental Success of PHP Objects

With PHP’s extensive object support and so many object-oriented PHP libraries and applications in
circulation, the rise of the object in PHP may seem like the culmination of a natural and inevitable process.
In fact, nothing could be further from the truth.

In the Beginning: PHP/FI

The genesis of PHP as we know it today lies with two tools developed by Rasmus Lerdorf using Perl. PHP
stood for Personal Homepage Tools. FI stood for Form Interpreter. Together, they comprised macros for
sending SQL statements to databases, processing forms, and flow control.

These tools were rewritten in C and combined under the name PHP/FI 2.0. The language at this stage
looked different from the syntax we recognize today, but not that different. There was support for variables,
associative arrays, and functions. Objects, however, were not even on the horizon.

Syntactic Sugar: PHP 3

In fact, even as PHP 3 was in the planning stage, objects were off the agenda. The principal architects of PHP
3 were Zeev Suraski and Andi Gutmans. PHP 3 was a complete rewrite of PHP/FI 2.0, but objects were not
deemed a necessary part of the new syntax.

© Matt Zandstra 2016 9
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_2

CHAPTER 2 © PHP AND OBJECTS

According to Zeev Suraski, support for classes was added almost as an afterthought (on 27 August 1997,
to be precise). Classes and objects were actually just another way to define and access associative arrays.

Of course, the addition of methods and inheritance made classes much more than glorified associative
arrays, but there were still severe limitations on what you might do with your classes. In particular, you could
not access a parent class’s overridden methods (don’t worry if you don’t know what this means yet; I will
explain later). Another disadvantage that I will examine in the next section was the less than optimal way
that objects were passed around in PHP scripts.

That objects were a marginal issue at this time is underlined by their lack of prominence in official
documentation. The manual devoted one sentence and a code example to objects. The example did not
illustrate inheritance or properties.

PHP 4 and the Quiet Revolution

If PHP 4 was yet another groundbreaking step for the language, most of the core changes took place beneath
the surface. The Zend Engine (its name derived from Zeev and Andi) was written from scratch to power the
language. The Zend Engine is one of the main components that drive PHP. Any PHP function you might
care to call is in fact part of the high-level extensions layer. These do the busy work they were named for,
like talking to database APIs or juggling strings for you. Beneath that, the Zend Engine manages memory,
delegates control to other components, and translates the familiar PHP syntax you work with every day into
runnable bytecode. It is the Zend Engine that we have to thank for core language features like classes.

From our objective perspective, the fact that PHP 4 made it possible to override parent methods and
access them from child classes was a major benefit.

A major drawback remained, however. Assigning an object to a variable, passing it to a function, or
returning it from a method resulted in a copy being made. Consider an assignment like this:

$my obj = new User('bob');
$other = $my_obj;

This resulted in the existence of two User objects rather than two references to the same User object. In
most object-oriented languages, you would expect assignment by reference rather than by value. This means
that you would pass and assign handles that point to objects rather than copy the objects themselves. The
default pass-by-value behavior resulted in many obscure bugs as programmers unwittingly modified objects
in one part of a script, expecting the changes to be seen via references elsewhere. Throughout this book, you
will see many examples in which I maintain multiple references to the same object.

Luckily, there was a way of enforcing pass-by-reference, but it meant remembering to use a clumsy
construction.

Here’s how you would assign by reference:

$other =& $my obj;
// $other and $my obj point to same object

This enforces pass by reference:

function setSchool(& $school)
{

}

// $school is now a reference to not a copy of passed object

10

CHAPTER 2 © PHP AND OBJECTS

And here is return by reference:

function & getSchool()

{
// returning a reference not a copy
return $this->school;

}

Although this worked fine, it was easy to forget to add the ampersand, and that meant it was all too easy
for bugs to creep into object-oriented code. These were particularly hard to track down, because they rarely
caused any reported errors, just plausible but broken behavior.

Coverage of syntax in general, and objects in particular, was extended in the PHP manual, and object-
oriented coding began to bubble up to the mainstream. Objects in PHP were not uncontroversial (then, as
now, no doubt), and threads like “Do I need objects?” were common flame-bait in mailing lists. Indeed, the
Zend site played host to articles that encouraged object-oriented programming side-by-side with others that
sounded a warning note. Pass-by-reference issues and controversy notwithstanding, many coders just got on
and peppered their code with ampersand characters. Object-oriented PHP grew in popularity. Zeev Suraski
wrote this in an article for DevX.com (http://www.devx.com/webdev/Article/10007/0/page/1):

One of the biggest twists in PHP’s history was that despite the very limited functionality,
and despite a host of problems and limitations, object-oriented programming in PHP
thrived and became the most popular paradigm for the growing numbers of off-the-shelf
PHP applications. This trend, which was mostly unexpected, caught PHP in a suboptimal
situation. It became apparent that objects were not behaving like objects in other OO
languages, and were instead behaving like [associative] arrays.

As noted in the previous chapter, interest in object-oriented design became obvious in sites and articles
online. PHP’s official software repository, PEAR, itself embraced object-oriented programming. With
hindsight, it’s easy to think of PHP’s adoption of object-oriented support as a reluctant capitulation to an
inevitable force. It's important to remember that, although object-oriented programming has been around
since the 1960s, it really gained ground in the mid-1990s. Java, the great popularizer, was not released until
1995. A superset of C, a procedural language, C++ has been around since 1979. After a long evolution, it
arguably made the leap to the big time during the 1990s. Perl 5 was released in 1994, another revolution
within a formerly procedural language that made it possible for its users to think in objects (although
some argue that Perl’s object-oriented support also felt like something of an afterthought). For a small
procedural language, PHP developed its object support remarkably fast, showing a real responsiveness to
the requirements of its users.

Change Embraced: PHP 5

PHP 5 represented an explicit endorsement of objects and object-oriented programming. That is not to say
that objects were the only way to work with PHP (this book does not say that either, by the way). Objects
were, however, recognized as a powerful and important means for developing enterprise systems, and PHP
fully supported them in its core design.

Arguably, one significant effect of the enhancements in PHP 5 was the adoption of the language by
larger Internet companies. Both Yahoo! And Facebook, for example, started using PHP extensively within
their platforms. With version 5, PHP became one of the standard languages for development and enterprise
on the internet.

11

http://www.devx.com/webdev/Article/10007/0/page/1

CHAPTER 2 © PHP AND OBJECTS

Objects had moved from afterthought to language driver. Perhaps the most important change was
the default pass-by-reference behavior which replaced the evils of object copying. That was only the
beginning, however. Throughout this book, and particularly in this part of it, we will encounter many more
enhancements, including private and protected methods and properties, the static keyword, namespaces,
type hints (now called type declarations), and exceptions. PHP 5 was around for a long time (about twelve
years), and important new features were released incrementally.

PHP 5.3, for example, brought namespaces. These let you create a named scope for classes and
functions, so that you are less likely to run into duplicate names as you include libraries and expand your
system. They also rescue you from ugly but necessary naming conventions such as this:

class megaquiz_util Conf

}

Class names such as this are one way of preventing clashes between packages, but they can make for
tortuous code.
We have also seen support for closures, generators, traits, and late static bindings.

PHP 7: Closing the Gap

Programmers are a demanding lot. For many lovers of design patterns, there were two key features that PHP
still lacked. These were scalar type declarations and enforced return types. With PHP 5 it was possible to
enforce the type of an argument passed to a function or method, so long as you only needed to require an
object, an array, or later, callable code. Scalar values (like integers, strings, and floats) could not be enforced
at all. Furthermore, if you wanted to declare a method or a function’s return type, you were altogether out of
luck.

As you will see, object-oriented design often uses a method declaration as a kind of contract. The
method demands certain inputs and, reciprocally, it promises to give you a particular type of data back.
PHP 5 programmers were forced to rely on comments, convention, and manual type checking to maintain
contracts of this kind in many cases. Developers and commentators often complained about this. Here is a
quote from the previous edition of this book:

...there is still no commitment to provide support for hinted return types. This would allow
you to declare in a method or function’s declaration the object type that it returns. This
would then be enforced by the PHP engine. Hinted return types would further improve
PHP’s support for pattern principles (principles such as “code to an interface, not an
implementation”). I hope one day to revise this book to cover that feature!

I'm pleased to write that the day has come! PHP 7 introduced scalar type declarations (previously
known as type hints) and return type declarations, and you'll see them used plenty in this edition.

PHP 7 also provided other nice-to-haves, including anonymous classes and some namespace
enhancements.

Advocacy and Agnosticism: The Object Debate

Objects and object-oriented design seem to stir passions on both sides of the enthusiasm divide. Many
excellent programmers have produced excellent code for years without using objects, and PHP continues to
be a superb platform for procedural web programming.

12

CHAPTER 2 © PHP AND OBJECTS

This book naturally displays an object-oriented bias throughout, a bias that reflects my object-infected
outlook. Because this book is a celebration of objects, and an introduction to object-oriented design, it is
inevitable that the emphasis is unashamedly object-oriented. Nothing in this book is intended, however, to
suggest that objects are the one true path to coding success with PHP.

Whether a developer chose to work with PHP as an object-oriented language was once a matter of
preference. This is still true to the extent that one can create perfectly acceptable working systems using
functions and global code. Some great tools (e.g., WordPress) are still procedural in their underlying
architecture (though even these may make extensive use of objects these days). It is, however, becoming
increasingly hard to work as a PHP programmer without using and understanding PHP’s support for objects,
not least because the third party libraries you are likely to rely upon in your projects will themselves likely be
object-oriented.

Still, as you read, it is worth bearing in mind the famous Perl motto, “There’s more than one way to do
it” This is especially true of smaller scripts, where quickly getting a working example up and running is more
important than building a structure that will scale well into a larger system (scratch projects of this sort are
often known as “spikes”).

Code is a flexible medium. The trick is to know when your quick proof of concept is becoming the root
of a larger development, and to call a halt before lasting design decisions are made for you by the sheer
weight of your code. Now that you have decided to take a design-oriented approach to your growing project,
I hope that this book provides the help that you need to get started building object-oriented architectures.

Summary

This short chapter placed objects in their context in the PHP language. The future for PHP is very much
bound up with object-oriented design. In the next few chapters, I take a snapshot of PHP’s current support
for object features, and introduce some design issues.

13

CHAPTER 3

Object Basics

Objects and classes lie at the heart of this book and, since the introduction of PHP 5 over a decade ago, they
have lain at the heart of PHP, too. In this chapter, I lay down the groundwork for more in-depth coverage
of objects and design by examining PHP’s core object-oriented features. If you are new to object-oriented
programming, you should read this chapter carefully.

This chapter will cover the following topics:

e Classes and objects: Declaring classes and instantiating objects
e Constructor methods: Automating the setup of your objects

e Primitive and class types: Why type matters

e Inheritance: Why we need inheritance and how to use it

e Visibility: Streamlining your object interfaces and protecting your methods and
properties from meddling

Classes and Objects

The first barrier to understanding object-oriented programming is the strange and wonderful relationship
between the class and the object. For many people, it is this relationship that represents the first moment of
revelation, the first flash of object-oriented excitement. So let’s not skimp on the fundamentals.

A First Class

Classes are often described in terms of objects. This is interesting, because objects are often described
in terms of classes. This circularity can make the first steps in object-oriented programming hard going.
Because it’s classes that shape objects, we should begin by defining a class.

In short, a class is a code template used to generate one or more objects. You declare a class with the
class keyword and an arbitrary class name. Class names can be any combination of numbers and letters,
although they must not begin with a number. The code associated with a class must be enclosed within
braces. Here I combine these elements to build a class:

// listing 03.01

class ShopProduct

{
// class body
}
© Matt Zandstra 2016 15

M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_3

CHAPTER 3 © OBJECT BASICS

The ShopProduct class in the example is already a legal class, although it is not terribly useful yet. I have
done something quite significant, however. I have defined a type; that is, I have created a category of data
that I can use in my scripts. The power of this should become clearer as you work through the chapter.

A First Object (or Two)

If a class is a template for generating objects, it follows that an object is data that has been structured
according to the template defined in a class. An object is said to be an instance of its class. It is of the type
defined by the class.

I use the ShopProduct class as a mold for generating ShopProduct objects. To do this, I need the new
operator. The new operator is used in conjunction with the name of a class, like this:

// listing 03.02

$product1
$product2

new ShopProduct();
new ShopProduct();

The new operator is invoked with a class name as its only operand and returns an instance of that class;
in our example, it generates a ShopProduct object.

I have used the ShopProduct class as a template to generate two ShopProduct objects. Although they
are functionally identical (that is, empty), $productl and $product2 are different objects of the same type
generated from a single class.

If you are still confused, try this analogy. Think of a class as a cast in a machine that makes plastic ducks.
Our objects are the ducks that this machine generates. The type of thing generated is determined by the
mold from which it is pressed. The ducks look identical in every way, but they are distinct entities. In other
words, they are different instances of the same type. The ducks may even have their own serial numbers to
prove their identities. Every object that is created in a PHP script is also given its own unique identifier. (Note
that the identifier is unique for the life of the object; that is, PHP reuses identifiers, even within a process).

I can demonstrate this by printing out the $product1 and $product2 objects:

// listing 03.03

var_dump($product1);
var_dump($product2);

Executing these functions produces the following output:

object(popp\cho3\batcho1\ShopProduct)#235 (0) {
}

object(popp\cho3\batcho1\ShopProduct)#234 (0) {
}

Note In ancient versions of PHP (up to version 5.1), you could print an object directly. This casted the
object to a string containing the object’s ID. From PHP 5.2 onward, the language no longer supports this magic,
and any attempt to treat an object as a string now causes an error unless a method named __ toString() is
defined in the object’s class. | look at methods later in this chapter, and | cover __toString() in Chapter 4,
“Advanced Features.”

16

http://dx.doi.org/10.1007/978-1-4842-1996-6_4

CHAPTER 3 © OBJECT BASICS

By passing the objects to var_dump(), I extract useful information including, after the hash sign, each
object’s internal identifier.

In order to make these objects more interesting, I can amend the ShopProduct class to support special
data fields called properties.

Setting Properties in a Class

Classes can define special variables called properties. A property, also known as a member variable, holds
data that can vary from object to object. So in the case of ShopProduct objects, you may wish to manipulate
title and price fields, for example.

A property in a class looks similar to a standard variable except that, in declaring a property, you must
precede the property variable with a visibility keyword. This can be public, protected, or private, and it
determines the scope from which the property can be accessed.

Note Scope refers to the function or class context in which a variable has meaning (it refers in the same
way to methods, which | will cover later in this chapter). So a variable defined in a function exists in local
scope, and a variable defined outside of the function exists in global scope. As a rule of thumb, it is not possible
to access data defined in a scope that is more local than the current one. So if you define a variable inside a
function, you cannot later access it from outside that function. Objects are more permeable than this, in that
some object variables can sometimes be accessed from other contexts. Which variables can be accessed and
from what context is determined by the public, protected, and private keywords, as you shall see.

I will return to these keywords and the issue of visibility later in this chapter. For now, I will declare
some properties using the public keyword:

// listing 03.04

class ShopProduct
public $title = "default product";
public $producerMainName = “"main name";

public $producerFirstName = "first name";
public $price = 0;

Asyou can see, I set up four properties, assigning a default value to each of them. Any objects I
instantiate from the ShopProduct class will now be prepopulated with default data. The public keyword in
each property declaration ensures that I can access the property from outside of the object context.

You can access property variables on an object-by-object basis using the characters '->" (the object
operator) in conjunction with an object variable and property name, like this:

// listing 03.05

$product1 = new ShopProduct();
print $producti->title;

default product

17

CHAPTER 3 © OBJECT BASICS

Because the properties are defined as public, you can assign values to them just as you can read them,
replacing any default value set in the class:

// listing 03.06

$productl = new ShopProduct();
$product2 = new ShopProduct();
$producti->title="My Antonia";
$product2->title="Catch 22";

By declaring and setting the $title property in the ShopProduct class, I ensure that all ShopProduct objects
have this property when first created. This means code that uses this class can work with ShopProduct objects
based on that assumption. Because I can reset it, though, the value of $title may vary from object to object.

Note Code that uses a class, function, or method is often described as the class’s, function’s, or method’s
client or as client code. You will see this term frequently in the coming chapters.

In fact, PHP does not force us to declare all our properties in the class. You could add properties
dynamically to an object, like this:

// listing 03.07
$producti->arbitraryAddition = "treehouse";

However, this method of assigning properties to objects is not considered good practice in object-
oriented programming.

Why is it bad practice to set properties dynamically? When you create a class you define a type. You
inform the world that your class (and any object instantiated from it) consists of a particular set of fields and
functions. If your ShopProduct class defines a $title property, then any code that works with ShopProduct
objects can proceed on the assumption that a $title property will be available. There can be no guarantees
about properties that have been dynamically set, though.

My objects are still cumbersome at this stage. When I need to work with an object’s properties, I must
currently do so from outside the object. I reach in to set and get property information. Setting multiple
properties on multiple objects will soon become a chore:

// listing 03.08

$product1 = new ShopProduct();
$producti->title = "My Antonia";
$producti->producerMainName = "Cather";
$producti->producerFirstName = "Willa";
$producti->price = 5.99;

I work once again with the ShopProduct class, overriding all the default property values one by one until
I have set all product details. Now that I have set some data, I can also access it:

// listing 03.09

print "author: {$producti->producerFirstName} "
. "{$producti->producerMainName}\n";

18

CHAPTER 3 © OBJECT BASICS

This outputs the following:
author: Willa Cather

There are a number of problems with this approach to setting property values. Because PHP lets you
set properties dynamically, you will not get warned if you misspell or forget a property name. For example,
assume I want to type this line:

$producti->producerMainName = "Cather";
Unfortunately, I mistakenly type it like this:
$producti->producerSecondName = "Cather";

As far as the PHP engine is concerned, this code is perfectly legal, and I would not be warned. When I
come to print the author’s name, though, I will get unexpected results.

Another problem is that my class is altogether too relaxed. I am not forced to set a title, a price, or
producer names. Client code can be sure that these properties exist, but is likely to be confronted with
default values as often as not. Ideally, I would like to encourage anyone who instantiates a ShopProduct
object to set meaningful property values.

Finally, I have to jump through hoops to do something that I will probably want to do quite often. As we
have seen, printing the full author name is a tiresome process.

It would be nice to have the object handle such drudgery on my behalf.

All of these problems can be addressed by giving the ShopProduct object its own set of functions that
can be used to manipulate property data from within the object context.

Working with Methods

Just as properties allow your objects to store data, methods allow your objects to perform tasks. Methods are
special functions declared within a class. As you might expect, a method declaration resembles a function
declaration. The function keyword precedes a method name, followed by an optional list of argument
variables in parentheses. The method body is enclosed by braces:

public function myMethod($argument, $another)
{

}

/7 ...

Unlike functions, methods must be declared in the body of a class. They can also accept a number of
qualifiers, including a visibility keyword. Like properties, methods can be declared public, protected, or
private. By declaring a method public, you ensure that it can be invoked from outside of the current object.
If you omit the visibility keyword in your method declaration, the method will be declared public implicitly.
It is considered good practice, however, to declare visibility explicitly for all methods (I will return to method
modifiers later in the chapter

// listing 03.10

class ShopProduct
{

19

CHAPTER 3 © OBJECT BASICS

public $title = "default product";
public $producerMainName = "main name";
public $producerFirstName = "first name";
public $price = 0;

public function getProducer()

{

return $this->producerFirstName .
. $this->producerMainName;

In most circumstances, you will invoke a method using an object variable in conjunction with the object
operator, ->, and the method name. You must use parentheses in your method call as you would if you were
calling a function (even if you are not passing any arguments to the method):

// listing 03.11

$product1 = new ShopProduct();
$producti->title = "My Antonia";
$producti->producerMainName = "Cather";
$producti->producerFirstName = "Willa";
$producti->price = 5.99;

print "author: {$producti->getProducer()}\n";

This outputs the following:
author: Willa Cather

I add the getProducer() method to the ShopProduct class. Notice that I declare getProducer () public,
which means it can be called from outside the class.

Lintroduce a feature in this method’s body. The $this pseudo-variable is the mechanism by which a
class can refer to an object instance. If you find this concept hard to swallow, try replacing $this with the
phrase “the current instance.” Consider the following statement:

$this->producerFirstName
This translates to the following:
the $producerFirstName property of the current instance

So the getProducer () method combines and returns the $producerFirstName and $producerMainName
properties, saving me from the chore of performing this task every time I need to quote the full producer name.

This has improved the class a little. I am still stuck with a great deal of unwanted flexibility, though. I rely
on the client coder to change a ShopProduct object’s properties from their default values. This is problematic
in two ways. First, it takes five lines to properly initialize a ShopProduct object, and no coder will thank you
for that. Second, I have no way of ensuring that any of the properties are set when a ShopProduct object is
initialized. What I need is a method that is called automatically when an object is instantiated from a class.

20

CHAPTER 3 © OBJECT BASICS

Creating a Constructor Method

A constructor method is invoked when an object is created. You can use it to set things up, ensuring that
essential properties are assigned values and any necessary preliminary work is completed.

Note In versions previous to PHP 5, a constructor method took on the name of the class that enclosed it.
So the ShopProduct class would use a ShopProduct () method as its constructor. This no longer works in all
circumstances and was deprecated as of PHP 7. Name your constructor method _ construct().

Note that the method name begins with two underscore characters. You will see this naming
convention for many other special methods in PHP classes. Here I define a constructor for the ShopProduct
class:

// listing 03.12

class ShopProduct

{
public $title;
public $producerMainName;
public $producerFirstName;
public $price = 0;

public function _ construct(
$title,
$firstName,
$mainName,
$price

) 4
$this->title = $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;
$this->price = $price;

}

public function getProducer()

{

return $this->producerFirstName .
. $this->producerMainName;

Once again, I gather functionality into the class, saving effort and duplication in the code that uses it.
The _ construct() method is invoked when an object is created using the new operator:

// listing 03.13
$productl = new ShopProduct(

"My Antonia",
"Willa",

21

CHAPTER 3 © OBJECT BASICS

"Cather",
5.99
)5

print "author: {$producti->getProducer()}\n";

This produces the following:
author: Willa Cather

Any arguments supplied are passed to the constructor. So in my example, I pass the title, the first name,
the main name, and the product price to the constructor. The constructor method uses the pseudo-variable
$this to assign values to each of the object’s properties.

Note A ShopProduct object is now easier to instantiate and safer to use. Instantiation and setup are
completed in a single statement. Any code that uses a ShopProduct object can be reasonably sure that all its
properties are initialized.

This predictability is an important aspect of object-oriented programming. You should design your
classes so that users of objects can be sure of their features. One way you can make an object safe is to render
predictable the types of data it holds in its properties. One might ensure that a $name property is always made
up of character data, for example. But how can you achieve this if property data is passed in from outside the
class? In the next section, I examine a mechanism you can use to enforce object types in method declarations.

Arguments and Types

Type determines the way data can be managed in your scripts. You use the string type to display character
data, for example, and manipulate such data with string functions. Integers are used in mathematical
expressions, Booleans are used in test expressions, and so on. These categories are known as primitive types.
On a higher level, though, a class defines a type. A ShopProduct object, therefore, belongs to the primitive
type object, but it also belongs to the ShopProduct class type. In this section, I will look at types of both
kinds in relation to class methods.

Method and function definitions do not necessarily require that an argument should be of a particular
type. This is both a curse and a blessing. The fact that an argument can be of any type offers you flexibility.
You can build methods that respond intelligently to different data types, tailoring functionality to changing
circumstances. This flexibility can also cause ambiguity to creep into code when a method body expects an
argument to hold one type but gets another.

Primitive Types

PHP is a loosely typed language. This means that there is no necessity for a variable to be declared to hold
a particular data type. The variable $number could hold the value 2 and the string "two" within the same
scope. In strongly typed languages, such as C or Java, you must declare the type of a variable before assigning
avalue to it, and, of course, the value must be of the specified type.

This does not mean that PHP has no concept of type. Every value that can be assigned to a variable has
a type. You can determine the type of a variable’s value using one of PHP’s type-checking functions. Table 3-1
lists the primitive types recognized in PHP and their corresponding test functions. Each function accepts a
variable or value and returns true if this argument is of the relevant type.

22

CHAPTER 3 © OBJECT BASICS

Table 3-1. Primitive Types and Checking Functions in PHP

Type Checking Function Type Description

is bool() Boolean One of the two special values, true or false

is_integer() Integer A whole number. Alias of is_int() and is_long()

is_double() Double A floating point number (a number with a decimal point). Alias
of is_float()

is_string() String Character data

is_object() Object An object

is_array() Array An array

is_resource() Resource A handle for identifying and working with external resources

such as databases or files

is_null() Null An unassigned value

Checking the type of a variable can be particularly important when you work with method and function
arguments.

Primitive Types Matter: An Example

You need to keep a close eye on type in your code. Here’s an example of one of the many type-related
problems that you could encounter.

Imagine that you are extracting configuration settings from an XML file. The <resolvedomains> XML
element tells your application whether it should attempt to resolve IP addresses to domain names, a useful
but relatively expensive process. Here is some sample XML:

<!-- listing 03.14 -->

<settings>
<resolvedomains>false</resolvedomains>

</settings>

The string "false" is extracted by your application and passed as a flag to a method called
outputAddresses(), which displays IP address data. Here is outputAddresses():

// listing 03.15

class AddressManager

{

private $addresses = ["209.131.36.159", "216.58.213.174"];

public function outputAddresses($resolve)

{

foreach ($this->addresses as $address) {
print $address;
if ($resolve) {
print " (".gethostbyaddr($address).")";

print "\n";

23

CHAPTER 3 © OBJECT BASICS

Of course, the AddressManager class could do with some improvement. It’s not very useful to hardcode
IP addresses into a class, for example. Nevertheless, the outputAddresses() method loops through the
$addresses array property, printing each element. If the $resolve argument variable itself resolves to true,
the method outputs the domain name, as well as the IP address.

Here’s one approach that uses the settings XML configuration element in conjunction with the
AddressManager class. See if you can spot how it is flawed:

// listing 03.16

$settings = simplexml:load file(_ DIR ."/resolve.xml");
$manager = new AddressManager();
$manager->outputAddresses((string)$settings->resolvedomains);

The code fragment uses the SimpleXML API to acquire a value for the resolvedomains element. In
this example, I know that this value is the text element "false", and I cast it to a string as the SimpleXML
documentation suggests I should.

This code will not behave as you might expect. In passing the string "false" to the outputAddresses()
method, I misunderstand the implicit assumption the method makes about the argument. The method is
expecting a Boolean value (that is true or false). The string "false" will, in fact, resolve to true in a test.
This is because PHP will helpfully cast a nonempty string value to the Boolean true for you in a test context.
Consider this code:

if ("false") {

/...
}

It is actually equivalent to this:
if (true) {

/...
}

There are a number of approaches you might take to fix this.
You could make the outputAddresses() method more forgiving, so that it recognizes a string and
applies some basic rules to convert it to a Boolean equivalent:

// listing 03.17

public function outputAddresses($resolve)

{
if (is_string($resolve)) {
$resolve =
(preg_match("/~(false|no|off)$/1i", $resolve)) ? false : true;
}
/1.
}

24

CHAPTER 3 © OBJECT BASICS

There are good design reasons for avoiding an approach like this, however. Generally speaking, it is
better to provide a clear and strict interface for a method or function than it is to offer a fuzzily forgiving one.
Fuzzy and forgiving functions and methods can promote confusion and thereby breed bugs.

You could take another approach: Leave the outputAddresses() method as it is and include a
comment containing clear instructions that the $resolve argument should contain a Boolean value. This
approach essentially tells the coder to read the small print or reap the consequences:

J**
* Qutputs the list of addresses.
* If $resolve is true then each address will be resolved

* @param $resolve boolean Resolve the address?
*/
function outputAddresses($resolve)
{
/...
}

This is a reasonable approach, assuming your client coders are diligent readers of documentation.

Finally, you could make outputAddresses() strict about the type of data it is prepared to find in the
$resolve argument. For primitive types like boolean, there was really only one way to do this prior to the
release of PHP 7. You would have to write code to examine incoming data and take some kind of action if it
does not match the required type:

function outputAddresses($resolve)

{ if (! is_bool($resolve)) {
// do something drastic
}
/...
}

This approach can be used to force client code to provide the correct data type in the $resolve
argument or to issue a warning.

Note In the next section, “Taking the Hint: Object Types,” | will describe a much better way of constraining
the type of arguments passed to methods and functions.

Converting a string argument on the client’s behalf would be friendly but would probably present other
problems. In providing a conversion mechanism, you second-guess the context and intent of the client. By
enforcing the Boolean data type, on the other hand, you leave the client to decide whether to map strings to
Boolean values and determine which word should map to true or false. The outputAddresses() method,
meanwhile, concentrates on the task it is designed to perform. This emphasis on performing a specific task in
deliberate ignorance of the wider context is an important principle in object-oriented programming, and | will
return to it frequently throughout the book.

25

CHAPTER 3 © OBJECT BASICS

In fact, your strategies for dealing with argument types will depend on the seriousness of any potential
bugs on the one hand, and the benefits of flexibility on the other. PHP casts most primitive values for you,
depending on context. Numbers in strings are converted to their integer or floating point equivalents when
used in a mathematical expression, for example. So your code might be naturally forgiving of type errors. If
you expect one of your method arguments to be an array, however, you may need to be more careful. Passing
a nonarray value to one of PHP’s array functions will not produce a useful result and could cause a cascade
of errors in your method.

It is likely, therefore, that you will strike a balance among testing for type, converting from one type to
another, and relying on good, clear documentation (you should provide the documentation, whatever else
you decide to do).

However you address problems of this kind, you can be sure of one thing—type matters. The fact that
PHP is loosely typed makes it all the more important. You cannot rely on a compiler to prevent type-related
bugs; you must consider the potential impact of unexpected types when they find their way into your
arguments. You cannot afford to trust client coders to read your thoughts, and you should always consider
how your methods will deal with incoming garbage.

Taking the Hint: Object Types
Just as an argument variable can contain any primitive type, by default it can contain an object of any type.
This flexibility has its uses, but can present problems in the context of a method definition.
Imagine a method designed to work with a ShopProduct object:
// listing 03.18

class ShopProductWriter

{
public function write($shopProduct)
{
$str = $shopProduct->title . ": "
. $shopProduct->getProducer()
. " (" . $shopProduct->price . ")\n";
print $str;
}
}

You can test this class like this:
// listing 03.19
$producti = new ShopProduct("My Antonia", "Willa", "Cather", 5.99);
$writer = new ShopProductWriter();

$writer->write($producti);

This outputs the following:
My Antonia: Willa Cather (5.99)

The ShopProductWriter class contains a single method, write(). The write() method accepts a
ShopProduct object and uses its properties and methods to construct and print a summary string. I used the
name of the argument variable, $shopProduct, as a signal that the method expects a ShopProduct object, but

26

CHAPTER 3 © OBJECT BASICS

I did not enforce this. That means I could be passed an unexpected object or primitive type and be none the
wiser until I begin trying to work with the $shopProduct argument. By that time, my code may already have
acted on the assumption that it has been passed a genuine ShopProduct object.

Note You might wonder why | didn't add the write() method directly to ShopProduct. The reason lies with
areas of responsibility. The ShopProduct class is responsible for managing product data; the ShopProductWriter
is responsible for writing it. You will begin to see why this division of labor can be useful as you read this chapter.

To address this problem, PHP 5 introduced class type declarations (known then as type hints). To add a
class type declaration to a method argument, you simply place a class name in front of the method argument
you need to constrain. So I can amend the write() method thus:

// listing 03.20

public function write(ShopProduct $shopProduct)
{

}

/7 ...

Now the write() method will only accept the $shopProduct argument if it contains an object of type
ShopProduct. This snippet tries to call write() with a dodgy object:

// listing 03.21

class Wrong

{
}

$writer = new ShopProductWriter();
$writer->write(new Wrong());

Because the write() method contains a class type declaration, passing it a Wrong object causes a fatal error.

TypeError: Argument 1 passed to ShopProductWriter::write() must be an instance of
ShopProduct, instance of Wrong given, called in Runner.php on ..

This saves me from having to test the type of the argument before I work with it. It also makes the
method signature much clearer for the client coder. She can see the requirements of the write() method
at a glance. She does not have to worry about some obscure bug arising from a type error because the
declaration is rigidly enforced.

Even though this automated type checking is a great way of preventing bugs, it is important to
understand that type declarations are checked at runtime. This means that a class declaration will only
report an error at the moment that an unwanted object is passed to the method. If a call to write() is buried
in a conditional clause that only runs on Christmas morning, you may find yourself working the holiday if
you haven’t checked your code carefully.

27

CHAPTER 3 © OBJECT BASICS

Armed with scalar type declarations, I can add some constraints to the ShopProduct class:
// listing 03.22

class ShopProduct

{
public $title;
public $producerMainName;
public $producerFirstName;
public $price = 0;

public function _ construct(
string $title,
string $firstName,
string $mainName,
float $price

) 4
$this->title = $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;
$this->price = $price;

/7 ...

With the constructor method shored up in this way, I can be sure that the $title, $firstName,
$mainName arguments will always contain string data, and that $price will contain a float. I can demonstrate
this by instantiating ShopProduct with the wrong information:

// listing 03.23

// will fail
$product = new ShopProduct("title", "first", "main", []);

I attempt to instantiate a ShopProduct object. I pass three strings to the constructor, but I fail at the final

hurdle by passing in an empty array instead of the required float. Thanks to type declarations, PHP won't let
me get away with that:

TypeError: Argument 4 passed to ShopProduct:: construct() must be of the type float,
array given, called in...

By default, PHP will implicitly cast arguments to the required type, where possible. This is an example
of the tension between safety and flexibility we encountered earlier. The new implementation of the
ShopProduct class, for example, will quietly turn a string into a float for us. So, this instantiation would not fail:
// listing 03.24
$product = new ShopProduct("title", "first", "main", "4.22");

Behind the scenes, the string "4.22" becomes the float 4.22

28

CHAPTER 3 © OBJECT BASICS

So far, so useful. But think back to the problem we encountered with the AddressManager class. The
string "false" was quietly resolving to the Boolean true. By default, this will still happen if I use a bool type
declaration in the AddressManager : :outputAddresses () method like this:

// listing 03.25

public function outputAddresses(bool $resolve)

{
}

/...

Now consider a call that passes along a string like this:
// listing 03.26
$manager->outputAddresses("false");

Because of implicit casting, it is functionally identical to one that passes the Boolean value true.

You can make scalar type declarations strict, although only on a file by file basis. Here, I turn on strict
type declarations and call outputAddresses () with a string once again:

// listing 03.27

declare(strict types=1);
$manager->outputAddresses("false");

Because I declare strict typing, this call causes a TypeError to be thrown:

TypeError: Argument 1 passed to AddressManager::outputAddresses() must be of the type
boolean, string given, called in ...

Note A strict types declaration applies to the file from which a call is made, and not to the file in which
a function or method is implemented. So it’s up to client code to enforce strictness.

You may need to make an argument optional, but nonetheless constrain its type if it is provided. You
can do this by providing a default value:

// listing 03.28

class ConfReader

{
public function getValues(array $default = null)
{
$values = [];

// do something to get values

// merge the provided defaults (it will always be an array)
29

CHAPTER 3 © OBJECT BASICS

$values = array merge($default, $values);
return $values;

In Table 3-2, I list the type declarations supported by PHP.

Table 3-2. Type declarations

Type declaration ~ Since Description

array 5.1 An array. Can default to null or an array
int 7.0 An integer Can default to null or an integer
float 7.0 A floating point number (a number with a decimal point). An integer will

be accepted—even with strict mode enabled. Can default to null, a float,
or an integer

callable 5.4 Callable code (such as an anonymous function). Can default to null
bool 7.0 A Boolean. Can default to null or a Boolean.

string 5.0 Character data. Can default to null or a string.

self 5.0 A reference to the containing class

[a class type] 5.0 The type of a class or interface. Can default to null

When I described class type declarations, I implied that types and classes are synonymous. There is
a key difference between the two, however. When you define a class, you also define a type, but a type can
describe an entire family of classes. The mechanism by which different classes can be grouped together
under a type is called inheritance. I discuss inheritance in the next section.

Inheritance

Inheritance is the means by which one or more classes can be derived from a base class.

A class that inherits from another is said to be a subclass of it. This relationship is often described in
terms of parents and children. A child class is derived from and inherits characteristics from the parent.
These characteristics consist of both properties and methods. The child class will typically add new
functionality to that provided by its parent (also known as a superclass); for this reason, a child class is said
to extend its parent.

Before I dive into the syntax of inheritance, I'll examine the problems it can help you to solve.

The Inheritance Problem

Look again at the ShopProduct class. At the moment, it is nicely generic. It can handle all sorts of products:
// listing 03.29

$productl = new ShopProduct("My Antonia", "Willa", "Cather", 5.99);

$product2 = new ShopProduct(

"Exile on Coldharbour Lane",
"The",

30

CHAPTER 3 © OBJECT BASICS

"Alabama 3",
10.99
);
print "author:
print "artist:

. $producti->getProducer() . "\n";
" . $product2->getProducer() . "\n";

Here’s the output:

author: Willa Cather
artist: The Alabama 3

Separating the producer name into two parts works well with both books and CDs. I want to be able to
sort on “Alabama 3” and “Cather’, not on “The” and “Willa” Laziness is an excellent design strategy, so there
is no need to worry about using ShopProduct for more than one kind of product at this stage.

IfI add some new requirements to my example, however, things rapidly become more complicated.
Imagine, for example, that you need to represent data specific to books and CDs. For CDs, you must store the
total playing time; for books, the total number of pages. There could be any number of other differences, but
this will serve to illustrate the issue.

How can I extend my example to accommodate these changes? Two options immediately present
themselves. First, I could throw all the data into the ShopProduct class. Second, I could split ShopProduct
into two separate classes.

Let’s examine the first approach. Here, I combine CD- and book-related data in a single class:

// listing 03.30

class ShopProduct

{
public $numPages;
public $playlength;
public $title;
public $producerMainName;
public $producerFirstName;
public $price;

public function _ construct(
string $title,
string $firstName,
string $mainName,
float $price,
int $numPages =
int $playlLength
) 4
$this->title = $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;

0,
=0

$this->price = $price;
$this->numPages = $numPages;
$this->playLength = $playlLength;

31

CHAPTER 3 © OBJECT BASICS

public function getNumberOfPages()

{
return $this->numPages;
}
public function getPlaylLength()
{
return $this->playlength;
}
public function getProducer()
{
return $this->producerfFirstName . " "
. $this->producerMainName;
}

I have provided method access to the $numPages and $playLength properties to illustrate the divergent
forces at work here. An object instantiated from this class will include a redundant method and, for a CD, must
be instantiated using an unnecessary constructor argument: a CD will store information and functionality
relating to book pages, and a book will support play-length data. This is probably something you could live with
right now. But what would happen if I added more product types, each with its own methods, and then added
more methods for each type? Our class would become increasingly complex and hard to manage.

So forcing fields that don’t belong together into a single class leads to bloated objects with redundant
properties and methods.

The problem doesn’t end with data, either. I run into difficulties with functionality as well. Consider
a method that summarizes a product. The sales department has requested a clear summary line for use in
invoices. They want me to include the playing time for CDs and a page count for books, so I will be forced to
provide different implementations for each type. I could try using a flag to keep track of the object’s format.
Here’s an example:

// listing 03.31

public function getSummaryLine()

{
$base = "{$this->title} ({$this->producerMainName}, ";
$base .= "{$this->producerFirstName})";
if ($this->type == 'book') {
$base .= ": page count - {$this->numPages}";
} elseif ($this->type == 'cd") {
$base .= ": playing time - {$this->playLength}";
}
return $base;
}

In order to set the $type property, I could test the $numPages argument to the constructor. Still, once
again, the ShopProduct class has become more complex than necessary. As I add more differences to my
formats, or add new formats, these functional differences will become even harder to manage. Perhaps I
should try another approach to this problem.

As ShopProduct is beginning to feel like two classes in one, I could accept this and create two types
rather than one. Here’s how I might do it:

32

// listing 03.32

class CdProduct

{

}

public $playlLength;

public $title;

public $producerMainName;
public $producerFirstName;
public $price;

public function _ construct(
string $title,
string $firstName,
string $mainName,
float $price,
int $playLength

)
$this->title = $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;
$this->price = $price;
$this->playlength = $playlLength;

}

public function getPlayLength()

{
return $this->playlength;

}

public function getSummaryLine()

{
$base = "{$this->title} ({$this->producerMainName},
$base .= "{$this->producerFirstName})";
$base .= ": playing time - {$this->playlLength}";
return $base;

}

public function getProducer()

{
return $this->producerfFirstName . " "

. $this->producerMainName;
}

// listing 03.33

class BookProduct

{

public $numPages;
public $title;
public $producerMainName;

CHAPTER 3 © OBJECT BASICS

33

CHAPTER 3 © OBJECT BASICS

public $producerFirstName;
public $price;

public function _ construct(
string $title,
string $firstName,
string $mainName,
float $price,
int $numPages
) 4
$this->title = $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;

$this->price = $price;
$this->numPages = $numPages;

}

public function getNumberOfPages()

{
return $this->numPages;

}

public function getSummaryLine()

{
$base = "{$this->title} ({$this->producerMainName}, ";
$base .= "{$this->producerFirstName})";
$base .= ": page count - {$this->numPages}";
return $base;

}

public function getProducer()

{
return $this->producerFirstName . " "

. $this->producerMainName;
}

I have addressed the complexity issue, but at a cost. I can now create a getSummaryLine() method for
each format without having to test a flag. Neither class maintains fields or methods that are not relevant to it.
The cost lies in duplication. The getProducerName () method is exactly the same in each class. Each
constructor sets a number of identical properties in the same way. This is another unpleasant odor you

should train yourself to sniff out.

IfI need the getProducer () methods to behave identically for each class, any changes I make to
one implementation will need to be made for the other. Without care, the classes will soon slip out of
synchronization.

Even if I am confident that I can maintain the duplication, my worries are not over. I now have two types
rather than one.

Remember the ShopProductWriter class? Its write() method is designed to work with a single type:
ShopProduct. How can I amend this to work as before? I could remove the class type declaration from the
method signature, but then I must trust to luck that write() is passed an object of the correct type. I could
add my own type checking code to the body of the method:

34

CHAPTER 3 © OBJECT BASICS

// listing 03.34

class ShopProductWriter

{
public function write($shopProduct)
{
if (
! ($shopProduct instanceof CdProduct) &&
! ($shopProduct instanceof BookProduct)
) {
die("wrong type supplied");
}
$str = "{$shopProduct->title}: "
. $shopProduct->getProducer()
. " ({$shopProduct->price})\n";
print $str;
}
}

Notice the instanceof operator in the example; instanceof resolves to true if the object in the left-
hand operand is of the type represented by the right-hand operand.

Once again, I have been forced to include a new layer of complexity. Not only do I have to test the
$shopProduct argument against two types in the write() method, but I have to trust that each type will
continue to support the same fields and methods as the other. It was all much neater when I simply
demanded a single type because I could use a class type declaration and because I could be confident that
the ShopProduct class supported a particular interface.

The CD and book aspects of the ShopProduct class don’t work well together but can’t live apart, it
seems. I want to work with books and CDs as a single type while providing a separate implementation for
each format. I want to provide common functionality in one place to avoid duplication, but allow each
format to handle some method calls differently. I need to use inheritance.

Working with Inheritance

The first step in building an inheritance tree is to find the elements of the base class that don’t fit together or
that need to be handled differently.

I know that the getPlayLength() and getNumberOfPages () methods do not belong together. I also
know that I need to create different implementations for the getSummaryLine() method. Let’s use these
differences as the basis for two derived classes:

// listing 03.35

class ShopProduct
{
public $numPages;
public $playlLength;
public $title;
public $producerMainName;
public $producerFirstName;
public $price;
public function _ construct(
string $title,

35

CHAPTER 3 © OBJECT BASICS

string $firstName,
string $mainName,
float $price,

int $numPages =
int $playLength

) 4

$this->title $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;

0,
=0

$this->price = $price;
$this->numPages = $numPages;
$this->playlLength = $playLength;
}
public function getProducer()
{
return $this->producerfFirstName . " "
. $this->producerMainName;
}
public function getSummaryLine()
{
$base = "{$this->title} ({$this->producerMainName}, ";
$base .= "{$this->producerFirstName})";
return $base;
}

}
// listing 03.36

class CdProduct extends ShopProduct

{
public function getPlaylLength()
{
return $this->playlength;
}
public function getSummaryLine()
{
$base = "{$this->title} ({$this->producerMainName}, ";
$base .= "{$this->producerFirstName})";
$base .= ": playing time - {$this->playLength}";
return $base;
}
}

// listing 03.37
class BookProduct extends ShopProduct

{
public function getNumberOfPages()

36

CHAPTER 3 © OBJECT BASICS

{
return $this->numPages;
}
public function getSummaryLine()
{
$base = "{$this->title} ({$this->producerMainName}, ";
$base .= "{$this->producerFirstName})";
$base .= ": page count - {$this->numPages}";
return $base;
}

To create a child class, you must use the extends keyword in the class declaration. In the example, I
created two new classes, BookProduct and CdProduct. Both extend the ShopProduct class.

Because the derived classes do not define constructors, the parent class’s constructor is automatically
invoked when they are instantiated. The child classes inherit access to all the parent’s public and protected
methods (though not to private methods or properties). This means that you can call the getProducer()
method on an object instantiated from the CdProduct class, even though getProducer () is defined in the
ShopProduct class:

// listing 03.38

$product2 = new CdProduct(
"Exile on Coldharbour Lane",
"The",
"Alabama 3",
10.99,
0,
60.33
);
print "artist: {$product2->getProducer()}\n";

So both the child classes inherit the behavior of the common parent. You can treat a BookProduct
object as if it were a ShopProduct object. You can pass a BookProduct or CdProduct object to the
ShopProducthriter class’swrite() method and all will work as expected.

Notice that both the CdProduct and BookProduct classes override the getSummaryLine() method,
providing their own implementation. Derived classes can extend but also alter the functionality of their parents.

The super class’s implementation of this method might seem redundant because it is overridden
by both its children. Nevertheless, it provides basic functionality that new child classes might use. The
method’s presence also provides a guarantee to client code that all ShopProduct objects will provide a
getSummaryLine() method. Later on you will see how it is possible to make this promise in a base class
without providing any implementation at all. Each child ShopProduct class inherits its parent’s properties.
Both BookProduct and CdProduct access the $title property in their versions of getSummaryLine().

Inheritance can be a difficult concept to grasp at first. By defining a class that extends another, you
ensure that an object instantiated from it is defined by the characteristics of first the child and then the
parent class. Another way of thinking about this is in terms of searching. When I invoke $product2-
>getProducer (), there is no such method to be found in the CdProduct class, and the invocation falls
through to the default implementation in ShopProduct. When I invoke $product2->getSummaryLine(), on
the other hand, the getSummaryLine() method is found in CdProduct and invoked.

37

CHAPTER 3 © OBJECT BASICS

The same is true of property accesses. When I access $title in the BookProduct class’s
getSummaryLine() method, the property is not found in the BookProduct class. It is acquired instead from
the parent class, from ShopProduct. The $title property applies equally to both subclasses, and therefore, it
belongs in the superclass.

A quick look at the ShopProduct constructor, however, shows that I am still managing data in the base
class that should be handled by its children. The BookProduct class should handle the $numPages argument
and property, and the CdProduct class should handle the $playLength argument and property. To make this
work, I will define constructor methods in each of the child classes.

Constructors and Inheritance

When you define a constructor in a child class, you become responsible for passing any arguments on to the
parent. If you fail to do this, you can end up with a partially constructed object.

To invoke a method in a parent class, you must first find a way of referring to the class itself: a handle.
PHP provides us with the parent keyword for this purpose.

To refer to a method in the context of a class rather than an object, you use : : rather than ->:

parent:: construct()

The preceding means, “Invoke the __construct() method of the parent class.” Here I amend my
example so that each class handles only the data that is appropriate to it:

// listing 03.39

class ShopProduct

{
public $title;
public $producerMainName;
public $producerFirstName;
public $price;

function _ construct(
$title,
$firstName,
$mainName,
$price
) 4
$this->title = $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;

$this->price = $price;
}
function getProducer()
{
return $this->producerfFirstName . " "
. $this->producerMainName;
}

function getSummaryLine()

{

38

CHAPTER 3 © OBJECT BASICS

$base = "{$this->title} ({$this->producerMainName}, ";
$base .= "{$this->producerFirstName})";
return $base;

}
// listing 03.40

class BookProduct extends ShopProduct

{
public $numPages;
public function _ construct(
string $title,
string $firstName,
string $mainName,
float $price,
int $numPages
) A
parent:: construct(
$title,
$firstName,
$mainName,
$price
)
$this->numPages = $numPages;
}
public function getNumberOfPages()
{
return $this->numPages;
}
public function getSummaryLine()
{
$base = "{$this->title} ($this->producerMainName, ";
$base .= "$this->producerFirstName)";
$base .= ": page count - {$this->numPages}";
return $base;
}
}

// listing 03.41

class CdProduct extends ShopProduct

{
public $playlength;

public function _ construct(

string $title,
string $firstName,

39

CHAPTER 3 © OBJECT BASICS

string $mainName,
float $price,
int $playLength

) A
parent::__construct(
$title,
$firstName,
$mainName,
$price
)5
$this->playlLength = $playlLength;
}

public function getPlayLength()
{

}

return $this->playlength;

public function getSummaryLine()
{
$bhase
$bhase .

return $base;

Each child class invokes the constructor of its parent before setting its own properties. The base class
now knows only about its own data. Child classes are generally specializations of their parents. As a rule of
thumb, you should avoid giving parent classes any special knowledge about their children.

"{$this->title} ({$this->producerMainName}, "
"{$this->producerFirstName})";
$base .= ": playing time - {$this->playLength}";

)

Note

Prior to PHP 5, constructors took on the name of the enclosing class. The new unified constructors
use the name _ construct(). Using the old syntax, a call to a parent constructor would tie you to that particular
class: parent: : ShopProduct(); . The old constructor syntax was deprecated in PHP 7.0 and should not be used.

Invoking an Overridden Method

The parent keyword can be used with any method that overrides its counterpart in a parent class. When you
override a method, you may not wish to obliterate the functionality of the parent, but rather to extend it. You
can achieve this by calling the parent class’s method in the current object’s context. If you look again at the
getSummaryLine() method implementations, you will see that they duplicate a lot of code. It would be better
to use rather than reproduce the functionality already developed in the ShopProduct class:

// listing 03.42

// ShopProduct class...

40

function getSummarylLine()

CHAPTER 3 © OBJECT BASICS

{
$base = "{$this->title} ({$this->producerMainName}, ";
$base .= "{$this->producerFirstName})";
return $base;

}

// listing 03.43
// BookProduct class...

public function getSummaryLine()

{
$base = parent::getSummaryLine();
$base .= ": page count - $this->numPages"”;
return $base;

}

I set up the core functionality for the getSummaryLine () method in the ShopProduct base class. Rather
than reproduce this in the CdProduct and BookProduct subclasses, I simply call the parent method before
proceeding to add more data to the summary string.

Now that you have seen the basics of inheritance, I will reexamine property and method visibility in
light of the full picture.

Public, Private, and Protected: Managing Access to Your Classes

So far, I have declared all properties public. Public access is the default setting for methods and for
properties if you use the old var keyword in your property declaration.
Elements in your classes can be declared public, private, or protected:

e Public properties and methods can be accessed from any context.

e Aprivate method or property can only be accessed from within the enclosing class.
Even subclasses have no access.

e Aprotected method or property can only be accessed from within either the
enclosing class or from a subclass. No external code is granted access.

So how is this useful to us? Visibility keywords allow you to expose only those aspects of a class that are
required by a client. This sets a clear interface for your object.

By preventing a client from accessing certain properties, access control can also help prevent bugs in
your code. Imagine, for example, that you want to allow ShopProduct objects to support a discount. You
could add a $discount property and a setDiscount() method:

// listing 03.44
// ShopProduct class

public $discount = 0;

/...
public function setDiscount(int $num)
{
$this->discount = $num;
}

41

CHAPTER 3 © OBJECT BASICS

Armed with a mechanism for setting a discount, you can create a getPrice() method that takes
account of the discount that has been applied:

public function getPrice()
{

}

return ($this->price - $this->discount);

At this point, you have a problem. You only want to expose the adjusted price to the world, but a client
can easily bypass the getPrice() method and access the $price property:

print "The price is {$producti->price}\n";

This will print the raw price and not the discount-adjusted price you wish to present. You can put a stop
to this straight away by making the $price property private. This will prevent direct access, forcing clients to
use the getPrice() method. Any attempt from outside the ShopProduct class to access the $price property
will fail. As far as the wider world is concerned, this property has ceased to exist.

Setting properties to private can be an overzealous strategy. A private property cannot be accessed by
a child class. Imagine that our business rules state that books alone should be ineligible for discounts. You
could override the getPrice() method so that it returns the $price property, applying no discount:

// listing 03.45
// BookProduct

public function getPrice()
{

}

return $this->price;

As the private $price property is declared in the ShopProduct class and not BookProduct, the attempt to
access it here will fail. The solution to this problem is to declare $price protected, thereby granting access
to descendant classes. Remember that a protected property or method cannot be accessed from outside
the class hierarchy in which it was declared. It can only be accessed from within its originating class or from
within children of the originating class.

As a general rule, err on the side of privacy. Make properties private or protected at first and relax your
restriction only as needed. Many (if not most) methods in your classes will be public, but once again, if
in doubt, lock it down. A method that provides local functionality for other methods in your class has no
relevance to your class’s users. Make it private or protected.

Accessor Methods

Even when client programmers need to work with values held by your class, it is often a good idea to deny
direct access to properties, providing methods instead that relay the needed values. Such methods are
known as accessors or getters and setters.

You have already seen one benefit afforded by accessor methods. You can use an accessor to filter a
property value according to circumstances, as was illustrated by the getPrice() method.

You can also use a setter method to enforce a property type. Type declarations can be used to constrain
method arguments, but a property can contain data of any type. Remember the ShopProductWriter class
that uses a ShopProduct object to output list data? I can develop this further, so that it writes any number of
ShopProduct objects at one time:

42

CHAPTER 3 © OBJECT BASICS

// listing 03.46

class ShopProductWriter

{
public $products = [];
public function addProduct(ShopProduct $shopProduct)
{
$this->products[] = $shopProduct;
}
public function write()
{
$str = "7
foreach ($this->products as $shopProduct) {
$str .= "{$shopProduct->title}: ";
$str .= $shopProduct->getProducer();
$str .= " ({$shopProduct->getPrice()})\n";
}
print $str;
}
}

The ShopProductWriter class is now much more useful. It can hold many ShopProduct objects and
write data for them all in one go. I must trust my client coders to respect the intentions of the class, though.
Despite the fact that I have provided an addProduct () method, I have not prevented programmers from
manipulating the $products property directly. Not only could someone add the wrong kind of object to the
$products array property, but he could even overwrite the entire array and replace it with a primitive value. I
can prevent this by making the $products property private:

class ShopProductWriter {
private $products = [];
/...

It's now impossible for external code to damage the $products property. All access must be via the
addProduct () method, and the class type declaration I use in the method declaration ensures that only
ShopProduct objects can be added to the array property.

The ShopProduct Classes

Let’s close this chapter by amending the ShopProduct class and its children to lock down access control:
// listing 03.48

class ShopProduct

{
private $title;
private $producerMainName;
private $producerFirstName;
protected $price;
private $discount = 0;

43

CHAPTER 3 © OBJECT BASICS

public function _ construct(
string $title,
string $firstName,
string $mainName,
float $price

) {
$this->title = $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;
$this->price = $price;
}
public function getProducerFirstName()
{
return $this->producerFirstName;
}
public function getProducerMainName()
{
return $this->producerMainName;
}
public function setDiscount($num)
{
$this->discount = $num;
}
public function getDiscount()
{
return $this->discount;
}
public function getTitle()
{
return $this->title;
}
public function getPrice()
{
return ($this->price - $this->discount);
}
public function getProducer()
{
return $this->producerFirstName . ” ”
. $this->producerMainName;
}
public function getSummaryLine()
{
$base = "{$this->title} ({$this->producerMainName}, ";
$base .= "{$this->producerFirstName})";

44

}

return $base;

// listing 03.49

class CdProduct extends ShopProduct

{

}

private $playlLength;

public function _ construct(
string $title,
string $firstName,
string $mainName,
float $price,
int $playLength

)
parent::__construct(
$title,
$firstName,
$mainName,
$price
)5

$this->playlength = $playlLength;
}

public function getPlayLength()
{

}

public function getSummaryLine()

{

return $this->playlength;

$base

return $base;

// listing 03.50

class BookProduct extends ShopProduct

{

private $numPages;

public function _ construct(
string $title,
string $firstName,
string $mainName,
float $price,
int $numPages

) 4

"{$this->title} ({$this->producerMainName}, ";
$base .= "{$this->producerFirstName})";
$base .= ": playing time - {$this->playLength}";

CHAPTER 3 © OBJECT BASICS

45

CHAPTER 3 © OBJECT BASICS

parent:: construct(

$title,
$firstName,
$mainName,
$price
)5
$this->numPages = $numPages;
}
public function getNumberOfPages()
{
return $this->numPages;
}
public function getSummaryLine()
{
$base = parent::getSummaryLine();
$base .= ": page count - $this->numPages";
return $base;
}
public function getPrice()
{
return $this->price;
}

There is nothing substantially new in this version of the ShopProduct family. All properties are either
private or protected, and I added a number of accessor methods to round things off.

Summary

This chapter covered a lot of ground, taking a class from an empty implementation through to a fully
featured inheritance hierarchy. You took in some design issues, particularly with regard to type and
inheritance. You saw PHP’s support for visibility and explored some of its uses. In the next chapter, I will
show you more of PHP’s object-oriented features.

46

CHAPTER 4

Advanced Features

You have already seen how class type hinting and access control give you more control over a class’s
interface. In this chapter, I will delve deeper into PHP’s object-oriented features.
This chapter will cover several subjects:

e Static methods and properties: Accessing data and functionality through classes
rather than objects

e Abstract classes and interfaces: Separating design from implementation
e Traits: Sharing implementation between class hierarchies

e Error handling: Introducing exceptions

e Final classes and methods: Limiting inheritance

e Interceptor methods: Automating delegation

e Destructor methods: Cleaning up after your objects

e Cloning objects: Making object copies

® Resolving objects to strings: Creating a summary method

e Callbacks: Adding functionality to components with anonymous functions and
classes

Static Methods and Properties

All of the examples in the previous chapter worked with objects. I characterized classes as templates from
which objects are produced, and objects as active instances of classes—the things whose methods you
invoke and whose properties you access. I implied that, in object-oriented programming, the real work is
done by instances of classes. Classes, after all, are merely templates for objects.

In fact, it is not that simple. You can access both methods and properties in the context of a class rather
than that of an object. Such methods and properties are “static” and must be declared as such by using the
static keyword:

// listing 04.01
class StaticExample

{
static public $aNum = 0;
public static function sayHello()
{
© Matt Zandstra 2016 47

M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_4

CHAPTER 4 © ADVANCED FEATURES

print "hello";

Static methods are functions with class scope. They cannot themselves access any normal properties in
the class because these would belong to an object; however, they can access static properties. If you change
a static property, all instances of that class are able to access the new value.

Because you access a static element via a class and not an instance, you do not need a variable that
references an object. Instead, you use the class name in conjunction with ::, as in this example:

print StaticExample::$aNum;
StaticExample::sayHello();

This syntax should be familiar from the previous chapter. I used : : in conjunction with parent to access
an overridden method. Now, as then, I am accessing class rather than object data. Class code can use the
parent keyword to access a superclass without using its class name. To access a static method or property
from within the same class (rather than from a child), I would use the self keyword. self is to classes what
the $this pseudo-variable is to objects. So from outside the StaticExample class, I access the $aNum property
using its class name:

StaticExample::$aNum;
From within the StaticExample class, I can use the self keyword:

// listing 04.02
class StaticExample

{
static public $aNum = 0;
public static function sayHello()
{
self::$aNum++;
print "hello (".self::$aNum.")\n";
}
}

Note Making a method call using parent is the only circumstance in which you should use a static
reference to a nonstatic method.

Unless you are accessing an overridden method, you should only ever use : : to access a method or property
that has been explicitly declared static.

In documentation, however, you will often see static syntax used to refer to a method or property. This does
not mean that the item in question is necessarily static, just that it belongs to a certain class. The write()
method of the ShopProductWriter class might be referred to as ShopProductWriter: :write(), for example,
even though the write() method is not static. You will see this syntax here when that level of specificity is
appropriate.

48

CHAPTER 4 * ADVANCED FEATURES

By definition, static methods and properties are invoked on classes and not objects. For this reason,
they are often referred to as class variables and properties. As a consequence of this class orientation, you
cannot use the $this pseudo-variable inside a static method.

So, why would you use a static method or property? Static elements have a number of characteristics
that can be useful. First, they are available from anywhere in your script (assuming that you have access to
the class). This means you can access functionality without needing to pass an instance of the class from
object to object or, worse, storing an instance in a global variable. Second, a static property is available to
every instance of a class, so you can set values that you want to be available to all members of a type. Finally,
the fact that you don’t need an instance to access a static property or method can save you from instantiating
an object purely to get at a simple function.

To illustrate this, I will build a static method for the ShopProduct class that automates the instantiation
of ShopProduct objects. Using SQLite, I might define a products table like this:

CREATE TABLE products (
id INTEGER PRIMARY KEY AUTOINCREMENT,
type TEXT,
firstname TEXT,
mainname TEXT,
title TEXT,
price float,
numpages int,
playlength int,
discount int)

Now I want to build a getInstance() method that accepts a row ID and PDO object, uses them to
acquire a database row, and then returns a ShopProduct object. I can add these methods to the ShopProduct
class I created in the previous chapter. As you probably know, PDO stands for PHP Data Object. The PDO
class provides a common interface to different database applications:

// listing 04.03
// ShopProduct class...

private $id = 0;

/...
public function setID(int $id)
{
$this->id = $id;
}
/...

public static function getInstance(int $id, \PDO $pdo): ShopProduct
{

$stmt = $pdo->prepare("select * from products where id=?");

$result = $stmt->execute([$id]);

$row = $stmt->fetch();

if (empty($row)) {

return null;
}

49

CHAPTER 4 © ADVANCED FEATURES

if ($row['type'] == "book") {
$product = new BookProduct(
$row["title'],
$row['firstname'],
$row['mainname’],
(float) $row['price'],
(int) $row['numpages']
);
} elseif ($row['type'] == "cd") {
$product = new CdProduct(
$row['title'],
$row['firstname'],
$row['mainname'],
(float) $row['price'],
(int) $row['playlength']

} else {
$firstname = (is_null($row['firstname'])) ? "" : $row['firstname'];
$product = new ShopProduct(
$row['title'],
$firstname,
$row['mainname’],
(float) $row['price']
);
}

$product->setId((int) $row['id']);
$product->setDiscount((int) $row['discount']);
return $product;

}

Asyou can see, the getInstance() method returns a ShopProduct object and, based on a type flag, is
smart enough to work out the precise specialization it should instantiate. I have omitted any error handling
to keep the example compact. In a real-world version of this, for example, I would not be so trusting as to
assume that the provided PDO object was initialized to talk to the correct database. In fact, I probably wrap
the PDO with a class that would guarantee this behavior. You can read more about object-oriented coding and
databases in Chapter 13.

This method is more useful in a class context than an object context. It lets you convert raw data from
the database into an object easily, without requiring that you have a ShopProduct object to start with. The
method does not use any instance properties or methods, so there is no reason why it should not be declared
static. Given a valid PDO object, I can invoke the method from anywhere in an application:

$dsn = "sqlite:/"._DIR_ ."/products.db";

$pdo = new \PDO($dsn, null, null);

$pdo->setAttribute(\PDO: :ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);
$obj = ShopProduct::getInstance(1, $pdo);

Methods like this act as “factories” in that they take raw materials (such as row data or configuration
information) and use them to produce objects. The term factory is applied to code designed to generate
object instances. You will encounter factory examples again in future chapters.

In some ways, of course, this example poses as many problems as it solves. Although I make the
ShopProduct: :getInstance() method accessible from anywhere in a system without the need for an
ShopProduct instance, I also demand that client code provides a PDO object. Where is this to be found?

50

http://dx.doi.org/10.1007/978-1-4842-1996-6_13

CHAPTER 4 * ADVANCED FEATURES

And is it really good practice for a parent class to have such intimate knowledge of its children? (Hint: no, it
is not.) Problems of this kind—where to acquire key objects and values and how much classes should know
about one another—are very common in object-oriented programming. I examine various approaches to
object generation in Chapter 9.

Constant Properties

Some properties should not be changed. The Answer to Life, the Universe, and Everything is 42, and you
want it to stay that way. Error and status flags will often be hard-coded into your classes. Although they
should be publicly and statically available, client code should not be able to change them.

PHP allows you to define constant properties within a class. Like global constants, class constants
cannot be changed once they are set. A constant property is declared with the const keyword. Constants
are not prefixed with a dollar sign like regular properties. By convention, they are often named using only
uppercase characters:

// listing 04.04

class ShopProduct

{
const AVAILABLE
const OUT_OF STOCK
/7 ...

0;
1;

Constant properties can contain only primitive values. You cannot assign an object to a constant. Like
static properties, constant properties are accessed through the class and not an instance. Just as you define a
constant without a dollar sign, no leading symbol is required when you refer to one:

print ShopProduct::AVAILABLE;

Attempting to set a value on a constant once it has been declared will cause a parse error.
You should use constants when your property needs to be available across all instances of a class, as
well as when the property value needs to be fixed and unchanging.

Abstract Classes

An abstract class cannot be instantiated. Instead it defines (and, optionally, partially implements) the
interface for any class that might extend it.

You define an abstract class with the abstract keyword. Here I redefine the ShopProducthriter classI
created in the previous chapter, this time as an abstract class:

// listing 04.05
abstract class ShopProductWriter

{
protected $products = [];
public function addProduct(ShopProduct $shopProduct)
{
$this->products[] = $shopProduct;
}
}

51

http://dx.doi.org/10.1007/978-1-4842-1996-6_9

CHAPTER 4 © ADVANCED FEATURES

You can create methods and properties as normal, but any attempt to instantiate an abstract object in
this way will cause an error:

$writer = new ShopProductWriter();

You can see the error in this output:
Error: Cannot instantiate abstract class popp\cho4\batcho3\ShopProductWriter

In most cases, an abstract class will contain at least one abstract method. These are declared, once
again, with the abstract keyword. An abstract method cannot have an implementation. You declare it in
the normal way, but end the declaration with a semicolon rather than a method body. Here I add an abstract
write() method to the ShopProductWriter class:

abstract class ShopProductWriter

{ protected $products = [];
public function addProduct(ShopProduct $shopProduct)
{ $this->products[]=$shopProduct;
}

} abstract public function write();

In creating an abstract method, you ensure that an implementation will be available in all concrete
child classes, but you leave the details of that implementation undefined.

Assume I were to create a class derived from ShopProductWriter that does notimplement the write()
method, as in this example:

class ErroredWriter extends ShopProductWriter

{
}

I'would face the following error:

PHP Fatal error: Class ErroredWriter contains 1 abstract method and
must therefore be declared abstract or implement the remaining methods
(ShopProductWriter: :write) in...

So any class that extends an abstract class must implement all abstract methods or itself be declared
abstract. An extending class is responsible for more than simply implementing an abstract method. In doing
so, it must reproduce the method signature. This means that the access control of the implementing method
cannot be stricter than that of the abstract method. The implementing method should also require the same
number of arguments as the abstract method, reproducing any class type hinting.

52

CHAPTER 4 * ADVANCED FEATURES

Here are two implementations of ShopProducthriter:

// listing 04.06
class XmlProductWriter extends ShopProductWriter

{

public function write()
{
$writer = new \XMLWriter();
$writer->openMemory();
$writer->startDocument('1.0', 'UTF-8');
$writer->startElement("products");
foreach ($this->products as $shopProduct) {
$writer->startElement("product”);
$writer->writeAttribute("title", $shopProduct->getTitle());
$writer->startElement("summary");
$writer->text($shopProduct->getSummaryLine());
$writer->endElement(); // summary
$writer->endElement(); // product
}
$writer->endElement(); // products
$writer->endDocument();
print $writer->flush();

}

// listing 04.07
class TextProductWriter extends ShopProductWriter

{
public function write()
{
$str = "PRODUCTS:\n";
foreach ($this->products as $shopProduct) {
$str .= $shopProduct->getSummaryLine()."\n";
}
print $str;
}
}

I create two classes, each with its own implementation of the write() method. The first outputs XML
and the second outputs text. A method that requires a ShopProductWriter object will not know which of
these two classes it is receiving, but it can be absolutely certain that awrite() method is implemented. Note
that I don’t test the type of $products before treating it as an array. This is because this property is initialized
as an empty array in the ShopProductWriter.

Interfaces

Although abstract classes let you provide some measure of implementation, interfaces are pure templates.
An interface can only define functionality; it can never implement it. An interface is declared with the
interface keyword. It can contain properties and method declarations but not method bodies.

53

CHAPTER 4 © ADVANCED FEATURES

Here's an interface:

// listing 04.08
interface Chargeable

{
}

public function getPrice(): float;

Asyou can see, an interface looks very much like a class. Any class that incorporates this interface
commits to implementing all the methods it defines, or it must be declared abstract.

A class can implement an interface using the implements keyword in its declaration. Once you have
done this, the process of implementing an interface is the same as extending an abstract class that contains
only abstract methods. Now I will make the ShopProduct class implement Chargeable:

// listing 04.09
class ShopProduct implements Chargeable

{
/1 ..

protected $price;
/] ...

public function getPrice(): float
{

}
/...

return $this->price;

ShopProduct already had a getPrice() method, so why might it be useful to implement the Chargeable
interface? Once again, the answer has to do with types. An implementing class takes on the type of the class
it extends and the interface that it implements.

This means that the CdProduct class belongs to the following:

CdProduct
ShopProduct
Chargeable

This can be exploited by client code. To know an object’s type is to know its capabilities. Consider this
method:

public function cdInfo(CdProduct $prod)
{

}

/...

The method knows that the $prod object has a getPlayLength() method in addition to all the methods
defined in the ShopProduct class and Chargeable interface.
Passed the same object, the method knows that $prod supports all the methods in ShopProduct:

public function addProduct(ShopProduct $prod)
{

54

CHAPTER 4 * ADVANCED FEATURES

/...
}

Without further testing, however, the method will know nothing of the getPlayLength() method.
Once again, passed the same CdProduct object, the method knows nothing at all of the ShopProduct or
CdProduct types:

public function addChargeableItem(Chargeable $item)
{

}

//...

However, this method is only concerned with whether the $item argument contains a getPrice() method.

Because any class can implement an interface (in fact, a class can implement any number of interfaces),
interfaces effectively join types that are otherwise unrelated. I might define an entirely new class that
implements Chargeable:

class Shipping implements Chargeable

public function getPrice(): float
{

}

//...

I can pass a Shipping object to the addChargeableItem method just as I can pass it a ShopProduct object.

The important thing to a client working with a Chargeable object is that it can call a getPrice()
method. Any other available methods are associated with other types, whether through the object’s own
class, a superclass, or another interface. These are irrelevant to the client.

A class can both extend a superclass and implement any number of interfaces. The extends clause
should precede the implements clause:

class Consultancy extends TimedService implements Bookable, Chargeable

{
}

/...

Notice that the Consultancy class implements more than one interface. Multiple interfaces follow the
implements keyword in a comma-separated list.

PHP only supports inheritance from a single parent, so the extends keyword can precede a single class
name only.

Traits

As we have seen, interfaces help you manage the fact that, like Java, PHP does not support multiple
inheritance. In other words, a class in PHP can only extend a single parent. However, you can make a class
promise to implement as many interfaces as you like; for each interface it implements, the class takes on the
corresponding type.

So interfaces provide types without implementation. But what if you want to share an implementation
across inheritance hierarchies? PHP 5.4 introduced traits, and these let you do just that.

55

CHAPTER 4 © ADVANCED FEATURES

A trait is a class-like structure that cannot itself be instantiated but can be incorporated into classes. Any
methods defined in a trait become available as part of any class that uses it. A trait changes the structure of a
class, but doesn’t change its type. Think of traits as includes for classes.

Let’s look at why a trait might be useful.

A Problem for Traits to Solve

Here is a version of the ShopProduct class with a calculateTax() method:
// listing 04.10

class ShopProduct

{
private $taxrate = 17;
/] ...
public function calculateTax(float $price): float
{
return (($this->taxrate / 100) * $price);
}
}

// listing 04.11
$p = new ShopProduct("Fine Soap", "", "Bob's Bathroom", 1.33);
print $p->calculateTax(100) . "\n";

The calculateTax() method accepts a $price argument and calculates a sales tax amount based on
the private $taxrate property.

Of course, a subclass gains access to calculateTax(). But what about entirely different class
hierarchies? Imagine a class named UtilityService, which inherits from another class, Service. If
UtilityService needs to use an identical routine, I might find myself duplicating calculateTax() in its
entirety:

abstract class Service

{
// service oriented stuff
}
class UtilityService extends Service
{
private $taxrate = 17;
function calculateTax(float $price): float
{
return (($this->taxrate/100) * $price);
}
}

$u = new UtilityService();
print $u->calculateTax(100)."\n";

56

CHAPTER 4 * ADVANCED FEATURES

Defining and Using a Trait

One of the core object-oriented design goals I will cover in this book is the removal of duplication. As you
will see in Chapter 11, one solution to this kind of duplication is to factor it out into a reusable strategy class.
Traits provide another approach—less elegant, perhaps, but certainly effective.

Here I declare a single trait that defines a calculateTax() method, and then I include it in both
ShopProduct and UtilityService:

// listing 04.12
trait PriceUtilities

{ private $taxrate = 17;
public function calculateTax(float $price): float
{ return (($this->taxrate / 100) * $price);
}

} // other utilities

// listing 04.13
class ShopProduct
{

}

// listing 04.14
abstract class Service

{
}

// listing 04.15
class UtilityService extends Service

{
}

// listing 04.16
$p = new ShopProduct();
print $p->calculateTax(100) . "\n";

use PriceUtilities;

// service oriented stuff

use PriceUtilities;

$u = new UtilityService();
print $u->calculateTax(100) . "\n";

I declare the PriceUtilities trait with the trait keyword. The body of a trait looks very similar to that
of a class. It is simply a set of methods and properties collected within braces. Once I have declared it, I can
access the PriceUtilities trait from within my classes. I do this with the use keyword followed by the name
of the trait I wish to incorporate. So having declared and implemented the calculateTax() method ina
single place, I go ahead and incorporate it into both the ShopProduct and the UtilityService classes.

57

http://dx.doi.org/10.1007/978-1-4842-1996-6_11

CHAPTER 4 © ADVANCED FEATURES

Using More than One Trait

You can include multiple traits in a class by listing each one after the use keyword, separated by commas. In
this example, I define and apply a new trait, IdentityTrait, keeping my original PriceUtilities trait:

// listing 04.17
trait IdentityTrait

{
public function generateId(): string
{
return uniqid();
}
}

// listing 04.18
class ShopProduct
{

}

// listing 04.19

$p = new ShopProduct();

print $p->calculateTax(100) . "\n";
print $p->generateld() . "\n";

use PriceUtilities, IdentityTrait;

By applying both PriceUtilities and IdentityTrait with the use keyword, I make the
calculateTax() and the generateId() methods available to the ShopProduct class. This means the class
offers both the calculateTax() and generateId() methods.

Note The IdentityTrait trait provides the generateId() method. In fact, a database often generates
identifiers for objects, but you might switch in a local implementation for testing purposes. You can find out
more about objects, databases, and unique identifiers in Chapter 12, which covers the Identity Map pattern. You
can learn more about testing and mocking in Chapter 18.

Combining Traits and Interfaces

Although traits are useful, they don’t change the type of the class to which they are applied. So when you
apply the IdentityTrait trait to multiple classes, they won't share a type that could be hinted for in a
method signature.

Luckily, traits play well with interfaces. I can define an interface that requires a generateId() method,
and then declare that ShopProduct implements it:

// listing 04.20
interface IdentityObject
{

}

public function generateld(): string;

58

http://dx.doi.org/10.1007/978-1-4842-1996-6_12
http://dx.doi.org/10.1007/978-1-4842-1996-6_18

CHAPTER 4 * ADVANCED FEATURES

// listing 04.21
trait IdentityTrait

{
public function generateld(): string
{
return uniqid();
}
}

// listing 04.22
class ShopProduct implements IdentityObject
{

}

use PriceUtilities, IdentityTrait;

As before, ShopProduct uses the IdentityTrait trait. However, the method this imports, generateId()
now also fulfills a commitment to the IdentityObject interface. This means that we can pass ShopProduct
objects to methods and functions that use type hinting to demand IdentityObject instances, like this:

// listing 04.23
public static function storeldentityObject(IdentityObject $idobj)
{

}

// listing 04.24

$p = new ShopProduct();
self::storeldentityObject($p);
print $p->calculateTax(100) . "\n";
print $p->generateId() . "\n";

// do something with the IdentityObject

Managing Method Name Conflicts with insteadof

The ability to combine traits is a nice feature, but sooner or later conflicts are inevitable. Consider what
would happen, for example, if I were to use two traits that provide a calculateTax() method:

// listing 04.25
trait TaxTools

{
function calculateTax(float $price): float
{
return 222;
}
}

// listing 04.26
trait PriceUtilities

{

private $taxrate = 17;

public function calculateTax(float $price): float
{

59

CHAPTER 4 © ADVANCED FEATURES

return (($this->taxrate / 100) * $price);

}

// other utilities
}

// listing 04.27
class UtilityService extends Service

{
}

// listing 04.28
$u = new UtilityService();
print $u->calculateTax(100) . "\n";

use PriceUtilities, TaxTools;

Because I have included two traits that contain calculateTax () methods, PHP is unable to work out
which should override the other. The result is a fatal error:

PHP Fatal error: Trait method calculateTax has not been applied, because there
are collisions with other trait methods on...

To fix this problem, I can use the insteadof keyword. Here’s how:

// listing 04.29
class UtilityService extends Service
{
use PriceUtilities, TaxTools {
TaxTools::calculateTax insteadof PriceUtilities;
}

}

// listing 04.30
$u = new UtilityService();
print $u->calculateTax(100) . "\n";

In order to apply further directives to a use statement, I must first add a body. I do this with opening
and closing braces. Within this block, I use the insteadof operator. This requires a fully qualified method
reference (i.e., one that identifies both the trait and the method names, separated by a scope resolution
operator) on the left-hand side. On the right-hand side, insteadof requires the name of the trait whose
equivalent method should be overridden:

TaxTools::calculateTax insteadof PriceUtilities;
The preceding snippet means, “Use the calculateTax() method of TaxTools instead of the method of

the same name in PriceUtilities”
So when I run this code, I get the dummy output I planted in TaxTools: :calculateTax():

222

60

CHAPTER 4 * ADVANCED FEATURES

Aliasing overridden trait methods

We have seen that you can use insteadof to disambiguate between methods. What do you do, though, if you
want to then access the overridden method? The as operator allows you to alias trait methods. Once again,
the as operator requires a full reference to a method on its left-hand side. On the right-hand side of the
operator, you should put the name of the alias. So here, for example, I reinstate the calculateTax() method
of the PriceUtilities trait using the new name basicTax():

// listing 04.31
class UtilityService extends Service

{
use PriceUtilities, TaxTools {
TaxTools::calculateTax insteadof PriceUtilities;
PriceUtilities::calculateTax as basicTax;
}
}

// listing 04.32
$u = new UtilityService();
print $u->calculateTax(100) . "\n";

print $u->basicTax(100) . "\n";

This gives the following output:

222
17

So PriceUtilities::calculateTax() has been resurrected as part of the UtilityService class under
the name basicTax().

Note Where a method name clashes between traits, it is not enough to alias one of the method names in
the use block. You must first determine which method supercedes the other using the insteadof operator. Then
you can reassign the discarded method a new name with the as operator.

Incidentally, you can also use method name aliasing where there is no name clash. You might, for
example, want to use a trait method to implement an abstract method signature declared in a parent class or
in an interface.

Using static methods in traits

Most of the examples you have seen so far could use static methods because they do not store
instance data. There’s nothing complicated about placing a static method in a trait. Here I change the
PriceUtilities::$taxrate property and the PriceUtilities: :calculateTax() methods so that they are static:

// listing 04.33

trait PriceUtilities

{

61

CHAPTER 4 © ADVANCED FEATURES

private static $taxrate = 17;

public static function calculateTax(float $price): float
{

}

// other utilities

return ((self::$taxrate / 100) * $price);

}

// listing 04.34
class UtilityService extends Service

{
}

// listing 04.35
$u = new UtilityService();
print $u::calculateTax(100) . "\n";

use PriceUtilities;

As you might expect, this script outputs the following:
17

So, static methods are declared in traits and accessed via the host class in the normal way.

Accessing Host Class Properties

You might assume that static methods are really the only way to go as far as traits are concerned. Even trait
methods that are not declared static are essentially static in nature, right? Well, wrong, in fact—you can
access properties and methods in a host class:

// listing 04.36
trait PriceUtilities

{
function calculateTax(float $price): float
{
// is this good design?
return (($this->taxrate / 100) * $price);
}
// other utilities
}

// listing 04.37
class UtilityService extends Service

{
public $taxrate = 17;
use PriceUtilities;

62

CHAPTER 4 * ADVANCED FEATURES

// listing 04.38
$u = new UtilityService();
print $u->calculateTax(100) . "\n";

In the preceding code, I amend the PriceUtilities trait so that it accesses a property in its host class.
If you think that this is bad design, you're right. It’s spectacularly bad design. Although it’s useful for the trait
to access data set by its host class, there is nothing to require the UtilityService class to actually provide
a $taxrate property. Remember that traits should be usable across many different classes. What is the
guarantee or even the likelihood that any host classes will declare a $taxrate?

On the other hand, it would be great to be able to establish a contract that says, essentially, “If you use
this trait, then you must provide it certain resources.”

In fact, you can achieve exactly this effect. Traits support abstract methods.

Defining Abstract Methods in Traits

You can define abstract methods in a trait in just the same way you would in a class. When a trait is used by a
class, it takes on the commitment to implement any abstract methods it declares.

Armed with this knowledge, I can reimplement my previous example so that the trait forces the using
class to provide tax rate information:

// listing 04.39
trait PriceUtilities

{
function calculateTax(float $price): float
{
// better design.. we know getTaxRate() is implemented
return (($this->getTaxRate() / 100) * $price);
}
abstract function getTaxRate(): float;
// other utilities
}

// listing 04.40
class UtilityService extends Service

{ use PriceUtilities;
public function getTaxRate(): float
{
return 17;
}
}

// listing 04.41
$u = new UtilityService();
print $u->calculateTax(100) . "\n";

By declaring an abstract getTaxRate() method in the PriceUtilities trait, I force the UtilityService

class to provide an implementation. Of course, since PHP does not constrain return types, the UtilityServi
ce::calculateTax() method cannot be absolutely certain it’s going to get a sane value from getTaxRate().

63

CHAPTER 4 © ADVANCED FEATURES

You could overcome this to some extent by writing all sorts of checking routines, but this misses the point. It
is probably adequate just to signal to a client coder that she should provide certain information by requiring
the implementation of a method or two.

Changing Access Rights to Trait Methods

You can, of course, declare a trait method public, private, or protected. However, you can also change this
access from within the class that uses the trait. You have already seen that the as operator can be used to
alias a method name. If you use an access modifier on the right-hand side of this operator, it will change the
method’s access level rather than its name.

Imagine, for example, you would like to use calculateTax() from within UtilityService, but not
make it available to implementing code. Here’s how you would change the use statement:

// listing 04.42
trait PriceUtilities

{
public function calculateTax(float $price): float
{
return (($this->getTaxRate() / 100) * $price);
public abstract function getTaxRate(): float;
// other utilities
}

// listing 04.43
class UtilityService extends Service

{
use PriceUtilities {
PriceUtilities::calculateTax as private;
}
private $price;
public function _ construct(float $price)
{
$this->price = $price;
}
public function getTaxRate(): float
{
return 17;
}
public function getFinalPrice(): float
{
return ($this->price + $this->calculateTax($this->price));
}
}

64

CHAPTER 4 * ADVANCED FEATURES

// listing 04.44
$u = new UtilityService(100);
print $u->getFinalPrice() . "\n";

I deploy the as operator in conjunction with the private keyword in order to set private access to
calculateTax(). This means I can access the method from getFinalPrice(). Here’s an external attempt to
access calculateTax():

$u = new UtilityService(100);
print $u->calculateTax()."\n";

Unfortunately, this code will generate an error:

Error: Call to private method popp\cho4\batcho6 9\UtilityService::calculateTax() from
context ..

Late Static Bindings: The static Keyword

Now that you've seen abstract classes, traits, and interfaces, it’s time to return briefly to static methods. You
saw that a static method can be used as factory, a way of generating instances of the containing class. If
you're as lazy a coder as me, you might chafe at the duplication in an example like this:

// listing 04.45
abstract class DomainObject

{
}

// listing 04.46
class User extends DomainObject

{
public static function create(): User
{
return new User();
}
}

// listing 04.47
class Document extends DomainObject

{
public static function create(): Document
{
return new Document();
}
}

I create a super class named DomainObject. In a real-world project, of course, this would contain
functionality common to its extending classes. Then I create two child classes, User and Document. I would
like my concrete classes to have static create() methods.

65

CHAPTER 4 © ADVANCED FEATURES

Note Why would | use a static factory method when a constructor performs the work of creating an
object already? In Chapter 12, I'll describe a pattern called Identity Map. An Identity Map component generates
and manages a new object only if an object with the same distinguishing characteristics is not already under
management. If the target object already exists, it is returned. A factory method like create() would make a
good client for a component of this sort.

This code works fine, but it has an annoying amount of duplication. I don’t want to have to create
boilerplate code like this for every DomainObject child class thatI create. Instead, I'll try pushing the
create() method up to the superclass:

// listing 04.48
abstract class DomainObject

{
public static function create(): DomainObject
{
return new self();
}
}

// listing 04.49

class User extends DomainObject
{

}

// listing 04.50

class Document extends DomainObject
{

}

// listing 04.51
Document: :create();

Well, that looks neat. I now have common code in one place, and I've used self as a reference to the
class. But I have made an assumption about the self keyword. In fact, it does not act for classes exactly the
same way that $this does for objects. self does not refer to the calling context; it refers to the context of
resolution. So if I run the previous example, I get this:

Error: Cannot instantiate abstract class popp\cho4\batcho6\DomainObject

So self resolves to DomainObject, the place where create() is defined, and not to Document, the class
on which it was called. Until PHP 5.3 this was a serious limitation, which spawned many rather clumsy
workarounds. PHP 5.3 introduced a concept called late static bindings. The most obvious manifestation of
this feature is the keyword: static. staticissimilar to self, except that it refers to the invoked rather than
the containing class. In this case, it means that calling Document : : create() results in a new Document object
and not a doomed attempt to instantiate a DomainObject object.

66

http://dx.doi.org/10.1007/978-1-4842-1996-6_12

CHAPTER 4 * ADVANCED FEATURES

So now I can take advantage of my inheritance relationship in a static context:

abstract class DomainObject

{
public static function create(): DomainObject
{
return new static();
}
}
class User extends DomainObject
{
}
class Document extends DomainObject
{
}

print_r(Document::create());

Document Object

(
)

The static keyword can be used for more than just instantiation. Like self and parent, static can
be used as an identifier for static method calls, even from a non-static context. Let’s say I want to include
the concept of a group for my DomainObject classes. By default in my new classification, all classes fall into
category “default,” but I'd like to be able override this for some branches of my inheritance hierarchy:

// listing 04.52
abstract class DomainObject

{
private $group;
public function _ construct()
{
$this->group = static::getGroup();
}
public static function create(): DomainObject
{
return new static();
}
public static function getGroup(): string
{
return "default”;
}
}

67

CHAPTER 4 © ADVANCED FEATURES

// listing 04.53

class User extends DomainObject
{

}

// listing 04.54
class Document extends DomainObject

{
public static function getGroup(): string
{
return "document”;
}
}

// listing 04.55

class SpreadSheet extends Document
{

}

// listing 04.56
print_r(User::create());
print_r(SpreadSheet::create());

Iintroduced a constructor to the DomainObject class. It uses the static keyword to invoke a static
method: getGroup(). DomainObject provides the default implementation, but Document overrides it. I also
created a new class, SpreadSheet, that extends Document. Here’s the output:

popp\ch04\batcho7\User Object

(
[group:popp\cho4\batcho7\DomainObject:private] => default

popp\ch04\batcho7\SpreadSheet Object
(

[group:popp\cho4\batcho7\DomainObject:private] => document

For the User class, not much clever needs to happen. The DomainObject constructor calls getGroup ()
and finds it locally. In the case of SpreadSheet, though, the search begins at the invoked class, SpreadSheet
itself. It provides no implementation, so the getGroup() method in the Document class is invoked. Before
PHP 5.3 and late static binding, I would have been stuck with the self keyword here, which would only look
for getGroup() in the DomainObject class.

Handling Errors

Things go wrong. Files are misplaced, database servers are left uninitialized, URLs are changed, XML files are
mangled, permissions are poorly set, disk quotas are exceeded. The list goes on and on. In the fight to anticipate
every problem, a simple method can sometimes sink under the weight of its own error-handling code.

68

CHAPTER 4 * ADVANCED FEATURES

Here is a simple Conf class that stores, retrieves, and sets data in an XML configuration file:

// listing 04.57
class Conf

{

private $file;
private $xml;
private $lastmatch;

public function _ construct(string $file)

{
$this->file = $file;
$this->xml = simplexml:load file($file);
}
public function write()
{
file put contents($this->file, $this->xml->asXML());
}
public function get(string $str)
{
$matches = $this->xml->xpath("/conf/item[@name=\"$str\"]");
if (count($matches)) {
$this->lastmatch = $matches[0];
return (string)$matches[0];
}
return null;
}
public function set(string $key, string $value)
{
if (! is_null($this->get($key))) {
$this->lastmatch[0]=$value;
return;
}
$conf = $this->xml->conf;
$this->xml->addChild('item', $value)->addAttribute('name’, $key);
}

The Conf class uses the SimpleXml extension to access name value pairs. Here’s the kind of format with

which it is designed to work:

<?xml version="1.0"?>
<conf>

<item name="user">bob</item>
<item name="pass">newpass</item>
<item name="host">localhost</item>

</conf>

69

CHAPTER 4 © ADVANCED FEATURES

The Conf class’s constructor accepts a file path, which it passes to simplexml:load file().It stores the
resulting SimpleXmlElement object in a property called $xml. The get () method uses XPath to locate an item
element with the given name attribute, returning its value. set() either changes the value of an existing item
or creates a new one. Finally, the write() method saves the new configuration data back to the file.

Like much example code, the Conf class is highly simplified. In particular, it has no strategy for handling
nonexistent or unwriteable files. It is also optimistic in outlook. It assumes that the XML document will be
well-formed and will contain the expected elements.

Testing for these error conditions is relatively trivial, but I must still decide how to respond to them
should they arise. There are generally two options.

First, I could end execution. This is simple but drastic. My humble class would then take responsibility
for bringing an entire script crashing down around it. Although methods such as__construct() and
write() are well placed to detect errors, they do not have the information to decide how to handle them.

Rather than handle the error in my class, then, I could return an error flag of some kind. This could be a
Boolean or an integer value such as 0 or -1. Some classes will also set an error string or flag, so that the client
code can request more information after a failure.

Many PEAR packages combine these two approaches by returning an error object (an instance of PEAR _
Error), which acts both as notification that an error has occurred and contains the error message within
it. This approach is now deprecated, but plenty of classes have not been upgraded, not least because client
code often depends on the old behavior.

The problem here is that you pollute your return value. You have to rely on the client coder to test for the
return type every time your error-prone method is called. This can be risky. Trust no one!

When you return an error value to calling code, there is no guarantee that the client will be any better
equipped than your method to decide how to handle the error. If this is the case, then the problem begins
all over again. The client method will have to determine how to respond to the error condition, maybe even
implementing a different error-reporting strategy.

Exceptions

PHP 5 introduced exceptions to PHP, a radically different way of handling error conditions. Different for PHP,
that is. You will find them hauntingly familiar if you have Java or C++ experience. Exceptions address all of
the issues that I have raised so far in this section.

An exception is a special object instantiated from the built-in Exception class (or from a derived class).
Objects of type Exception are designed to hold and report error information.

The Exception class constructor accepts two optional arguments, a message string and an error code.
The class provides some useful methods for analyzing error conditions. These are described in Table 4-1.

The Exception class is fantastically useful for providing error notification and debugging information
(the getTrace() and getTraceAsString() methods are particularly helpful in this regard). In fact, it is
almost identical to the PEAR_Error class that was discussed earlier. There is much more to an exception than
the information it holds, though.

70

CHAPTER 4 * ADVANCED FEATURES

Table 4-1. The Exception Class’s Public Methods

Method Description

getMessage() Get the message string that was passed to the constructor

getCode() Get the code integer that was passed to the constructor

getFile() Get the file in which the exception was generated

getlLine() Get the line number at which the exception was generated

getPrevious() Get a nested Exception object

getTrace() Get a multidimensional array tracing the method calls that led to the exception,

including method, class, file, and argument data
getTraceAsString() Geta string version of the data returned by getTrace()

__toString() Called automatically when the Exception object is used in string context. Returns a
string describing the exception details

Throwing an Exception

The throw keyword is used in conjunction with an Exception object. It halts execution of the current method
and passes responsibility for handling the error back to the calling code. Here amend the __construct()
method to use the throw statement:

// listing 04.58
public function _ construct(string $file)

{
$this->file = $file;
if (! file exists($file)) {
throw new \Exception("file '$file' does not exist");
}
$this->xml = simplexml:load file($file);
}

The write() method can use a similar construct:

// listing 04.59
public function write()

{
if (! is_writeable($this->file)) {
throw new \Exception("file '{$this->file}' is not writeable");
}
file put contents($this->file, $this->xml->asXML());
}

71

CHAPTER 4 © ADVANCED FEATURES

The _construct() and write() methods can now check diligently for file errors as they do their work,
but they let code more fitted for the purpose decide how to respond to any errors detected.

So how does client code know how to handle an exception when thrown? When you invoke a method
that may throw an exception, you can wrap your call in a try clause. A try clause is made up of the try
keyword followed by braces. The try clause must be followed by at least one catch clause in which you can
handle any error, like this:

// listing 04.60

try {
$conf = new Conf(__DIR . "/confoi.xml");
print "user: " . $conf->get('user') . "\n";
print "host: " . $conf->get('host') . "\n";
$conf->set("pass"”, "newpass");
$conf->write();

} catch (\Exception $e) {
die($e->_ toString());

}

Asyou can see, the catch clause superficially resembles a method declaration. When an exception is
thrown, the catch clause in the invoking scope is called. The Exception object is automatically passed in as
the argument variable.

Just as execution is halted within the throwing method when an exception is thrown, so it is within the
try clause—control passes directly to the catch clause.

Subclassing Exception

You can create classes that extend the Exception class as you would with any user-defined class. There are
two reasons why you might want to do this. First, you can extend the class’s functionality. Second, the fact
that a derived class defines a new class type can aid error handling in itself.

You can, in fact, define as many catch clauses as you need for a try statement. The particular catch
clause invoked will depend on the type of the thrown exception and the class type hint in the argument list.
Here are some simple classes that extend Exception:

// listing 04.61
class XmlException extends \Exception

{

private $error;

public function _ construct(\LibXmlError $error)

{
$shortfile = basename($error->file);
$msg = "[{$shortfile}, line {$error->line}, col {$error->column}] {$error->message}";
$this->error = $error;
parent:: construct($msg, $error->code);
}
public function getLibXmlError()
{
return $this->error;
}

72

CHAPTER 4 * ADVANCED FEATURES

}

// listing 04.62

class FileException extends \Exception
{

}

// listing 04.63

class ConfException extends \Exception
{

}

The LibXmlError class is generated behind the scenes when SimpleXml encounters a broken XML file. It
has $message and $code properties, and it resembles the Exception class. I take advantage of this similarity
and use the LibXmlExror object in the XmLException class. The FileException and ConfException classes
do nothing more than subclass Exception. I can now use these classes in my code and amend both __
construct() and write():

// listing 04.64
// Conf class...

function _ construct(string $file)

{
$this->file = $file;
if (! file exists($file)) {
throw new FileException("file '$file’ does not exist");
}
$this->xml = simplexml:load file($file, null, LIBXML NOERROR);
if (! is_object($this->xml)) {
throw new XmlException(libxml:get last error());
}
$matches = $this->xml->xpath("/conf");
if (! count($matches)) {
throw new ConfException(“could not find root element: conf");
}
}
function write()
{
if (! is_writeable($this->file)) {
throw new FileException("file '{$this->file}' is not writeable");
}
file put_contents($this->file, $this->xml->asXML());
}

__construct() throws either an XmlException, a FileException, or a ConfException, depending on
the kind of error it encounters. Note that I pass the option flag LIBXML_NOERROR to simplexml:load file().
This suppresses warnings, leaving me free to handle them with my XmlException class after the fact. If I
encounter a malformed XML file, I know that an error has occurred because simplexml:load_file() won't
have returned an object. I can then access the error using 1ibxml:get last error().

73

CHAPTER 4 © ADVANCED FEATURES

The write() method throws a FileException if the $file property points to an unwritable entity.
So, I have established that __construct() might throw one of three possible exceptions. How can I take
advantage of this? Here’s some code that instantiates a Conf object:

// listing 04.65
public static function init()
{

try {
$conf = new Conf(_ DIR__."/conf.broken.xml");
print "user: " . $conf->get('user') . "\n";
print "host: " . $conf->get('host') . "\n";
$conf->set("pass”, "newpass");
$conf->write();

} catch (FileException $e) {
// permissions issue or non-existent file

} catch (XmlException $e) {
// broken xml

} catch (ConfException $e) {
// wrong kind of XML file

} catch (\Exception $e) {
// backstop: should not be called

}

I provide a catch clause for each class type. The clause invoked depends on the exception type thrown.
The first to match will be executed, so remember to place the most generic type at the end and the most
specialized at the start. For example, if you were to place the catch clause for Exception ahead of the clause
for XmLException and ConfException, neither of these would ever be invoked. This is because both of these
classes belong to the Exception type, and would therefore match the first clause.

The first catch clause (FileException) is invoked if there is a problem with the configuration file (if the
file is nonexistent or unwriteable). The second clause (XmLException) is invoked if an error occurs in parsing
the XML file (e.g., if an element is not closed). The third clause (ConfException) is invoked if a valid XML
file does not contain the expected root conf element. The final clause (Exception) should not be reached
because my methods only generate the three exceptions, which are explicitly handled. It is often a good idea
to have a “backstop” clause like this, in case you add new exceptions to the code during development.

Note If you do provide a “backstop” catch clause, you should ensure that you actually do something about
the exception in most instances—failing silently can cause bugs which are hard to diagnose.

The benefit of these fine-grained catch clauses is that they allow you to apply different recovery or
failure mechanisms to different errors. For example, you may decide to end execution, log the error and
continue, or explicitly rethrow an error:

try {
/...

} catch (FileException $e) {
throw $e;

}

74

CHAPTER 4 * ADVANCED FEATURES

Another trick you can play here is to throw a new exception that wraps the current one. This allows you
to stake a claim to the error and add your own contextual information, while retaining the data encapsulated
by the exception you have caught. You can read more about this technique in Chapter 15.

So what happens if an exception is not caught by client code? It is implicitly rethrown, and the client’s
own calling code is given the opportunity to catch it. This process continues either until the exception is
caught or until it can no longer be thrown. At this point, a fatal error occurs. Here’s what would happen if T
did not catch one of the exceptions in my example:

PHP Fatal error: Uncaught exception 'FileException' with message
'file 'nonexistent/not_there.xml' does not exist' in ...

So, when you throw an exception, you force the client to take responsibility for handling it. This is not an
abdication of responsibility. An exception should be thrown when a method has detected an error, but does
not have the contextual information to be able to handle it intelligently. The write() method in my example
knows when the attempt to write will fail, and it knows why, but it does not know what to do about it. This is
as it should be. If I were to make the Conf class more knowledgeable than it currently is, it would lose focus
and become less reusable.

Cleaning Up After try/catch Clauses with finally

The way that code flow is affected by exceptions can cause unexpected problems. For example, clean-
up code or other essential housekeeping may not be performed after an exception is generated within a
try clause. As you have seen, if an exception is generated within a try clause, flow moves directly to the
relevant catch clause. Code that closes database connections or file handles may not get called, and status
information might not be updated.

Imagine, for example, that Runner: :init() keeps a log of its actions. It logs the start of the initialization
process, any errors encountered, and then it logs the end of the initialization process. Here I provide a
typically simplified example of this kind of logging:

// listing 04.66
public static function init()
{
try {
$fh = fopen(_DIR__ . "/log.txt", "a");
fputs($fth, "start\n");
$conf = new Conf(dirname(FILE_) . "/conf.broken.xml");
print "user: " . $conf->get('user') . "\n";
print "host: " . $conf->get('host') . "\n";
$conf->set("pass"”, "newpass");
$conf->write();
fputs($th, "end\n");
fclose($fh);
} catch (FileException $e) {
// permissions issue or non-existent file
fputs($th, "file exception\n");
throw $e;
} catch (XmlException $e) {
fputs($th, "xml exception\n");

75

http://dx.doi.org/10.1007/978-1-4842-1996-6_15

CHAPTER 4 © ADVANCED FEATURES

// broken xml

} catch (ConfException $e) {
fputs($th, "conf exception\n");
// wrong kind of XML file

} catch (\Exception $e) {
fputs($th, "general exception\n");
// backstop: should not be called

}

Iopen afile, log.txt; I write to it; and then I call my configuration code. If an exception is encountered
in this process, I1og this fact in the relevant catch clause. I end the try clause by writing to the log and
closing its file handle.

Of course, this last step will never be reached if an exception is encountered. Flow passes straight to the
relevant catch block, and the rest of the try clause is never run. Here is the log output when a file exception
is generated:

start
file exception

Asyou can see, the logging began, and the file exception was noted, but the portion of code that
registers the end of logging was never reached, and so the log was not updated with that.

You might think that the solution would be to place the final logging step outside of the try /catch
block altogether. This would not work reliably. If a generated exception is caught, and the try block allows
execution to continue, then flow will move beyond the try / catch construct. However, a catch clause could
rethrow the exception, or it might end script execution altogether.

To help programmers deal with problems like this, PHP 5.5 introduced a new clause: finally. If you're
familiar with Java, it’s likely you'll have seen this clause before. Although catch clauses are only conditionally
run when matching exceptions are thrown, the finally clause is always run, whether or not an exception is
generated within the try block.

I can fix this problem by moving my log write and code to close to a finally clause:

public static function init()

$th = fopen(_DIR__ . "/log.txt", "a");

try {
fputs($fh, "start\n");
$conf = new Conf(dirname(_FILE_) . "/conf.broken.xml");
print "user: " . $conf->get('user') . "\n";
print "host: " . $conf->get('host') . "\n";
$conf->set("pass"”, "newpass");
$conf->write();

} catch (FileException $e) {
// permissions issue or non-existent file
fputs($th, "file exception\n");

} catch (XmlException $e) {
fputs($th, "xml exception\n");
// broken xml

} catch (ConfException $e) {
fputs($th, "conf exception\n");

76

CHAPTER 4 * ADVANCED FEATURES

// wrong kind of XML file

} catch (Exception $e) {
fputs($fh, "general exception\n");
// backstop: should not be called

} finally {
fputs($fth, "end\n");
fclose($fh);

}

}

Because the log write and the fclose() invocation are wrapped in a finally clause, these statements
will be run even if, as is the case when a FileException is caught, the exception is rethrown.
Here, again, is the log text when a FileException is generated:

start
file exception
end

Note A finally clause will be run if an invoked catch clause rethrows an exception or returns a value.
However, calling die() or exit() in a try or catch block will end script execution, and the finally clause will
not be run.

Final Classes and Methods

Inheritance allows for enormous flexibility within a class hierarchy. You can override a class or method
so that a call in a client method will achieve radically different effects, according to which class instance
it has been passed. Sometimes, though, a class or method should remain fixed and unchanging. If you
have achieved the definitive functionality for your class or method, and you feel that overriding it can only
damage the ultimate perfection of your work, you may need the final keyword.

final puts a stop to inheritance. A final class cannot be subclassed. Less drastically, a final method
cannot be overridden.

Here’s a final class:

// listing 04.67
final class Checkout

{
}

/...

Here’s an attempt to subclass the Checkout class:

// listing 04.68
class IllegalCheckout extends Checkout
{

}

/.

7

CHAPTER 4 © ADVANCED FEATURES

This produces an error:
PHP Fatal error: Class IllegalCheckout may not inherit from final class (Checkout) in

I could relax matters somewhat by declaring a method in Checkout final, rather than the whole class.
The final keyword should be placed in front of any other modifiers such as protected or static, like this:

// listing 04.69
class Checkout

final public function totalize()
{

}

// calculate bill

I can now subclass Checkout, but any attempt to override totalize() will cause a fatal error:

// listing 04.70
class IllegalCheckout extends Checkout

final public function totalize()
{

}

// change bill calculation

PHP Fatal error: Cannot override final method popp\cho4\batchi4\Checkout::totalize() ...

Good object-oriented code tends to emphasize the well-defined interface. Behind the interface,
though, implementations will often vary. Different classes or combinations of classes conform to common
interfaces but behave differently in different circumstances. By declaring a class or method final, you limit
this flexibility. There will be times when this is desirable, and you will see some of them later in the book.
However, you should think carefully before declaring something final. Are there really no circumstances in
which overriding would be useful? You could always change your mind later on, of course, but this might not
be so easy if you are distributing a library for others to use. Use final with care.

The Internal Error Class

Back when exceptions were first introduced, the world of trying and catching applied primarily to code
written in PHP and not the core engine. Internally generated errors maintained their own logic. This could
get messy if you wanted to manage core errors in the same way as code-generated exceptions. PHP 7 has
made a start on addressing this issue with the Error class. This implements Throwable—the same built-in
interface that the Exception class implements, and therefore it can be treated in the same way. This also
means the methods described in Table 4-1 are honored. Exror is subclassed for individual error types. Here’s
how you might catch a parse error generated by an eval statement:

78

CHAPTER 4 * ADVANCED FEATURES

try {
eval("illegal code");
} catch (\Error $e) {
print get class($e)."\n";
} catch (\Exception $e) {
// do something with an Exception
}

Here’s the output:
ParseError

So you can match some types of internal errors in catch clauses, either by specifying the Exrror
superclass or by specifying a more specific subclass. Table 4-2 shows the current Exror subclasses.

Table 4-2. The Built-in Error Classes Introduced by PHP 7

Error Description
ArithmeticError Thrown for math-related errors—particularly those related to bitwise arithmetic
AssertionError Thrown when the assert() language construct (used in debugging) fails

DivisionByZeroError Thrown when an attempt is made to divide a number by zero

ParseError Thrown when a runtime attempt to parse PHP (using eval(), for example) fails

TypeError Thrown when an argument of the wrong type is passed to a method, a method
returns a value of the wrong type, or an incorrect number of arguments are passed
to a method

Note At the time of this writing, an attempt to call Error: :getMessage() fails with an error, despite the
fact that this is declared in the Throwable interface. It is likely that this issue will have been fixed by the time
you read this!

Working with Interceptors

PHP provides built-in interceptor methods that can intercept messages sent to undefined methods and
properties. This is also known as overloading, but as that term means something quite different in Java and
C++, I think it is better to talk in terms of interception.

PHP supports three built-in interceptor methods. Like __construct(), these are invoked for you when
the right conditions are met. Table 4-3 describes the methods.

79

CHAPTER 4 © ADVANCED FEATURES

Table 4-3. The Interceptor Methods

Method Description

__get($property) Invoked when an undefined property is accessed
__set($property, $value) Invoked when a value is assigned to an undefined property
__isset($property) Invoked when isset() is called on an undefined property
__unset($property) Invoked when unset() is called on an undefined property
__call($method, $arg array) Invoked when an undefined non-static method is called

__callStatic($method, $arg array) Invoked when an undefined static method is called

The get() and __set() methods are designed for working with properties that have not been
declared in a class (or its parents).

__get()is invoked when client code attempts to read an undeclared property. It is called automatically
with a single string argument containing the name of the property that the client is attempting to access.
Whatever you return from the __get() method will be sent back to the client as if the target property exists
with that value. Here’s a quick example:

// listing 04.71
class Person

{
public function _ get(string $property)
{
$method = "get{$property}";
if (method exists($this, $method)) {
return $this->$method();
}
}
public function getName(): string
{
return "Bob";
}
public function getAge(): int
{
return 44;
}
}

When a client attempts to access an undefined property, the _get() method is invoked. I have
implemented __ get() to take the property name and construct a new string, prepending the word “get”. I
pass this string to a function called method_exists(), which accepts an object and a method name and tests
for method existence. If the method does exist, I invoke it and pass its return value to the client. Assume the
client requests a $name property:

$p = new Person();
print $p->name;

80

CHAPTER 4 * ADVANCED FEATURES

In this case, the getName () method is invoked behind the scenes:

Bob

If the method does not exist, I do nothing. The property that the user is attempting to access will resolve
to NULL.

The _isset() method works in a similar wayto _get(). It is invoked after the client calls isset() on
an undefined property. Here’s how I might extend Person:

// listing 04.72
public function _ isset(string $property)

{

$method = "get{$property}";

return (method exists($this, $method));
}

Now a cautious user can test a property before working with it:

if (isset($p->name)) {
print $p->name;
}

The _set() method is invoked when client code attempts to assign to an undefined property. It is
passed two arguments: the name of the property and the value the client is attempting to set. You can then
decide how to work with these arguments. Here I further amend the Person class:

// listing 04.73
class Person

{
private $myname;
private $myage;

public function _ set(string $property, string $value)

{
$method = "set{$property}”;
if (method exists($this, $method)) {
return $this->$method($value);
}
}
public function setName(string $name)
{
$this->myname = $name;
if (! is_null($name)) {
$this->myname = strtoupper($this->myname);
}
}

81

CHAPTER 4 © ADVANCED FEATURES

public function setAge(int $age)
{

}

$this->myage = $age;

In this example, I work with “setter” methods rather than “getters.” If a user attempts to assign to an
undefined property, the __set() method is invoked with the property name and the assigned value. I test for
the existence of the appropriate method and invoke it if it exists. In this way, I can filter the assigned value.

Note Remember that methods and properties in PHP documentation are frequently spoken of in static
terms in order to identify them with their classes. So you might talk about the Person: : $name property, even
though the property is not declared static and would in fact be accessed via an object.

Soif I create a Person object and then attempt to set a property called Person: : $name, the _ set()
method is invoked because this class does not define a $name property. The method is passed the string
"name" and the value that the client assigned. How the value is then used depends on the implementation
of _set().In this example, I construct a method name out of the property argument combined with the
string, "set". The setName () method is found and duly invoked. This transforms the incoming value and
stores it in a real property:

$p = new Person();
$p->name = "bob";
// the $myname property becomes 'BOB'

As you might expect, _unset() mirrors __set(). When unset() is called on an undefined property,
__unset() is invoked with the name of the property. You can then do what you like with the information.
This example passes null to a method resolved using the same technique that you saw used by _set():

// listing 04.74
public function _ unset(string $property)

{
$method = "set{$property}";
if (method exists($this, $method)) {
$this->$method(null);
}
}

The _call() method is probably the most useful of all the interceptor methods. It is invoked when an
undefined method is called by client code. __call() is invoked with the method name and an array holding
all arguments passed by the client. Any value that you return from the __call() method is returned to the
client as if it were returned by the method invoked.

The _call() method can be useful for delegation. Delegation is the mechanism by which one object
passes method invocations on to a second. It is similar to inheritance, in that a child class passes on a
method call to its parent implementation. With inheritance the relationship between child and parent is
fixed, so the ability to switch the receiving object at runtime means that delegation can be more flexible than
inheritance. An example clarifies things a little. Here is a simple class for formatting information from the
Person class:

82

CHAPTER 4 * ADVANCED FEATURES

// listing 04.75
class PersonWriter

{

public function writeName(Person $p)

{
print $p->getName() . "\n";

public function writeAge(Person $p)

{
}

print $p->getAge() . "\n";

I could, of course, subclass this to output Person data in various ways. Here is an implementation of the

Person class that uses both a Personiriter object and the _ call() method:

// listing 04.76
class Person

{

private $writer;

public function _ construct(PersonWriter $writer)

{
$this->writer = $writer;
}
public function _ call(string $method, array $args)
{
if (method exists($this->writer, $method)) {
return $this->writer->$method($this);
}
}
public function getName(): string
{
return "Bob";
}
public function getAge(): int
{
return 44;
}

The Person class here demands a PersonWriter object as a constructor argument and stores it in a

property variable. In the __call() method, I use the provided $method argument, testing for a method of the
same name in the PersonWriter object I have stored. If I encounter such a method, I delegate the method
call to the PersonWriter object, passing my current instance to it (in the $this pseudo-variable). Consider

what happens if the client makes this call to Person:

83

CHAPTER 4 © ADVANCED FEATURES

$person = new Person(new PersonWriter());
$person->writeName();

In this case, the __call() method is invoked. I find a method called writeName() in my PersonWriter
object and invoke it. This saves me from manually invoking the delegated method like this:

function writeName() {
$this->writer->writeName($this);
}

The Person class has magically gained two new methods. Although automated delegation can save a
lot of legwork, there can be a cost in clarity. If you rely too much on delegation, you present the world with
a dynamic interface that resists reflection (the runtime examination of class facets) and is not always clear
to the client coder at first glance. This is because the logic that governs the interaction between a delegating
class and its target can be obscure—buried in methods like __call() rather than signaled up front by
inheritance relationships or method type hints, as is the case for similar relationships. The interceptor
methods have their place, but they should be used with care, and classes that rely on them should document
this fact very clearly.

I will return to the topics of delegation and reflection later in the book.

The get() and _set() interceptor methods can also be used to manage composite properties.
This can be a convenience for the client programmer. Imagine, for example, an Address class that manages
a house number and a street name. Ultimately this object data will be written to database fields, so the
separation of number and street is sensible. But if house numbers and street names are commonly acquired
in undifferentiated lumps, then you might want to help the class’s user. Here is a class that manages a
composite property, Address: : $streetaddress:

// listing 04.77
class Address
{
private $number;
private $street;

public function _ construct(string $maybenumber, string $maybestreet = null)
{
if (is_null($maybestreet)) {
$this->streetaddress = $maybenumber;
} else {
$this->number = $maybenumber;
$this->street = $maybestreet;

}

public function _ set(string $property, string $value)
{
if ($property === "streetaddress") {
if (preg match("/~(\d+.*?)[\s,]+(.+)$/", $value, $matches)) {
$this->number = $matches[1];
$this->street = $matches[2];
} else {
throw new \Exception("unable to parse street address: '{$value}'");
}

84

CHAPTER 4 * ADVANCED FEATURES

}
}
public function _ get(string $property)
{
if ($property === "streetaddress") {
return $this->number . " " . $this->street;
}
}

}

// listing 04.78

$address = new Address("441b Bakers Street");

print "street address: {$address->streetaddress}\n”;
$address = new Address("15", "Albert Mews");

print "street address: {$address->streetaddress}\n";
$address->streetaddress = "34, West 24th Avenue";
print "street address: {$address->streetaddress}\n";

When a user attempts to set the (nonexistent) Address: : $streetaddress property, the interceptor
method __call() is invoked. There, I test for the property name, streetaddress. Before I can set the
$number and $street properties, I must first ensure that the provided value can be parsed, and then go
ahead and extract the fields. For this example, I have set simple rules. An address can be parsed if it begins
with a number and has spaces or commas ahead of a second part. Thanks to back references, if the check
passes, I already have the data I'm looking for in the $matches array, and I assign values to the $number
and $street properties. If the parse fails, I throw an exception. So when a string such as 441b Bakers
Street is assigned to Address: : $streetaddress, it’s actually the $number and $street properties that get
populated. I can demonstrate this with print_r():

$address = new Address("441b Bakers Street");
print_r($address);

Address Object

(
[number:Address:private] => 441b
[street:Address:private] => Bakers Street

The _get() method is much more straightforward, of course. Whenever the
Address: :$streetaddress property is accessed, _get() is invoked. In my implementation of this
interceptor, I test for streetaddress and, if I find a match, I return a concatenation of the $number and
$street properties.

Defining Destructor Methods

You have seen that the __construct() method is automatically invoked when an object is instantiated. PHP
5 also introduced the _destruct() method. This is invoked just before an object is garbage-collected; that

is, before it is expunged from memory. You can use this method to perform any final cleaning up that might
be necessary.

85

CHAPTER 4 © ADVANCED FEATURES

Imagine, for example, a class that saves itself to a database when so ordered. I could use the
destruct() method to ensure that an instance saves its data when it is deleted:

// listing 04.79
class Person

{
protected $name;
private $age;
private $id;
public function _ construct(string $name, int $age)
{
$this->name = $name;
$this->age = $age;
}
public function setId(int $id)
{
$this->id = $id;
}
public function _ destruct()
if (! empty($this->id)) {
// save Person data
print "saving person\n";
}
}
}

The _destruct() method is invoked whenever a Person object is removed from memory. This will
happen either when you call the unset () function with the object in question or when no further references
to the object exist in the process. So if I create and destroy a Person object, you can see the __destruct()
method come into play:

// listing 04.80

$person = new Person("bob", 44);
$person->setId(343);
unset($person);

// output:

// saving person

Although tricks like this are fun, it’s worth sounding a note of caution. __call(), _destruct(), and
their colleagues are sometimes called magic methods. As you will know if you have ever read a fantasy novel,
magic is not always a good thing. Magic is arbitrary and unexpected. Magic bends the rules. Magic incurs
hidden costs.

In the case of _destruct(), for example, you can end up saddling clients with unwelcome surprises.
Think about the Person class—it performs a database write in its __destruct() method. Now imagine a
novice developer idly putting the Person class through its paces. He doesn’t spot the _destruct() method,
and he sets about instantiating a set of Person objects. Passing values to the constructor, he assigns the
CEO’s secret and faintly obscene nickname to the $name property, and then sets $age at 150. He runs his test
script a few times, trying out colorful name and age combinations.

86

CHAPTER 4 * ADVANCED FEATURES

The next morning, his manager asks him to step into a meeting room to explain why the database
contains insulting Person data. The moral? Do not trust magic.

Copying Objects with __clone()

In PHP 4, copying an object was a simple matter of assigning from one variable to another:

class CopyMe

{

}

$first = new CopyMe();

$second = $first;

// PHP 4: $second and $first are 2 distinct objects
// PHP 5 plus: $second and $first refer to one object

This “simple matter” was a source of many bugs, as object copies were accidentally spawned when
variables were assigned, methods were called, and objects were returned. This was made worse by the fact
that there was no way of testing two variables to see whether they referred to the same object. Equivalence
tests would tell you whether all fields were the same (==) or whether both variables were objects (===), but
not whether they pointed to the same object.

In PHP, objects are always assigned and passed around by reference. This means that when my previous
example is run with PHP 5, $first and $second contain references to the same object instead of two copies.
Although this is generally what you want when working with objects, there will be occasions when you need
to get a copy of an object rather than a reference to an object.

PHP provides the clone keyword for just this purpose. clone operates on an object instance, producing
a by-value copy:

class CopyMe

}
$first = new CopyMe();
$second = clone $first;

// PHP 5 plus: $second and $first are 2 distinct objects

The issues surrounding object copying only start here. Consider the Person class that I implemented in
the previous section. A default copy of a Person object would contain the identifier (the $id property), which in
a full implementation I would use to locate the correct row in a database. If I allow this property to be copied, a
client coder can end up with two distinct objects referencing the same data source, which is probably not what
she wanted when she made her copy. An update in one object will affect the other, and vice versa.

Luckily, you can control what is copied when clone is invoked on an object. You do this by
implementing a special method called __clone() (note the leading two underscores that are characteristic
of built-in methods). _ clone() is called automatically when the clone keyword is invoked on an object.

When you implement __clone(),it is important to understand the context in which the method runs.
__clone() is run on the copied object and not the original. Here Iadd __clone() to yet another version of
the Person class:

// listing 04.81
class Person

{

private $name;

87

CHAPTER 4 © ADVANCED FEATURES

private $age;
private $id;

public function _ construct(string $name, int $age)

{
$this->name = $name;
$this->age = $age;
}
public function setId(int $id)
{
$this->id = $id;
}
public function _ clone()
{
$this->id = 0;
}

When clone is invoked on a Person object, a new shallow copy is made, and its__clone() method is
invoked. This means that anything I doin __clone() overwrites the default copy I already made. In this case,
I ensure that the copied object’s $id property is set to zero:

// listing 04.82

$person = new Person("bob", 44);
$person->setld(343);

$person2 = clone $person;

// $person2 :

// name: bob

// age: 44

// id: o.

A shallow copy ensures that primitive properties are copied from the old object to the new. Object
properties, though, are copied by reference, which may not be what you want or expect when cloning an
object. Say that I give the Person object an Account object property. This object holds a balance that I want
copied to the cloned object. What I don’t want, though, is for both Person objects to hold references to the
same account:

// listing 04.83
class Account

public $balance;

public function _ construct(float $balance)

{
}

$this->balance = $balance;

}

// listing 04.84
class Person

88

CHAPTER 4 * ADVANCED FEATURES

{

private $name;

private $age;

private $id;

public $account;

public function _ construct(string $name, int $age, Account $account)

{
$this->name = $name;
$this->age = $age;
$this->account = $account;

}

public function setId(int $id)

{
$this->id = $id;

}

public function _ clone()

{
$this->id = 0;

}

}

// listing 04.85

$person = new Person("bob", 44, new Account(200));
$person->setld(343);

$person2 = clone $person;

// give $person some money
$person->account->balance += 10;
// $person2 sees the credit too
print $person2->account->balance;

This gives the following output:

210

$person holds a reference to an Account object that I have kept publicly accessible for the sake
of brevity (as you know, I would usually restrict access to a property, providing an accessor method,
if necessary). When the clone is created, it holds a reference to the same Account object that $person
references. I demonstrate this by adding to the $person object’s Account and confirming the increased

balance via $person2.

IfI do not want an object property to be shared after a clone operation, then it is up to me to clone it

explicitly in the __clone() method:

function _ clone()

{
$this->id = 0;
$this->account = clone $this->account;

89

CHAPTER 4 © ADVANCED FEATURES

Defining String Values for Your Objects

Another Java-inspired feature introduced by PHP 5 was the __toString() method. Before PHP 5.2, when
you printed an object, it would resolve to a string like this:

// listing 04.86
class StringThing

{
}

// listing 04.87

$st = new StringThing();
print $st;

Object id #1
Since PHP 5.2, this code will produce an error like this:
Object of class popp\cho4\batch22\StringThing could not be converted to string ...

By implementinga __toString() method, you can control how your objects represent themselves
when printed. __toString() should be written to return a string value. The method is invoked automatically
when your object is passed to print or echo, and its return value is substituted. Here ladd a__toString()
version to a minimal Person class:

// listing 04.88
class Person

{
function getName(): string
{
return "Bob";
}
function getAge(): int
return 44;
}
function _ toString(): string
$desc = $this->getName() . " (age ";
$desc .= $this->getAge() . ")";
return $desc;
}
}

Now when I print a Person object, the object will resolve to this:

$person = new Person();

90

CHAPTER 4 * ADVANCED FEATURES

print $person;
Bob (age 44)

The _ toString() method is particularly useful for logging and error reporting, as well as for classes
whose main task is to convey information. The Exception class, for example, summarizes exception data in
its__toString() method.

Callbacks, Anonymous Functions, and Closures

Although not strictly an object-oriented feature, anonymous functions are useful enough to mention here
because you may encounter them in object-oriented applications that utilize callbacks.
To kick things off, here are a couple of classes:

// listing 04.89
class Product {
public $name;

public $price;

public function _ construct(string $name, float $price)

{
$this->name = $name;
$this->price = $price;
}
}
class ProcessSale
{
private $callbacks;
public function registerCallback(callable $callback)
{
if (! is_callable($callback)) {
throw new Exception("callback not callable");
}
$this->callbacks[] = $callback;
}
public function sale(Product $product)
{
print "{$product->name}: processing \n";
foreach ($this->callbacks as $callback) {
call user func($callback, $product);
}
}
}

91

CHAPTER 4 © ADVANCED FEATURES

This code is designed to run my various callbacks. It consists of two classes, Product and ProcessSale.
Product simply stores $name and $price properties. I've made these public for the purposes of brevity.
Remember, in the real world, you'd probably want to make your properties private or protected and provide
accessor methods. ProcessSale consists of two methods.

The first, registerCallback(), accepts an unhinted scalar, tests it, and adds it to a callback array. The
test, a built-in function called is_callable(), ensures that whatever I've been given can be invoked by a
function such as call user_ func() orarray walk().

The second method, sale(), accepts a Product object, outputs a message about it, and then loops
through the $callback array property. It passes each element to call user_ func(), which calls the code,
passing it a reference to the product. All of the following examples will work with the framework.

Why are callbacks useful? They allow you to plug functionality into a component at runtime that is not
directly related to that component’s core task. By making a component callback aware, you give others the
power to extend your code in contexts you don’t yet know about.

Imagine, for example, that a future user of ProcessSale wants to create a log of sales. If the user has
access to the class, she might add logging code directly to the sale() method. This isn’t always a good idea,
though. If she is not the maintainer of the package that provides ProcessSale, then her amendments will be
overwritten the next time the package is upgraded. Even if she is the maintainer of the component, adding
many incidental tasks to the sale() method will begin to overwhelm its core responsibility, and potentially
make it less usable across projects. will return to these themes in the next section.

Luckily, though, I made ProcessSale callback-aware. Here I create a callback that simulates logging:

// listing 04.90
$logger = create_function(

"$product’,

"print " logging ({$product->name})\n";’
)

$processor = new ProcessSale();
$processor->registerCallback($logger);

$processor->sale(new Product("shoes", 6));
print "\n";
$processor->sale(new Product("coffee", 6));

Tuse create_function() to build my callback. As you can see, it accepts two string arguments: first,
a list of parameters; and second, the function body. The result is often called an anonymous function as
it'’s not named in the manner of a standard function. Instead, it can be stored in a variable and passed to
functions and methods as a parameter. That’s just what I do, storing the function in the $logger variable
and passing it to ProcessSale: :registerCallback(). Finally, I create a couple of products and pass them
to the sale() method. You have already seen what happens there. The sale is processed (in reality a simple
message is printed about the product) and any callbacks are executed. Here is the code in action:

shoes: processing
logging (shoes)

coffee: processing
logging (coffee)

Look again at that create_function() example. See how ugly it is? Placing code designed to be executed
inside a string is always a pain. You need to escape variables and quotation marks, and, if the callback grows
to any size, it can be very hard to read, indeed. Wouldn't it be neater if there were a more elegant way of

92

CHAPTER 4 * ADVANCED FEATURES

creating anonymous functions? Well, since PHP 5.3, there is a much better way of doing it. You can simply
declare and assign a function in one statement. Here’s the previous example using the new syntax:

// listing 04.91
$logger2 = function ($product) {

print " logging ({$product->name})\n";
};

$processor = new ProcessSale();
$processor->registerCallback($logger2);

$processor->sale(new Product("shoes", 6));
print "\n";
$processor->sale(new Product("coffee", 6));

The only difference here lies in the creation of the anonymous function. As you can see, it’s a lot neater.
I simply use the function keyword inline, and without a function name. Note that because this is an inline
statement, a semicolon is required at the end of the code block. The output here is the same as that of the
previous example.

Of course, callbacks needn’t be anonymous. You can use the name of a function, or even an object
reference and a method, as a callback. Here I do just that:

// listing 04.92
class Mailer

{
public function doMail(Product $product)
{
print " mailing ({$product->name})\n";
}
}

// listing 04.93
$processor = new ProcessSale();
$processor->registerCallback([new Mailer(), "doMail"]);

$processor->sale(new Product("shoes", 6));
print "\n";
$processor->sale(new Product("coffee", 6));

I create a class: Mailer. Its single method, doMail(), accepts a Product object and outputs a
message about it. When I call registerCallback(), I pass it an array. The first element is a Mailer
object, and the second is a string that matches the name of the method I want invoked. Remember that
registerCallback() checks its argument for callability. is_callable() is smart enough to test arrays of this
sort. A valid callback in array form should have an object as its first element, and the name of a method as its
second element. I pass that test here, and here is my output:

shoes: process

ing
mailing (shoes)

coffee: processing
mailing (coffee)

93

CHAPTER 4 © ADVANCED FEATURES

You can have a method return an anonymous function—something like this:

// listing 04.94
class Totalizer

{
public static function warnAmount()
{
return function (Product $product) {
if ($product->price > 5) {
print " reached high price: {$product->price}\n";
}
};
}
}

// listing 04.95

$processor = new ProcessSale();
$processor->registerCallback(Totalizer: :warnAmount());
/...

Apart from the convenience of using the warnAmount () method as a factory for the anonymous
function, I have not added much of interest here. But this structure allows me to do much more than just
generate an anonymous function. It allows me to take advantage of closures. The new style anonymous
functions can reference variables declared in the anonymous functions parent scope. This is a hard concept
to grasp at times. It’s as if the anonymous function continues to remember the context in which it was
created. Imagine that I want Totalizer: :warnAmount () to do two things. First of all, I'd like it to accept
an arbitrary target amount. Second, I want it to keep a tally of prices as products are sold. When the total
exceeds the target amount, the function will perform an action (in this case, as you might have guessed, it
will simply write a message).

I can make my anonymous function track variables from its wider scope with a use clause:

// listing 04.96
class Totalizer2

{
public static function warnAmount($amt)
{
$count=0;
return function ($product) use ($amt, 8$count) {
$count += $product->price;
print " count: $count\n";
if ($count > $amt) {
print " high price reached: {$count}\n";
}
};
}
}

// listing 04.97
$processor = new ProcessSale();
$processor->registerCallback(Totalizer2: :warnAmount(8));

94

CHAPTER 4 * ADVANCED FEATURES

$processor->sale(new Product("shoes", 6));
print "\n";
$processor->sale(new Product("coffee", 6));

The anonymous function returned by Totalizer2: :warnAmount () specifies two variables in its use
clause. The first is $amt. This is the argument that warnAmount () accepted. The second closure variable is
$count. $count is declared in the body of warnAmount () and set initially to zero. Notice that I prepend an
ampersand to the $count variable in the use clause. This means the variable will be accessed by reference
rather than by value in the anonymous function. In the body of the anonymous function, I increment $count
by the product’s value, and then test the new total against $amt. If the target value has been reached, I output
a notification.

Here is the code in action:

shoes: processing
count: 6

coffee: processing
count: 12

high price reached: 12

This demonstrates that the callback is keeping track of $count between invocations. Both $count and
$amt remain associated with the function because they were present to the context of its declaration and
because they were specified in its use clause.

Anonymous Classes

As of PHP 7 you can declare anonymous classes as well as functions. These are especially useful when you
need to create and derive an instance from a small class. This is especially useful when the class in question
is simple and specific to the local context.

Let’s return to our PersonWriter example. I'll start off by creating an interface this time:

// listing 04.98
interface PersonWriter

{
}

public function write(Person $person);

Now, here’s a version of the Person class that can use a PersonWriter object:

// listing 04.99
class Person

{
public function output(PersonWriter $writer)
{
$writer->write($this);
}

95

CHAPTER 4 © ADVANCED FEATURES

public function getName(): string

{
return "Bob";
}
public function getAge(): int
{
return 44;
}

The output () method accepts a PersonWriter instance, and then passes an instance of the current class
to itswrite() method. In this way, the Person class is nicely insulated from the implementation of the writer.

Moving on to client code, if we need a writer to print name and age values for a Person object, we might
go ahead and create a class in the usual way. But it’s such a trivial implementation that we could equally
create a class and pass it to Person at the same time:

// listing 04.100
$person = new Person();
$person->output(
new class implements PersonWriter {
public function write(Person $person)

{
}

print $person->getName(). . $person->getAge() . "\n";

)5

As you can see, you can declare an anonymous class with the keywords, new class. You can then add
any extends and implements clauses required before creating the class block.

Anonymous classes do not support closures. In other words, variables declared in a wider scope cannot
be accessed within the class. However you can pass values to an anonymous class’s constructor. Let’s create
a slightly more complex Personhriter:

// listing 04.101
$person = new Person();
$person->output(
new class("/tmp/persondump") implements PersonWriter {
private $path;

public function _ construct(string $path)

{
$this->path = $path;

}

public function write(Person $person)

{
file _put_contents($this->path, $person->getName(). " " . $person
->getAge() . "\n");

}

);
96

CHAPTER 4 * ADVANCED FEATURES

I passed a path argument to the constructor. This value was stored in the $path property and eventually
used by the write() method.

Of course, if your anonymous class begins to grow in size and complexity, it becomes more sensible to
create a named class in a class file. This is especially true if you find yourself duplicating your anonymous
class in more than one place.

Summary

In this chapter, we came to grips with PHP’s advanced object-oriented features. Some of these will become
familiar as you work through the book. In particular, I will return frequently to abstract classes, exceptions,
and static methods.

In the next chapter, I take a step back from built-in object features and look at classes and functions
designed to help you work with objects.

97

CHAPTER 5

Object Tools

As we have seen, PHP supports object-oriented programming through language constructs such as classes
and methods. The language also provides wider support through functions and classes designed to help you
work with objects.

In this chapter, we will look at some tools and techniques that you can use to organize, test, and
manipulate objects and classes.

This chapter will cover the following tools and techniques:

e Namespaces: Organize your code into discrete package-like compartments
e Include paths: Setting central accessible locations for your library code

e Class and object functions: Functions for testing objects, classes, properties, and
methods

e The Reflection API: A powerful suite of built-in classes that provide unprecedented
access to class information at runtime

PHP and Packages

A package is a set of related classes, usually grouped together in some way. Packages can be used to separate
parts of a system from one another. Some programming languages formally recognize packages and provide
them with distinct namespaces. PHP has no native concept of a package, but as of PHP 5.3, it introduced
namespaces. I'll look at this feature in the next section. I'll also take a look at the old way of organizing
classes into package-like structures.

PHP Packages and Namespaces

Although PHP does not intrinsically support the concept of a package, developers have traditionally used
both naming schemes and the filesystem to organize their code into package-like structures.

Until PHP 5.3, developers were forced to name their files in a global context. In other words, if you
named a class ShoppingBasket, it would become instantly available across your system. This caused two
major problems. First, and most damaging, was the possibility of naming collisions. You might think that this
is unlikely. After all, all you have to do is remember to give all your classes unique names, right? The trouble

© Matt Zandstra 2016 99
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_5

CHAPTER 5 © OBJECT TOOLS

is, we all rely increasingly on library code. This is a good thing, of course, because it promotes code reuse.
But assume your project does this:

// listing 05.01
require once _ DIR__ . "/../useful/Outputter.php”;

class Outputter
{

}

// output data

Now assume you incorporate the included file at useful/Outputter.php:
// listing 05.02
class Outputter
{

}

//

Well, you can guess what will happen, right? This happens:

PHP Fatal error: Cannot declare class Outputter because the name is already in use in
/var/popp/src/cho5/batcho1/useful/Outputter.php on line 4

Back before the introduction of namespaces, there was a conventional workaround to this problem. The
answer was to prepend package names to class names, so that class names were guaranteed to be unique:

// listing 05.03

// my/Outputer.php

require once _ DIR__ . "/../useful/Outputter.php”;
class my Outputter

// output data
}

// listing 05.04
// useful/Outputter.php

class useful Outputter
{

}

//

The problem here was that, as projects got more involved, class names grew longer and longer. It
was not an enormous problem, but it resulted in issues with code readability, and made it harder to hold
classnames in your head while you worked. Many cumulative coding hours were lost to typos.

100

CHAPTER 5 © OBJECT TOOLS

If you're maintaining legacy code, you may well still see code that follows this convention. For that
reason, I'll return briefly to the old way of handling packages later in this chapter.

Namespaces to the Rescue

PHP 5.3 introduced namespaces. In essence, a namespace is a bucket in which you can place your classes,

functions, and variables. Within a namespace you can access these items without qualification. From

outside, you must either import the namespace, or reference it, in order to access the items it contains.
Confused? An example should help. Here I rewrite the previous example using namespaces:

// listing 05.05
namespace my;

require once _ DIR__ . "/../useful/Outputter.php";

class Outputter
{

}

// listing 05.06
namespace useful;

// output data

class Outputter
{

}

//

Notice the namespace keyword. As you might expect, this keyword establishes a namespace. If you are
using this feature, then the namespace declaration must be the first statement in its file. have created two
namespaces: my and useful. Typically, though, you'll want to have deeper namespaces. You'll start with an
organization or project identifier. Then you'll want to further qualify this by package. PHP lets you declare
nested namespaces. To do this, you simply use a backslash character to divide each level:

// listing 05.07
namespace popp\cho5\batcho4\util;

class Debug

{
public static function helloWorld()
{
print "hello from Debug\n";
}
}

You will typically use a name related to a product or organisation to define a repository. I might use
one of my domains: getinstance.com, for example. Because a domain name is unique to its owner, this is a
trick that Java developers typically use for their package names. They invert domain names so that they run
from the most generic to the most specific. Alternatively, I might use the namespace I have chosen for code
examples in this book: popp, for the book name. Once I've identified my repository, I might go on to define
packages. In this case, I use the chapter and then a numbered batch. This allows me to organise groups of

101

CHAPTER 5 © OBJECT TOOLS

examples into discrete buckets. So at this point in the chapter, I am at popp\ch05\batch04. Finally, I can
further organise code by category. I've gone with util.

So how would I call the method? In fact, it depends where you're doing the calling from. If you are
calling the method from within the namespace, you can go ahead and call the method directly:

Debug: :helloWorld();

This is known as an unqualified name. Because I'm already in the popp\cho5\batcho4\util
namespace, I don’t have to prepend any kind of path to the class name. If I were accessing the class from
outside of a namespaced context, I could do this:

\popp\cho5\batcho4\Debug: :helloworld();

What output would I get from the following code:

namespace main;

popp\cho5\batcho4\Debug: :helloworld();

That's a trick question. In fact, this is my output:
PHP Fatal error: Class 'popp\cho5\batcho4\Debug' not found in...

That’s because I'm using a relative namespace here. PHP is looking below the namespace main for
popp\cho5\batcho4\util and not finding it. Just as you can make absolute URLs and filepaths by starting off
with a separator, so you can with namespaces. This version of the example fixes the previous error:

namespace main;
\popp\cho5\batcho4\Debug: :helloworld();

That leading backslash tells PHP to begin its search at the root, and not from the current namespace.

But aren’t namespaces supposed to help you cut down on typing? The Debug class declaration is
shorter, certainly, but those calls are just as wordy as they would have been with the old naming convention.
You can get around this with the use keyword. This allows you to alias other namespaces within the current
namespace. Here’s an example:

namespace main;
use popp\cho5\batcho4\util;
util\Debug: :helloWorld();

The popp\cho5\batcho4\util namespace is imported and implicitly aliased to util. Notice thatI
didn’t begin with a leading backslash character. The argument to use is searched from global space and not
from the current namespace. If I don’t want to reference a namespace at all, I can import the Debug class
itself:

namespace main;

use popp\cho5\batcho4\util\Debug;
Debug: :helloWorld();

102

CHAPTER 5 © OBJECT TOOLS

This is the convention that is most often used. But what would happen if I already had a Debug class in
the calling namespace? Here is such a class:

// listing 05.08
namespace popp\cho5\batcho4;

class Debug

{
public static function helloWorld()
{
print "hello from popp\\cho5\\batcho4\\Debug\n";
}
}

And here is some calling code from the popp\ch05\batch04 namespace which references both Debug
classes:

namespace popp\cho5\batcho4;

use popp\cho5\batcho4\util\Debug;
use popp\cho5\batcho4\Debug;

Debug: :helloWorld();

As you might expect, this causes a fatal error:

PHP Fatal error: Cannot use popp\cho5\batcho4\Debug as Debug because the name is already
in use in...

So I seem to have come full circle, arriving back at class name collisions. Luckily, there’s an answer for
this problem. I can make my alias explicit:

namespace main;

use popp\cho5\batcho4\Debug as coreDebug;
coreDebug: :helloWorld();

By using the as clause to use, I am able to change the Debug alias to coreDebug.

If you are writing code in a namespace, and you want to access a class that resides in global
(non-namespaced) space, you can simply precede the name with a backslash. Here’s a class declared in
global space:

// listing 05.09
class Lister

{
public static function helloWorld()
{
print "hello from global\n";
}
}

103

CHAPTER 5 © OBJECT TOOLS

And here’s some namespaced code:

// listing 05.10
namespace popp\cho5\batcho4\util;

class Lister

{
public static function helloWorld()
{
print "hello from " . _ NAMESPACE__ . "\n";
}
}

// listing 05.11
namespace popp\cho5\batcho4;

Lister::helloWorld(); // access local
\Lister::helloWorld(); // access global

The namespaced code declares its own Lister class. The client code, in the same namespace, uses an
unqualified name to access the local version. A name qualified with a single backslash accesses a class in
global space.

Here’s the output from the previous fragment:

hello from popp\cho5\batcho4\util
hello from global

It's worth showing because it demonstrates the operation of the _ NAMESPACE__ constant. This will
output the current namespace, and it’s useful in debugging.

You can declare more than one namespace in the same file using the syntax you have already seen. You
can also use an alternative syntax that uses braces with the namespace keyword:

// listing 05.12
namespace com\getinstance\util {

class Debug

{
public static function helloWorld()
{
print "hello from Debug\n";
}
}

}

namespace other {

\com\getinstance\util\Debug: :helloWorld();

104

CHAPTER 5 © OBJECT TOOLS

If you must combine multiple namespaces in the same file, then this is the recommended practice.
Usually, however, it’s considered best practice to define namespaces on a per-file basis.

Note You can’t use both the brace and line namespace syntaxes in the same file. You must choose one and
stick to it throughout.

Using the File System to Simulate Packages

Whichever version of PHP you use, you should organize classes using the file system, which affords a kind of
package structure. For example, you might create util and business directories and include class files with
the require_once() statement, like this:

require_once('business/Customer.php');
require_once('util/WebTools.php');

You could also use include_once() with the same effect. The only difference between the include()
and require() statements lies in their handling of errors. A file invoked using require() will bring down
your entire process when you meet an error. The same error encountered via a call to include() will merely
generate a warning and end execution of the included file, leaving the calling code to continue. This makes
require() and require_once() the safe choice for including library files, and include() and include
once() useful for operations like templating.

Note require() and require once() are actually statements, not functions. This means that you can
omit the brackets when using them. Personally, | prefer to use brackets anyway, but if you follow suit, be
prepared to be bored by pedants eager to explain your mistake.

Figure 5-1 shows the util and business packages from the point of view of the Nautilus file manager.

_J packages
< | business
¢, Customer.php
a Invoice.php
v J il
¢, WebTools.php

Figure 5-1. PHP packages organized using the file system

105

CHAPTER 5 © OBJECT TOOLS

Note require once() accepts a path to a file and includes it evaluated in the current script. The function
will only incorporate its target if it has not already been incorporated elsewhere. This one-shot approach is
particularly useful when accessing library code because it prevents the accidental redefinition of classes and
functions. This can happen when the same file is included by different parts of your script in a single process
using a function like require() or include().

It is customary to use require() and require_once() in preference to the similar include() and
include_once() functions. This is because a fatal error encountered in a file accessed with the require()
functions takes down the entire script. The same error encountered in a file accessed using the include()
functions will cause the execution of the included file to cease, but will only generate a warning in the calling
script. The former, more drastic behavior, is safer.

There is an overhead associated with the use of require_once() when compared with require(). If you need
to squeeze every last millisecond out of your system, you may like to consider using require() instead. As is
so often the case, this is a tradeoff between efficiency and convenience.

As far as PHP is concerned, there is nothing special about this structure. You are simply placing library
scripts in different directories. It does lend itself to clean organization, and can be used in parallel with either
namespaces or a naming convention.

Naming the PEAR Way

Back before namespaces were introduced, developers were forced to resort to conventions in order to avoid
class name collisions. The most common of these, as we have seen, was the fake namespacing maintained
by PEAR developers.

Note PEAR stands for the PHP Extension and Application Repository. It is an officially maintained archive
of packages and tools that add to PHP’s functionality. Core PEAR packages are included in the PHP distribution,
and others can be added using a simple command-line tool. You can browse the PEAR packages at
http://pear.php.net.

PEAR uses the file system to define its packages as I have described. Before namespaces were
introduced, every class was named according to its package path, with each directory name separated by an
underscore character.

For example, PEAR includes a package called XML, which has an RPC subpackage. The RPC package
contains a file called Server.php. The class defined inside Server.php is not called Server, as you might
expect. Without namespaces, that would sooner or later clash with another Server class elsewhere in the
PEAR project or in a user’s code. Instead, the class is named XML_RPC_Server. This approach made for
unattractive class names. It did, however, make code easy to read because a class name always described its
own context.

106

http://pear.php.net/

CHAPTER 5 © OBJECT TOOLS

Include Paths

When you organize your components, there are two perspectives that you should bear in mind. I have
covered the first, where files and directories are placed on the filesystem. But you should also consider the
way that components access one another. I have glossed over the issue of include paths so far in this section.
When you include a file, you could refer to it using a relative path from the current working directory or an
absolute path on the file system.

Note Although it is important to understand the way that include paths work and the issues involved in
requiring files, it is also important to bear in mind that many modern systems no longer rely upon require
statements at the class level. Instead, they use a combination of autoload and namespaces. | will cover autoload
below, and then look in more detail at practical autoload recommendations and tools in Chapters 15 and 16.

The examples you have seen so far have occasionally specified a fixed relationship the requiring and
required files:

require_once(_ DIR . '/../useful/Outputter.php');

This works quite nicely, except that it hardcodes the relationship between files. There must always be a
useful directory alongside the calling class’s containing directory.
Perhaps the worst approach is the tortuous relative path:

require_once('../../projectlib/business/User.php');

This is problematic because the path specified here is not relative to the file that contains this require_once
statement, but to a configured calling context (often, but not always, the current working directory). Paths
like this are a recipe for confusion (and in my experience almost always a sign that a system will need
considerable improvement in other areas, t0o).

You could use an absolute path, of course:

require_once('/home/john/projectlib/business/User.php');

This will work for a single instance—but it’s brittle. By specifying paths in this much detail, you freeze
the library file into a particular context. Whenever you install the project on a new server, all require
statements will need changing to account for a new file path. This can make libraries hard to relocate and
impractical to share among projects without making copies. In either case, you lose the package idea in all
the additional directories. Is it the business package, or is it the projectlib/business package?

If you must manually include files in your code, the neatest approach is to decouple the invoking code
from the library:

business/User.php

The preceding snippet can be referenced from anywhere on a system. You can do this with the include
path. This is a list of directories that PHP searches when attempting to require a file. You can add to this list by
altering the include_path directive. include_path is usually set in PHP’s central configuration file, php.ini.

It defines a list of directories separated by colons on Unix-like systems and semicolons on Windows systems:

include_path = ".:/usr/local/lib/php-libraries”

107

http://dx.doi.org/10.1007/978-1-4842-1996-6_15
http://dx.doi.org/10.1007/978-1-4842-1996-6_16

CHAPTER 5 © OBJECT TOOLS

If you're using Apache, you can also set include_path in the server application’s configuration file
(usually called httpd. conf) or a per-directory Apache configuration file (usually called . htaccess) with this
syntax:

php_value include path value .:/usr/local/1lib/php-libraries

Note .htaccess files are particularly useful in web space provided by some hosting companies, which
provide very limited access to the server environment.

When you use a filesystem function such as fopen() or require() with a nonabsolute path that
does not exist relative to the current working directory, the directories in the include path are searched
automatically, beginning with the first in the list (in the case of fopen(), you must include a flag in its
argument list to enable this feature). When the target file is encountered, the search ends, and the file
function completes its task.

So by placing a package directory in an include directory, you need only refer to packages and files in
your require() statements.

require once("business/User.php");

You may need to add a directory to the include_path so that you can maintain your own library
directory. To do this, you can edit the php. ini file (remember that, for the PHP server module, you will need
to restart your server for the changes to take effect).

If you do not have the privileges necessary to work with the php. ini file, you can set the include path
from within your scripts using the set_include path() function. set_include path() accepts an include
path (as it would appear in php.ini) and changes the include_path setting for the current process only. The
php.ini file probably already defines a useful value for include_path, so rather than overwrite it, you can
access it using the get_include_path() function and append your own directory. Here's how you can add a
directory to the current include path:

set_include path(get_include path() . PATH_SEPARATOR . "/home/john/phplib/");

The PATH_SEPARATOR constant will resolve to a colon on a Unix system and a semicolon on a Windows
platform. So, for reasons of portability, its use is considered best practice.

Autoload

Although it’s neat to use require_once in conjunction with the include path, many developers are doing
away with require statements altogether at a high level and relying instead on autoload.

To do this, you should organize your classes so that each sits in its own file. Each class file should bear
a fixed relationship to the name of the class it contains, so you might define a ShopProduct class in a file
named ShopProduct.php with directories corresponding to elements of the class’s namespace.

PHP 5 introduced autoload functionality to help automate the inclusion of class files. The default
support is pretty basic but still useful. It can be invoked by calling a function named spl_autoload
register() with no arguments. If autoload functionality has been activated in this way, a special function
named spl_autoload() will be invoked whenever an attempt is made to instantiate an unknown class. The
spl_autoload() function will be passed the name of the class, and it will attempt to use this name (converted
to lower case), together with a file extension (php or inc by default) to include the relevant class file.

108

CHAPTER 5 © OBJECT TOOLS

Here’s a simple example:

spl autoload register();
$writer = new Writer();

Assuming I have not already included a file containing a Writer object, this instantiation looks bound
to fail. However, because I have set up autoloading, PHP will attempt to include a file named writer.php or
writer.inc, and will then try the instantiation a second time. If one of these files exists, and contains a class
named Writer, then all will be well.

This default behavior supports namespaces, substituting directory names for each package:

spl autoload register();
$writer = new util\Writer();

The preceding code will find a file named writer.php (note the lowercase name) in a directory
named util.

What if I happen to name my class files case-dependently? That is, what if I name them with the
capital letters preserved? If had placed the Writer class in a file named Writer.php, then the default
implementation would have failed to find it.

Luckily, I can register my own custom function to handle different sets of conventions. In order to take
advantage of this, I must pass a reference to a custom function to spl_autoload_register(). My autoload
function should require a single argument. Then, if the PHP engine encounters an attempt to instantiate
an unknown class, it will invoke this function, passing it the unknown class name as a string. It is up to
the autoload function to define a strategy for locating and then including the missing class file. Once the
autoload function has been invoked, PHP will attempt to instantiate the class once again.

Here’s a simple autoload function, together with a class to load:

// listing 05.13

class Blah
{
public function wave()
{
print "saying hi from root";
}

}

// listing 05.14
$basic = function ($classname) {
$file = _DIR__ . "/" . "{$classname}.php";
if (file exists($file)) {
require_once($file);
}

};
\spl_autoload_register($basic);

$blah = new Blah();
$blah->wave();

109

CHAPTER 5 © OBJECT TOOLS

Having failed to instantiate Blah initially, the PHP engine will see that I have registered an autoload
function with spl_register function() and pass it the string, "Blah". My implementation simply attempts
to include the file Blah. php. This will only work, of course, if the file is in the same directory as the file in
which the autoload function was declared. In a real-world example, I would have to combine include path
configuration with my autoload logic (this is precisely what Composer’s autoload implementation does).

If I want to provide old school support, I might automate PEAR package includes:

// listing 05.15

class util Blah

{
public function wave()
{
print "saying hi from underscore file";
}
}

// listing 05.16

$underscores = function ($classname) {
$path = str replace(' ', DIRECTORY_SEPARATOR, $classname);
$path = DIR__ . "/$path";
if (file exists("{$path}.php")) {
require_once("{$path}.php");
}

};
\spl autoload register($underscores);

$blah = new util Blah();
$blah->wave();

As you can see, the autoload function matches underscores in the supplied $classname and replaces
each with the DIRECTORY_SEPARATOR character (/ on Unix systems). [attempt to include the class file
(util/Blah.php). If the class file exists, and the class it contains has been named correctly, the object
should be instantiated without an error. Of course, this does require the programmer to observe a naming
convention that forbids the underscore character in a class name, except where it divides up packages.

What about namespaces? We've seen that the default autoload functionality supports namespaces. But
if we override that default, it’s up to us to provide namespace support. This is just a matter matching and
replacing backslash characters:

// listing 05.17
namespace util;

class LocalPath

public function wave()

{
}

print "hello from ".get class();

110

CHAPTER 5 © OBJECT TOOLS

// listing 05.18
$namespaces = function ($path) {
if (preg_match('/\\\\/', $path)) {
$path = str replace('\\', DIRECTORY_SEPARATOR, $path);

}

if (file exists("{$path}.php")) {
require once("{$path}.php");

}

};

\spl autoload register($namespaces);
$obj = new util\LocalPath();
$obj->wave();

The value that is passed to the autoload function is always normalized to a fully qualified name, without
a leading backslash, so there is no need to worry about aliasing or relative namespaces at the point of
instantiation.

What if I wanted to support both PEAR-style class names and namespaces? I could combine my
autoload implementations into a single custom function. Or, I could use the fact that spl_autoload
register() stacks its autoload functions:

// listing 05.19
\spl autoload register($namespaces);
\spl_autoload register($underscores);

$blah = new util Blah();
$blah->wave();

$obj = new util\LocalPath();
$obj->wave();

When it encounters an unknown class, the PHP engine will invoke the autoload functions in turn,
stopping when instantiation is possible, or when the all options have been exhausted.

There is obviously an overhead to this kind of stacking, so why does PHP support it? In a real world
project, you'd likely combine the namespace and underscore strategies into a single function. However,
components in large systems and in third-party libraries may need to register their own autoload
mechanisms. Stacking allows multiple parts of a system to register autoload strategies independently,
without overwriting one another. In fact, a library that only needs an autoload mechanism briefly can pass
the name of its custom autoload function (or a reference to it, if the function is anonymous) to
spl autoload unregister() to clean up after itself!

Note PHP supports __autoload(), a less powerful mechanism for managing automatic file includes. If you
provide an implementation of the __autoload() function, PHP will call your function when it fails to locate a
class. However, because this approach only supports http://www.php.net/spl autoload register, a single
autoload function without stacking, it may be deprecated in future versions of PHP.

111

http://www.php.net/spl_autoload_register

CHAPTER 5 © OBJECT TOOLS

The Class and Object Functions

PHP provides a powerful set of functions for testing classes and objects. Why is this useful? After all, you
probably wrote most of the classes you are using in your script.

In fact, you don’t always know at runtime about the classes that you are using. You may have designed
a system to work transparently with third-party bolt-on classes, for example. In this case, you will typically
instantiate an object given only a class name. PHP allows you to use strings to refer to classes dynamically,
like this:

// listing 05.20
namespace tasks;

class Task
{
public function doSpeak()
{
print "hello\n";
}

}

// listing 05.21

$classname = "Task";
require_once("tasks/{$classname}.php");
$classname = "tasks\\$classname";
$myObj = new $classname();
$myObj->doSpeak();

This script might acquire the string I assign to $classname from a configuration file or by comparing a
web request with the contents of a directory. You can then use the string to load a class file and instantiate an
object. Notice that I've constructed a namespace qualification in this fragment.

Typically, you would do something like this when you want your system to be able to run user-created
plug-ins. Before you do anything as risky as that in a real project, you would have to check that the class
exists, that it has the methods you are expecting, and so on.

Note Even with safeguards in place, you should be extremely wary of dynamically installing third-party plug-in
code. You should never automatically run code uploaded by users. Any plug-in so installed would typically execute
with the same privileges as your core code, so a malicious plug-in author could wreak havoc on your system.

This isn’t to say that plug-ins aren’t a fine idea. Allowing third-party developers to enhance a core system can
offer great flexibility. To ensure greater security, you might support a directory for plug-ins, but require that

the code files be installed by a system’s administrator, either directly or from within a password-protected
management environment. The administrator would either personally check the plug-in code before installation
or would source plug-ins from a reputable repository. This is the way that the popular blogging platform,
WordPress, handles plug-ins.

Some class functions have been superseded by the more powerful Reflection AP, which I will examine
later in the chapter. Their simplicity and ease of use make them a first port of call in some instances, however.

112

CHAPTER 5 © OBJECT TOOLS

Looking for Classes

The class_exists() function accepts a string representing the class to check for and returns a Boolean true
value if the class exists and false otherwise.
Using this function, I can make the previous fragment a little safer:

// listing 05.22
$base = _ DIR__;
$classname = "Task";
$path = "{$base}/tasks/{$classname}.php";
if (! file exists($path)) {
throw new \Exception("No such file as {$path}");
}

require_once($path);
$qclassname = "tasks\\$classname";
if (! class_exists($qclassname)) {
throw new Exception("No such class as $qclassname");
}

$myObj = new $qclassname();
$myObj->doSpeak();

Of course, you can'’t be sure that the class in question does not require constructor arguments. For
that level of safety, you would have to turn to the Reflection API, covered later in the chapter. Nevertheless,
class_exists() does allow you to check that the class exists before you work with it.

Note Remember, as stated previously, you should always be wary of any data provided by outside sources.
Test it and treat it before using it in any way. In the case of a file path, you should escape or remove dots and
directory separators to prevent an unscrupulous user from changing directories and including unexpected files.
However, when | describe ways of building systems that are easily extensible, these techniques generally cover
a deployment’s owner (with the write privileges that implies), and not her external users.

You can also get an array of all classes defined in your script process using the get_declared_classes()
function:

print_r(get_declared_classes());
This will list user-defined and built-in classes. Remember that it only returns the classes declared at

the time of the function call. You may run require() or require_once() later on, and thereby add to the
number of classes in your script.

Learning About an Object or Class

As you know, you can constrain the object types of method arguments using class type hinting. Even with
this tool, you can’t always be certain of an object’s type.

113

CHAPTER 5 © OBJECT TOOLS

There are a number of basic tools available to check the type of an object. First of all, you can check the
class of an object with the get_class() function. This accepts any object as an argument and returns its
class name as a string:

// listing 05.23

$product = self::getProduct();

if (get_class($product) === 'popp\cho5\batcho5\CdProduct') {
print "\$product is a CdProduct object\n";

}

In the fragment, I acquire something from the getProduct () function. To be absolutely certain that it is
a CdProduct object, I use the get_class() method.

Note | covered the CdProduct and BookProduct classes in Chapter 3.

Here’s the getProduct() function:

// listing 05.24
public static function getProduct()

{
return new CdProduct(
"Exile on Coldharbour Lane",
"The",
"Alabama 3",
10.99,
60.33
)5
}

getProduct () simply instantiates and returns a CdProduct object. I will make good use of this function
in this section.

The get_class() function is a very specific tool. You often want a more general confirmation of a class’s
type. You may want to know that an object belongs to the ShopProduct family, but you don’t care whether its
actual class is BookProduct or CdProduct. To this end, PHP provides the instanceof operator.

Note PHP 4 did not support instanceof. Instead, it provided the is_a() function, which was deprecated in
PHP 5.0 but restored to the fold with PHP 5.3.

The instanceof operator works with two operands, the object to test on the left of the keyword and the
class or interface name on the right. It resolves to true if the object is an instance of the given type:

// listing 05.25

$product = self::getProduct();

if ($product instanceof \popp\cho5\batcho5\CdProduct) {
print "\$product is an instance of CdProduct\n";

}

114

http://dx.doi.org/10.1007/978-1-4842-1996-6_3

CHAPTER 5 © OBJECT TOOLS

Getting a Fully Qualified String Reference to a Class

Namespaces have cleaned up much that was ugly about object-oriented PHP. We no longer have to tolerate
ridiculously long class names or risk naming collisions (legacy code aside). On the other hand, with aliasing
and with relative namespace references, it can be a chore to resolve some class paths so that they are fully
qualified.

Here are some examples of hard-to-resolve class names:

namespace mypackage;

use util as u;
use util\db\Querier as g;
class Local {}

// Resolve these:

// Aliased namespace
// ul\Writer;

// Aliased class
/1 q;

// Class referenced in local context
// Local

It's not too hard to work out how these class references resolve, but it would be a pain to write code to
capture every possibility. Given u\Writer, for example, an automated resolver would need to know that u is
aliased to util and is not a namespace in its own right. Helpfully, PHP 5.5 introduced the ClassName: : class
syntax. In other words, given a class reference, you can append a scope resolution operator and the class
keyword to get the fully qualified class name:

print u\Writer::class . "\n";
print g::class . "\n";

print Local::class . "\n";

The preceding snippet outputs this:

util\Writer
util\db\Querier
mypackage\Local

Learning About Methods

You can acquire a list of all the methods in a class using the get_class_methods () function. This requires a
class name and returns an array containing the names of all the methods in the class:

print_r(get class_methods('\\popp\\cho4\\batcho2\\BookProduct'));

115

CHAPTER 5 © OBJECT TOOLS

Assuming the BookProduct class exists, you might see something like this:

] => _ construct

] => getNumberOfPages

] => getSummaryLine

] => getPrice

] => setID

] => getProducerFirstName
] => getProducerMainName
] => setDiscount

] => getDiscount

] => getTitle

0] => getProducer

1] => getInstance

In the example, [pass a class name to get_class_methods() and dump the returned array with the
print_r() function. I could alternatively have passed an object to get_class_methods () with the same
result. Only the names of public methods will be included in the returned list.

As you have seen, you can store a method name in a string variable and invoke it dynamically together
with an object, like this:

// listing 05.26

$product = self::getProduct(); // acquire an object
$method = "getTitle"; // define a method name
print $product->$method(); // invoke the method

Of course, this can be dangerous. What happens if the method does not exist? As you might expect, your
script will fail with an error. You have already encountered one way of testing that a method exists:

if (in_array($method, get class methods($product))) {
print $product->$method(); // invoke the method

I check that the method name exists in the array returned by get_class_methods () before invoking it.
PHP provides more specialized tools for this purpose. You can check method names to some extent with
two functions: is_callable() and method exists(). is_callable() is the more sophisticated of the two
functions. It accepts a string variable representing a function name as its first argument and returns true if
the function exists and can be called. To apply the same test to a method, you should pass it an array in place
of the function name. The array must contain an object or class name as its first element and the method
name to check as its second element. The function will return true if the method exists in the class:

// listing 05.27

if (in_array($method, get class methods($product))) {
print $product->$method(); // invoke the method

}

is_callable() optionally accepts a second argument, a Boolean. If you set this to true, the function
will only check the syntax of the given method or function name, not for its actual existence.

116

CHAPTER 5 © OBJECT TOOLS

The method_exists() function requires an object (or a class name) and a method name, and returns
true if the given method exists in the object’s class:

// listing 05.28
if (method exists($product, $method)) {

print $product->$method(); // invoke the method
}

Caution Remember that the fact that a method exists does not mean that it will be callable.
method exists() returns true for private and protected methods, as well as for public ones.

Learning About Properties

Just as you can query the methods of a class, so can you query its fields. The get_class_vars() function
requires a class name and returns an associative array. The returned array contains field names as its keys
and field values as its values. Let’s apply this test to the CdProduct object. For the purposes of illustration, we
add a public property to the class, CdProduct: : $coverUrl:
print_r(get_class_vars('\\popp\\cho5\\batcho5\\CdProduct"'));

Only the public property is shown:

Array

(
)

[coverUrl] => cover url

Learning About Inheritance

The class functions also allow us to chart inheritance relationships. We can find the parent of a class, for
example, with get_parent_class(). This function requires either an object or a class name, and it returns
the name of the superclass, if any. If no such class exists—that is, if the class we are testing does not have a
parent—then the function returns false.

print get_parent_class('\\popp\\cho4\\batcho2\\BookProduct");

As you might expect, this yields the parent class: ShopProduct.

We can also test whether a class is a descendent of another using the is_subclass_of() function. This
requires a child object (or the name of a class) and the name of the parent class. The function returns true if

the second argument is a superclass of the first argument:

// listing 05.29
$product = self::getBookProduct(); // acquire an object

if (is_subclass_of($product, '\\popp\\cho4\\batch0o2\\ShopProduct')) {
print "BookProduct is a subclass of ShopProduct\n";
}

117

CHAPTER 5 © OBJECT TOOLS

is_subclass_of() will tell you only about class inheritance relationships. It will not tell you that a class
implements an interface. For that, you should use the instanceof operator. Or, you can use a function that
is part of the SPL (Standard PHP Library). class_implements() accepts a class name or an object reference,
and returns an array of interface names:

// listing 05.30

if (in_array('someInterface', class_implements($product))) {
print "BookProduct is an interface of someInterface\n";
}

Method Invocation

You have already encountered an example in which I used a string to invoke a method dynamically:
$product = getProduct(); // acquire an object

$method = "getTitle"; // define a method name

print $product->$method(); // invoke the method

PHP also provides the call user func() method to achieve the same end. call user func() can
invoke either methods or functions. To invoke a function, it requires a single string as its first argument:

$returnVal = call user_ func("myFunction");

To invoke a method, it requires an array. The first element of this should be an object, and the second
should be the name of the method to invoke:

$returnVal = call user func([$myObj, "methodName"]);

You can pass any arguments that the target method or function requires in additional arguments to
call user func(), like this:

// listing 05.31
$product = self::getBookProduct(); // Acquire a BookProduct object
call user func([$product, 'setDiscount'], 20);

This dynamic call is, of course, equivalent to this:

$product->setDiscount(20);

The call user func() method won'’t change your life greatly because you can equally use a string
directly in place of the method name, like this:

$method = "setDiscount";
$product->$method(20);

Much more impressive, though, is the related call _user func_array() function. This operates in the

same way as call user func(), as far as selecting the target method or function is concerned. Crucially,
though, it accepts any arguments required by the target method as an array.

118

CHAPTER 5 © OBJECT TOOLS

Note Beware—arguments passed to a function or method using call user func() are not passed by
reference.

So why is this useful? Occasionally you are given arguments in array form. Unless you know in advance
the number of arguments you are dealing with, it can be difficult to pass them on. In Chapter 4, I looked at
the interceptor methods that can be used to create delegator classes. Here’s a simple example ofa __call()
method:

// listing 05.32
public function _ call($method, $args)
{
if (method_exists($this->thirdpartyShop, $method)) {
return $this->thirdpartyShop->$method();
}

}

Asyou have seen, the __call() method is invoked when an undefined method is called by client code.
In this example, I maintain an object in a property called $thirdpartyShop. If I find a method in the stored
object that matches the $method argument, I invoke it. I blithely assume that the target method does not
require any arguments, which is where my problems begin. When I write the _call() method, I have no
way of telling how large the $args array may be from invocation to invocation. If I pass $args directly to the
delegate method, I will pass a single array argument, and not the separate arguments it may be expecting.
call user func_array() solves the problem perfectly:

// listing 05.33
public function _ call($method, $args)

{
if (method exists($this->thirdpartyShop, $method)) {
return call user func_array(
[
$this->thirdpartyShop,
$method
1,
$args
)5
}
}

The Reflection API

PHP’s Reflection API is to PHP what the java.lang.reflect package is to Java. It consists of built-in classes
for analyzing properties, methods, and classes. It’s similar in some respects to existing object functions,
such as get_class_vars(), but is more flexible and provides much greater detail. It’s also designed to work
with PHP’s object-oriented features, such as access control, interfaces, and abstract classes, in a way that the
older, more limited class functions are not.

119

http://dx.doi.org/10.1007/978-1-4842-1996-6_4

CHAPTER 5 © OBJECT TOOLS

Getting Started

The Reflection API can be used to examine more than just classes. For example, the ReflectionFunction
class provides information about a given function, and ReflectionExtension yields insight about an
extension compiled into the language. Table 5-1 lists some of the classes in the API.

Table 5-1. Some of the Classes in the Reflection API

Class Description
Reflection Provides a static export () method for summarizing class
information
ReflectionClass Class information and tools
ReflectionMethod Class method information and tools
ReflectionParameter Method argument information
ReflectionProperty Class property information
ReflectionFunction Function information and tools
ReflectionExtension PHP extension information
ReflectionException An error class
ReflectionZendExtension PHP Zend extension information

Between them, the classes in the Reflection API provide unprecedented runtime access to information
about the objects, functions, and extensions in your scripts.

The Reflection API's power and reach mean you should usually use it in preference to the class and
object functions. You will soon find it indispensable as a tool for testing classes. You might want to generate
class diagrams or documentation, for example, or you might want to save object information to a database,
examining an object’s accessor (getter and setter) methods to extract field names. Building a framework that
invokes methods in module classes according to a naming scheme is another use of Reflection.

Time to Roll up Your Sleeves

You have already encountered some functions for examining the attributes of classes. These are useful but
often limited. Here’s a tool that is up to the job. ReflectionClass provides methods that reveal information
about every aspect of a given class, whether it’s a user-defined or internal class. The constructor of
ReflectionClass accepts a class or interface name (or an object instance) as its sole argument:

// listing 05.34
$prodclass = new \ReflectionClass('popp\\cho4\\batcho2\\CdProduct');
\Reflection: :export($prodclass);

Once you've created a ReflectionClass object, you can use the Reflection utility class to dump
information about CdProduct. Reflection has a static export() method that formats and dumps the data

120

CHAPTER 5 © OBJECT TOOLS

managed by a Reflection object (that is, any instance of a class that implements the Reflector interface, to
be pedantic). Here’s an abridged extract from the output generated by a call to Reflection: :export():

Class [<user> class popp\cho4\batcho2\CdProduct extends popp\ch04\batcho2\ShopProduct] {
@@ /var/popp/src/cho4/batcho2/CdProduct.php 6-37

- Constants [2] {

Constant [integer AVAILABLE] { o }
Constant [integer OUT OF STOCK] { 1}

}

- Static properties [0] {
}

- Static methods [1] {

Method [<user, inherits popp\cho4\batch02\ShopProduct> static public method

getInstance] {

@@ /var/popp/src/cho4/batcho2/ShopProduct.php 93 - 130

- Parameters [2] {
Parameter #0 [<required>
Parameter #1 [<required>

}

integer $id]
PDO $pdo]

- Return [popp\cho4\batcho2\ShopProduct]

}
}

- Properties [3] {

Property [<default> private $playlLength]
Property [<default> public $status]
Property [<default> protected $price]

}

- Methods [11] {

Method [<user, overwrites popp\cho4\batcho2\ShopProduct, ctor> public method

construct] {

@@ /var/popp/src/cho4/batcho2/CdProduct.php 10 - 24

- Parameters [5] {
Parameter #0 [<required>
Parameter #1 [<required>
Parameter #2 [<required>
Parameter #3 [<required>
Parameter #4 [<required>

string $title]
string $firstName]
string $mainName]
float $price]
integer $playlength]

121

CHAPTER 5 © OBJECT TOOLS

Asyou can see, Reflection: :export() provides remarkable access to information about a class.
Reflection: :export() provides summary information about almost every aspect of CdProduct, including
the access control status of properties and methods, the arguments required by every method, and the
location of every method within the script document. Compare that with a more established debugging
function. The var_dump() function is a general-purpose tool for summarizing data. You must instantiate an
object before you can extract a summary, and even then, it provides nothing like the detail made available by
Reflection: :export():

// listing 05.35
$cd = new CdProduct("cd1", "bob", "bobbleson", 4, 50);
var_dump($cd);

Here's the output:

object(popp\cho4\batcho2\CdProduct)#17 (8) {
["playLength": "popp\cho4\batcho2\CdProduct" :private]=>
int(50)
["status"]=>
NULL
["title":"popp\cho4\batcho2\ShopProduct”:private]=>
string(3) "cd1"
["producerMainName" : "popp\cho4\batch02\ShopProduct":private]=>
string(9) "bobbleson"
["producerFirstName": "popp\cho4\batcho2\ShopProduct":private]=>
string(3) "bob"
["price":protected]=>

float(4)
["discount”: "popp\cho4\batcho2\ShopProduct":private]=>
int(0)
["id":"popp\cho4\batcho2\ShopProduct" :private]=>
int(0)

}

var_dump() and its cousin print_r() are fantastically convenient tools for exposing the data in your
scripts. For classes and functions, the Reflection API takes things to a whole new level, though.

Examining a Class

The Reflection: :export() method can provide a great deal of useful information for debugging, but we
can use the API in more specialized ways. Let’s work directly with the Reflection classes.
You've already seen how to instantiate a ReflectionClass object:

$prodclass = new \ReflectionClass('popp\\cho4\\batcho2\\CdProduct");

122

CHAPTER 5 © OBJECT TOOLS

Next, I will use the ReflectionClass object to investigate CdProduct within a script. What kind of class
is it? Can an instance be created? Here’s a function to answer these questions:

// listing 05.36

// class ClassInfo
public static function getData(\ReflectionClass $class)

{
$details = "";
$name = $class->getName();
if ($class->isUserDefined()) {
$details .= "$name is user defined\n";
if ($class->isInternal()) {
$details .= "$name is built-in\n";
}
if ($class->isInterface()) {
$details .= "$name is interface\n";
}
if ($class->isAbstract()) {
$details .= "$name is an abstract class\n";
}
if ($class->isFinal()) {
$details .= "$name is a final class\n";
if ($class->isInstantiable()) {
$details .= "$name can be instantiated\n";
} else {
$details .= "$name can not be instantiated\n";
}
if ($class->isCloneable()) {
$details .= "$name can be cloned\n";
} else {
$details .= "$name can not be cloned\n";
}
return $details;
}

// listing 05.37
$prodclass = new \ReflectionClass('popp\\cho4\\batcho2\\CdProduct");
print ClassInfo::getData($prodclass);

I create a ReflectionClass object, assigning it to a variable called $prodclass by passing the
CdProduct class name to ReflectionClass’s constructor. $prodclass is then passed to a method named
ClassInfo::classData() that demonstrates some of the methods that can be used to query a class.

The methods should be self-explanatory, but here’s a brief description of some of them:

e ReflectionClass::getName() returns the name of the class being examined.

e TheReflectionClass::isUserDefined() method returns true if the class has been
declared in PHP code, and ReflectionClass: :isInternal() yields true if the class
is built-in.

123

CHAPTER 5 © OBJECT TOOLS

e You can test whether a class is abstract with ReflectionClass: : isAbstract() and
whether it’s an interface with ReflectionClass: :isInterface().

e Ifyouwant to get an instance of the class, you can test the feasibility of that with Ref1
ectionClass::isInstantiable().

¢ You can check whether a class is cloneable with the
ReflectionClass::isCloneable() method.

e You can even examine a user-defined class’s source code. The ReflectionClass
object provides access to its class’s file name and to the start and finish lines of the
class in the file.

Here’s a quick-and-dirty method that uses ReflectionClass to access the source of a class:

// listing 05.38
class ReflectionUtil

{
public static function getClassSource(\ReflectionClass $class): string
{
$path = $class->getFileName();
$lines = file($path);
$from = $class->getStartLine();
$to = $class->getEndLine();
$len = $to - $from + 1;
return implode(array slice($lines, $from - 1, $len));
}
}

// listing 05.39
print ReflectionUtil::getClassSource(

new \ReflectionClass('popp\\cho4\\batcho2\\CdProduct")
)

ReflectionUtil is a simple class with a single static method, ReflectionUtil: :getClassSource().
That method takes a ReflectionClass object as its only argument and returns the referenced class’s source
code. ReflectionClass: :getFileName() provides the path to the class’s file as an absolute path, so the code
should be able to go right ahead and open it. file() obtains an array of all the lines in the file. ReflectionC
lass::getStartLine() provides the class’s start line; ReflectionClass: :getEndLine() finds the final line.
From there, it's simply a matter of using array_slice() to extract the lines of interest.

To keep things brief, this code omits error handling. In a real-world application, you'd want to check
arguments and result codes.

Examining Methods

Just as ReflectionClass is used to examine a class, a ReflectionMethod object examines a method.

You can acquire a ReflectionMethod in two ways. First, you can get an array of ReflectionMethod
objects from ReflectionClass: : getMethods (). Second, if you need to work with a specific method,
ReflectionClass: :getMethod() accepts a method name and returns the relevant ReflectionMethod object.

124

CHAPTER 5 © OBJECT TOOLS

Here, we use ReflectionClass: :getMethods () to put the ReflectionMethod class through its paces:

// listing 05.40
$prodclass = new \ReflectionClass('popp\\cho4\\batcho2\\CdProduct");
$methods = $prodclass->getMethods();

foreach ($methods as $method) {
print ClassInfo::methodData($method);
print "\n----\n";

}
// listing 05.41

// class ClassInfo
public static function methodData(\ReflectionMethod $method)

{
$details = "";
$name = $method->getName();
if ($method->isUserDefined()) {
$details .= "$name is user defined\n";

}
if ($method->isInternal()) {
$details .= "$name is built-in\n";

if ($method->isAbstract()) {
$details .= "$name is abstract\n";
}

if ($method->isPublic()) {
$details .= "$name is public\n";
}

if ($method->isProtected()) {
$details .= "$name is protected\n";
}

if ($method->isPrivate()) {
$details .= "$name is private\n";

if ($method->isStatic()) {
$details .= "$name is static\n";

}
if ($method->isFinal()) {
$details .= "$name is final\n";

if ($method->isConstructor()) {
$details .= "$name is the constructor\n";
}

if ($method->returnsReference()) {
$details .= "$name returns a reference (as opposed to a value)\n";
}

return $details;

125

CHAPTER 5 © OBJECT TOOLS

The code uses ReflectionClass: :getMethods () to get an array of ReflectionMethod objects and then
loops through the array, passing each object to methodData().

The names of the methods used in methodData () reflect their intent: the code checks whether the
method is user-defined, built-in, abstract, public, protected, static, or final. You can also check whether the
method is the constructor for its class and whether or not it returns a reference.

There’s one caveat: ReflectionMethod: :returnsReference() doesn’t return true if the tested method
simply returns an object, even though objects are passed and assigned by reference in PHP 5. Instead, Refle
ctionMethod: :returnsReference() returns true only if the method in question has been explicitly declared
to return a reference (by placing an ampersand character in front of the method name).

As you might expect, you can access a method’s source code using a technique similar to the one used
previously with ReflectionClass:

// listing 05.42

// class ReflectionUtil
public static function getMethodSource(\ReflectionMethod $method): string
{

$path = $method->getFileName();

$lines = @file($path);

$from = $method->getStartLine();

$to = $method->getEndLine();

$len = $to - $from + 1;

return implode(array slice($lines, $from - 1, $len));

}

// listing 05.43

$class = new \ReflectionClass('popp\\cho4\\batcho2\\CdProduct');
$method = $class->getMethod('getSummaryLine');

print ReflectionUtil::getMethodSource($method);

Because ReflectionMethod provides us with getFileName(), getStartLine(), and getEndLine()
methods, it’s a simple matter to extract the method’s source code.

Examining Method Arguments

Now that method signatures can constrain the types of object arguments, the ability to examine the
arguments declared in a method signature becomes immensely useful. The Reflection API provides the
ReflectionParameter class just for this purpose. To get a ReflectionParameter object, you need the help
of aReflectionMethod object. The ReflectionMethod: : getParameters() method returns an array of
ReflectionParameter objects.

ReflectionParameter can tell you the name of an argument and whether the variable is passed by
reference (that is, with a preceding ampersand in the method declaration). It can also tell you the class
required by argument hinting and whether the method will accept a null value for the argument.

Here are some of ReflectionParameter’s methods in action:

// listing 05.44
$class = new \ReflectionClass('popp\\cho4\\batcho2\\CdProduct');

$method = $class->getMethod("__construct");
$params = $method->getParameters();

126

CHAPTER 5 © OBJECT TOOLS

foreach ($params as $param) {
print ClassInfo::argData($param) . "\n";
}

// listing 05.45

// class ClassInfo
public function argData(\ReflectionParameter $arg)
{
$details = "";
$declaringclass = $arg->getDeclaringClass();
$name = $arg->getName();
$class = $arg->getClass();
$position = $arg->getPosition();
$details .= "\$$name has position $position\n";
if (! empty($class)) {
$classname = $class->getName();
$details .= "\$$name must be a $classname object\n";

}

if ($arg->isPassedByReference()) {
$details .= "\$$name is passed by reference\n";
}

if ($arg->isDefaultValueAvailable()) {
$def = $arg->getDefaultValue();
$details .= "\$$name has default: $def\n";

}

if ($arg->allowsNull()) {
$details .= "\$$name can be null\n";
}

return $details;

}

Using the ReflectionClass: :getMethod () method, the code acquires a ReflectionMethod object. It then
uses ReflectionMethod: :getParameters() to get an array of ReflectionParameter objects. The argData()
function uses the ReflectionParameter object it was passed to acquire information about the argument.

First, it gets the argument’s variable name with ReflectionParameter: :getName(). The ReflectionPa
rameter: :getClass() method returns a ReflectionClass object if a hint’s been provided. The code checks
whether the argument is a reference with isPassedByReference(); and finally, it looks for the availability of
a default value, which it then adds to the return string.

Using the Reflection API

With the basics of the Reflection API under your belt, you can now put the API to work.

Imagine that you're creating a class that calls Module objects dynamically. That is, it can accept plug-
ins written by third parties that can be slotted into the application without the need for any hard-coding. To
achieve this, you might define an execute() method in the Module interface or abstract base class, forcing
all child classes to define an implementation. You could allow the users of your system to list Module classes

127

CHAPTER 5 © OBJECT TOOLS

in an external XML configuration file. Your system can use this information to aggregate a number of Module
objects before calling execute() on each one.

What happens, however, if each Module requires different information to do its job? In that case, the
XML file can provide property keys and values for each Module, and the creator of each Module can provide
setter methods for each property name. Given that foundation, it’s up to your code to ensure that the correct
setter method is called for the correct property name.

Here’s some groundwork for the Module interface and a couple of implementing classes:

// listing 05.46
class Person

{
public $name;
public function _ construct(string $name)
{
$this->name = $name;
}
}

// listing 05.47
interface Module

{
}

// listing 05.48
class FtpModule implements Module

public function execute();

{
public function setHost($host)
{
print "FtpModule::setHost(): $host\n";
}
public function setUser($user)
{
print "FtpModule::setUser(): $user\n";
}
public function execute()
{
// do things
}
}

// listing 05.49
class PersonModule implements Module

{
public function setPerson(Person $person)
{
print "PersonModule::setPerson(): {$person->name}\n";
}

128

CHAPTER 5 © OBJECT TOOLS

public function execute()

{
}

// do things

Here, PersonModule and FtpModule both provide empty implementations of the execute () method.
Each class also implements setter methods that do nothing but report that they were invoked. The system
lays down the convention that all setter methods must expect a single argument: either a string or an object
that can be instantiated with a single string argument. The PersonModule: : setPerson() method expects a
Person object, so I include a Person class in my example.

To work with PersonModule and FtpModule, the next step is to create a ModuleRunner class. It will use
a multidimensional array indexed by module name to represent configuration information provided in the
XML file. Here’s that code:

// listing 05.50
class ModuleRunner
{
private $configData = [
"popp\\cho5\\batcho8\\PersonModule" => ['person’ => 'bob'],
"popp\\cho5\\batcho8\\FtpModule" =>
"host' => 'example.com',
'user' => 'anon’
]
I
private $modules = [];
/...

The ModuleRunner: : $configData property contains references to the two Module classes. For each
module element, the code maintains a subarray containing a set of properties. ModuleRunner’s init()
method is responsible for creating the correct Module objects, as shown here:

// listing 05.51

// class ModuleRunner
public function init()
{
$interface = new \ReflectionClass('popp\\cho5\\batcho8\\Module');
foreach ($this->configData as $modulename => $params) {
$module class = new \ReflectionClass($modulename);
if (! $module class->isSubclassOf($interface)) {
throw new Exception("unknown module type: $modulename");
}

$module = $module class->newInstance();

foreach ($module class->getMethods() as $method) {
$this->handleMethod($module, $method, $params);
// we cover handleMethod() in a future listing!

array_push($this->modules, $module);

129

CHAPTER 5 © OBJECT TOOLS

// listing 05.52
$test = new ModuleRunner();
$test->init();

The init() method loops through the ModuleRunner: : $configData array, and for each module
element, it attempts to create a ReflectionClass object. An exception is generated when ReflectionClass’s
constructor is invoked with the name of a nonexistent class, so in a real-world context, I would include more
error handling here. I use the ReflectionClass: :isSubclassOf() method to ensure that the module class
belongs to the Module type.

Before you can invoke the execute() method of each Module, an instance has to be created. That’s
the purpose of ReflectionClass: :newInstance(). That method accepts any number of arguments, which
it passes on to the relevant class’s constructor method. If all’s well, it returns an instance of the class (for
production code, be sure to code defensively: check that the constructor method for each Module object
doesn’t require arguments before creating an instance).

ReflectionClass: :getMethods () returns an array of all ReflectionMethod objects available for the
class. For each element in the array, the code invokes the ModuleRunner : :handleMethod () method. It then
passes it a Module instance, the ReflectionMethod object, and an array of properties to associate with the
Module. handleMethod() verifies and invokes the Module object’s setter methods:

// listing 05.53

// class ModuleRunner
public function handleMethod(Module $module, \ReflectionMethod $method, $params)

{
$name = $method->getName();

$args = $method->getParameters();

if (count($args) != 1 || substr($name, 0, 3) != "set") {
return false;
}

$property = strtolower(substr($name, 3));

if (! isset($params[$property])) {
return false;
}

$arg_class = $args[o0]->getClass();

if (empty($arg class)) {
$method->invoke($module, $params[$property]);
} else {
$method->invoke(
$module,
$arg class->newInstance($params[$property])

);
}

handleMethod() first checks that the method is a valid setter. In the code, a valid setter method must be
named setXXXX() and must declare one—and only one—argument.

130

CHAPTER 5 © OBJECT TOOLS

Assuming that the argument checks out, the code then extracts a property name from the method
name by removing set from the beginning of the method name and converting the resulting substring to
lowercase characters. That string is used to test the $params array argument. This array contains the user-
supplied properties that are to be associated with the Module object. If the $params array doesn’t contain the
property, the code gives up and returns false.

If the property name extracted from the module method matches an element in the $params array,

I can go ahead and invoke the correct setter method. To do that, the code must check the type of the first
(and only) required argument of the setter method. The ReflectionParameter: :getClass() method
provides this information. If the method returns an empty value, the setter expects a primitive of some kind;
otherwise, it expects an object.

To call the setter method, I need a new Reflection API method. ReflectionMethod: : invoke() requires
an object (or null for a static method) and any number of method arguments to pass on to the method it
represents. ReflectionMethod: : invoke() throws an exception if the provided object does not match its
method. I call this method in one of two ways. If the setter method doesn’t require an object argument, I call
ReflectionMethod: : invoke() with the user-supplied property string. If the method requires an object, use
the property string to instantiate an object of the correct type, which is then passed to the setter.

The example assumes that the required object can be instantiated with a single string argument to its
constructor. It’s best, of course, to check this before calling ReflectionClass: :newInstance().

By the time that the ModuleRunner: : init() method has run its course, the object has a store of Module
objects, all primed with data. The class can now be given a method to loop through the Module objects,
calling execute() on each one.

Summary

In this chapter, I covered some of the techniques and tools that you can use to manage your libraries and
classes. I explored PHP’s namespace feature. You saw that we can combine include paths, namespaces,
autoload, and the file system to provide flexible organization for classes.

We also examined PHP’s object and class functions, before taking things to the next level with the
powerful Reflection API. Finally, we used the Reflection classes to build a simple example that illustrates
one of the potential uses that Reflection has to offer.

131

CHAPTER 6

Objects and Design

Now that we have seen the mechanics of PHP’s object support in some detail, we will step back from the
details and consider how best to use the tools that we have encountered. In this chapter, I introduce you
to some of the issues surrounding objects and design. I will also look at the UML, a powerful graphical
language for describing object-oriented systems.

This chapter will cover the following topics:

e Design basics: What I mean by design, and how object-oriented design differs from
procedural code

e Class scope: How to decide what to include in a class
e Encapsulation: Hiding implementation and data behind a class’s interface

e Polymorphism: Using a common supertype to allow the transparent substitution of
specialized subtypes at runtime

e The UML: Using diagrams to describe object-oriented architectures

Defining Code Design

One sense of code design concerns the definition of a system: the determination of a system’s requirements,
scope, and objectives. What does the system need to do? For whom does it need to do it? What are the
outputs of the system? Do they meet the stated need? On a lower level, design can be taken to mean the
process by which you define the participants of a system and organize their relationships. This chapter is
concerned with the second sense: the definition and disposition of classes and objects.

So what is a participant? An object-oriented system is made up of classes. It is important to decide the
nature of these players in your system. Classes are made up, in part, of methods; so in defining your classes,
you must decide which methods belong together. As you will see, though, classes are often combined in
inheritance relationships to conform to common interfaces. It is these interfaces, or types, that should be
your first port of call in designing your system.

There are other relationships that you can define for your classes. You can create classes that are
composed of other types or that manage lists of other type instances. You can design classes that simply
use other objects. The potential for such relationships of composition or use is built into your classes (e.g.,
through the use of type declarations in method signatures), but the actual object relationships take place
at runtime, which can add flexibility to your design. You will see how to model these relationships in this
chapter, and we’ll explore them further throughout the book.

As part of the design process, you must decide when an operation should belong to a type and when
it should belong to another class used by the type. Everywhere you turn, you are presented with choices,
decisions that might lead to clarity and elegance or might mire you in compromise.

© Matt Zandstra 2016 133
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_6

CHAPTER 6 © OBJECTS AND DESIGN

In this chapter, I will examine some issues that might influence a few of these choices.

Object-Oriented and Procedural Programming

How does object-oriented design differ from the more traditional procedural code? It is tempting to say that
the primary distinction is that object-oriented code has objects in it. This is neither true nor useful. In PHP,
you will often find procedural code using objects. You may also come across classes that contain tracts of
procedural code. The presence of classes does not guarantee object-oriented design, even in a language
such as Java, which forces you to do most things inside a class.

One core difference between object-oriented and procedural code can be found in the way that
responsibility is distributed. Procedural code takes the form of a sequential series of commands and method
calls. The controlling code tends to take responsibility for handling differing conditions. This top-down
control can result in the development of duplications and dependencies across a project. Object-oriented
code tries to minimize these dependencies by moving responsibility for handling tasks away from client
code and toward the objects in the system.

In this section, I'll set up a simple problem and then analyze it in terms of both object-oriented and
procedural code to illustrate these points. My project is to build a quick tool for reading from and writing
to configuration files. In order to maintain focus on the structures of the code, I will omit implementation
details in these examples.

I'll begin with a procedural approach to this problem. To start with, I will read and write text in this
format:

key:value
I need only two functions for this purpose:
// listing 06.01
function readParams(string $source): array
$params = [];

// read text parameters from $source
return $params;

}
function writeParams(array $params, string $source)
{
// write text parameters to $source
}

The readParams function requires the name of a source file. It attempts to open it, and reads each line,
looking for key/value pairs. It builds up an associative array as it goes. Finally, it returns the array to the
controlling code. writeParams () accepts an associative array and the path to a source file. It loops through
the associative array, writing each key/value pair to the file. Here’s some client code that works with the
functions:

// listing 06.02

$file = _DIR__ . "/params.txt";
$params = [

134

CHAPTER 6 © OBJECTS AND DESIGN

"key1" => "val1",

"key2" => "val2",

"key3" => "val3",
I
writeParams($params, $file);
$output = readParams($file);
print_r($output);

This code is relatively compact and should be easy to maintain. The writeParams () function is called to
create param.txt and to write to it with something like this:

key1:vall
key2:val2
key3:val3

The readParams () function parses the same format.
In many projects, scope grows and evolves. Let’s fake this by introducing a new requirement. The code
must now also handle an XML structure that looks like this:

<params>
<param>
<key>my key</key>
<val>my val</val>
</param>
</params>

The parameter file should be read in XML mode if the parameter file ends in . xml. Although this is not
difficult to accommodate, it threatens to make my code much harder to maintain. I really have two options
at this stage. I can check the file extension in the controlling code, or I can test inside my read and write
functions. Here I go for the latter approach:

// listing 06.03

function readParams(string $source): array

{
$params = [];
if (preg match("/\.xml$/i", $source)) {
// read XML parameters from $source
} else {
// read text parameters from $source
}
return $params;
}
function writeParams(array $params, string $source)
{
if (preg match("/\.xml$/i", $source)) {
// write XML parameters to $source
} else {
// write text parameters to $source
}
}

135

CHAPTER 6 © OBJECTS AND DESIGN

Note lllustrative code always involves a difficult balancing act. It needs to be clear enough to make its
point, which often means sacrificing error checking and fitness for its ostensible purpose. In other words, the
example here is really intended to illustrate issues of design and duplication rather than the best way to parse
and write file data. For this reason, | omit implementation where it is not relevant to the issue at hand.

Asyou can see, I have had to use the test for the XML extension in each of the functions. It is this
repetition that might cause us problems down the line. If I were to be asked to include yet another parameter
format, I would need to remember to keep the readParams () and writeParams() functions in line with one
another.

Now I'll address the same problem with some simple classes. First, I create an abstract base class that
will define the interface for the type:

// listing 06.04

abstract class ParamHandler

{
protected $source;
protected $params = [];
public function _ construct(string $source)
{
$this->source = $source;
}
public function addParam(string $key, string $val)
{
$this->params[$key] = $val;
}
public function getAllParams(): array
{
return $this->params;
}
public static function getInstance(string $filename): ParamHandler
{
if (preg_match("/\.xml$/i", $filename)) {
return new XmlParamHandler($filename);
}
return new TextParamHandler($filename);
}
abstract public function write(): bool;
abstract public function read(): bool;
}

I define the addParam() method to allow the user to add parameters to the protected $params property
and getAllParams () to provide access to a copy of the array.

136

CHAPTER 6 © OBJECTS AND DESIGN

I also create a static getInstance() method that tests the file extension and returns a particular
subclass according to the results. Crucially, I define two abstract methods, read()and write(), ensuring that
any subclasses will support this interface.

Note Placing a static method for generating child objects in the parent class is convenient. Such a design
decision has its own consequences, however. The ParamHandler type is now essentially limited to working with
the concrete classes in this central conditional statement. What happens if you need to handle another format?
Of course, if you are the maintainer of ParamHandler, you can always amend the getInstance() method.

If you are a client coder, however, changing this library class may not be so easy (in fact, changing it won’t
be hard, but you face the prospect of having to reapply your patch every time you reinstall the package that
provides it). | will discuss issues of object creation in Chapter 9.

Now, I'll define the subclasses, once again omitting the details of implementation to keep the example
clean:

// listing 06.05

class XmlParamHandler extends ParamHandler

{
public function write(): bool
{
// write XML
// using $this->params
}
public function read(): bool
{
// read XML
// and populate $this->params
}
}

// listing 06.06
class TextParamHandler extends ParamHandler

public function write(): bool

{
// write text
// using $this->params
}
public function read(): bool
{
// read text
// and populate $this->params
}

137

http://dx.doi.org/10.1007/978-1-4842-1996-6_9

CHAPTER 6 © OBJECTS AND DESIGN

These classes simply provide implementations of the write() and read() methods. Each class will
write and read according to the appropriate format.

Client code will write to both text and XML formats entirely transparently, according to the file
extension:

// listing 06.07

$test = ParamHandler::getInstance(_ DIR . "/params.xml");
$test->addParam("key1", "vali");

$test->addParam("key2", "val2");

$test->addParam("key3", "val3");

$test->write(); // writing in XML format

We can also read from either file format:

// listing 06.08

$test = ParamHandler::getInstance(_ DIR . "/params.txt");
$test->read(); // reading in text format

$params = $test->getAllParams();

print_r($params);

So, what can we learn from these two approaches?

Responsibility

The controlling code in the procedural example takes responsibility for deciding about format—not once,
but twice. The conditional code is tidied away into functions, certainly, but this merely disguises the fact of a
single flow, making decisions as it goes. Calls to readParams () and to writeParams () take place in different
contexts, so we are forced to repeat the file extension test in each function (or to perform variations on this
test).

In the object-oriented version, this choice about file format is made in the static getInstance()
method, which tests the file extension only once, serving up the correct subclass. The client code takes
no responsibility for implementation. It uses the provided object with no knowledge of, or interest in, the
particular subclass it belongs to. It knows only that it is working with a ParamHandler object, and that it will
supportwrite() and read(). While the procedural code busies itself about details, the object-oriented code
works only with an interface, unconcerned about the details of implementation. Because responsibility for
implementation lies with the objects and not with the client code, it would be easy to switch in support for
new formats transparently.

Cohesion

Cohesion is the extent to which proximate procedures are related to one another. Ideally, you should create
components that share a clear responsibility. If your code spreads related routines widely, you will find them
harder to maintain as you have to hunt around to make changes.

Our ParamHandler classes collect related procedures into a common context. The methods for working
with XML share a context in which they can share data and where changes to one method can easily be
reflected in another if necessary (e.g., if you needed to change an XML element name). The ParamHandler
classes can therefore be said to have high cohesion.

138

CHAPTER 6 © OBJECTS AND DESIGN

The procedural example, on the other hand, separates related procedures. The code for working with
XML is spread across functions.

Coupling

Tight coupling occurs when discrete parts of a system’s code are tightly bound up with one another so that a
change in one part necessitates changes in the others. Tight coupling is by no means unique to procedural
code, though the sequential nature of such code makes it prone to the problem.

You can see this kind of coupling in the procedural example. The writeParams() and readParams ()
functions run the same test on a file extension to determine how they should work with data. Any change
in logic you make to one will have to be implemented in the other. If you were to add a new format, for
example, you would have to bring the functions into line with one another, so that they both implement a
new file extension test in the same way. This problem can only get worse as you add new parameter-related
functions.

The object-oriented example decouples the individual subclasses from one another and from the
client code. If you were required to add a new parameter format, you could simply create a new subclass,
amending a single test in the static getInstance() method.

Orthogonality

The killer combination of components with tightly defined responsibilities that are also independent
from the wider system is sometimes referred to as orthogonality. Andrew Hunt and David Thomas discuss
this subject in their book, The Pragmatic Programmer: From Journeyman to Master (Addison-Wesley
Professional, 1999).

Orthogonality, it is argued, promotes reuse in that components can be plugged into new systems
without needing any special configuration. Such components will have clear inputs and outputs,
independent of any wider context. Orthogonal code makes change easier because the impact of altering
an implementation will be localized to the component being altered. Finally, orthogonal code is safer. The
effects of bugs should be limited in scope. An error in highly interdependent code can easily cause knock-on
effects in the wider system.

There is nothing automatic about loose coupling and high cohesion in a class context. We could, after
all, embed our entire procedural example into one misguided class. So how can we achieve this balance in
our code? I usually start by considering the classes that should live in my system.

Choosing Your Classes

It can be surprisingly difficult to define the boundaries of your classes, especially as they will evolve with any
system that you build.

It can seem straightforward when you are modeling the real world. Object-oriented systems often
feature software representations of real things—Person, Invoice, and Shop classes abound. This would seem
to suggest that defining a class is a matter of finding the things in your system and then giving them agency
through methods. This is not a bad starting point, but it does have its dangers. If you see a class as a noun,

a subject for any number of verbs, then you may find it bloating as ongoing development and requirement
changes call for it to do more and more things.

Let’s consider the ShopProduct example that we created in Chapter 3. Our system exists to offer
products to a customer, so defining a ShopProduct class is an obvious choice. But is that the only decision we
need to make? We provide methods such as getTitle() and getPrice() for accessing product data. When
we are asked to provide a mechanism for outputting summary information for invoices and delivery notes, it
seems to make sense to define a write() method. When the client asks us to provide the product summaries

139

http://dx.doi.org/10.1007/978-1-4842-1996-6_3

CHAPTER 6 © OBJECTS AND DESIGN

in different formats, we look again at our class. We duly create writeXML() and writeHTML() methods
in addition to the write() method. Or we add conditional code to write() to output different formats,
according to an option flag.

Either way, the problem here is that the ShopProduct class is now trying to do too much. It is struggling
to manage strategies for display, as well as for managing product data.

How should you think about defining classes? The best approach is to think of a class as having
a primary responsibility and to make that responsibility as singular and focused as possible. Put the
responsibility into words. It has been said that you should be able to describe a class’s responsibility in
25 words or less, rarely using the words “and” or “or” If your sentence gets too long or mired in clauses, it
is probably time to consider defining new classes along the lines of some of the responsibilities you have
described.

So, ShopProduct classes are responsible for managing product data. If we add methods for writing to
different formats, we begin to add a new area of responsibility: product display. As you saw in Chapter 3,
we actually defined two types based on these separate responsibilities. The ShopProduct type remained
responsible for product data, and the ShopProductWriter type took on responsibility for displaying product
information. Individual subclasses refined these responsibilities.

Note Very few design rules are entirely inflexible. You will sometimes see code for saving object data in
an otherwise unrelated class, for example. Although this would seem to violate the rule that a class should have
a singular responsibility, it can be the most convenient place for the functionality to live because a method has
to have full access to an instance’s fields. Using local methods for persistence can also save us from creating
a parallel hierarchy of persistence classes mirroring our savable classes, and thereby introducing unavoidable
coupling. We deal with other strategies for object persistence in Chapter 12. Avoid religious adherence to design
rules; they are not a substitute for analyzing the problem before you. Try to remain alive to the reasoning behind
the rule, and emphasize that over the rule itself.

Polymorphism

Polymorphism, or class switching, is a common feature of object-oriented systems. You have encountered it
several times already in this book.

Polymorphism is the maintenance of multiple implementations behind a common interface. This
sounds complicated, but in fact, it should be very familiar to you by now. The need for polymorphism is
often signaled by the presence of extensive conditional statements in your code.

When I first created the ShopProduct class in Chapter 3, I experimented with a single class which
managed functionality for books and CDs, in addition to generic products. In order to provide summary
information, I relied on a conditional statement:

// listing 03.31

public function getSummaryLine()
{
$base = "{$this->title} ({$this->producerMainName}, ";
$base .= "{$this->producerFirstName})";
if ($this->type == "book') {
$base .= ": page count - {$this->numPages}";
} elseif ($this->type == 'cd") {

140

http://dx.doi.org/10.1007/978-1-4842-1996-6_3
http://dx.doi.org/10.1007/978-1-4842-1996-6_12
http://dx.doi.org/10.1007/978-1-4842-1996-6_3

CHAPTER 6 © OBJECTS AND DESIGN

$base .= ": playing time - {$this->playLength}";
}

return $base;

}

These statements suggested the shape for the two subclasses: CdProduct and BookProduct.

By the same token, the conditional statements in my procedural parameter example contained the
seeds of the object-oriented structure I finally arrived at. I repeated the same condition in two parts of the
script:

// listing 06.03

function readParams(string $source): array

{
$params = [];
if (preg_match("/\.xml$/i", $source)) {
// read XML parameters from $source
} else {
// read text parameters from $source
}
return $params;
}
function writeParams(array $params, string $source)
{
if (preg match("/\.xml$/i", $source)) {
// write XML parameters to $source
} else {
// write text parameters to $source
}
}

Each clause suggested one of the subclasses I finally produced: Xm1ParamHandler and
TextParamHandler. These extended the abstract base class ParamHandler’swrite() and read() methods:

// listing 06.09

// could return XmlParamHandler or TextParamHandler

$test = ParamHandler::getInstance($file);

$test->read(); // could be XmlParamHandler::read() or TextParamHandler::read()
$test->addParam("newkey1", "newvali");

$test->write(); // could be XmlParamHandler::write() or TextParamHandler::write()

It is important to note that polymorphism doesn’t banish conditionals. Methods such as
ParamHandler: :getInstance() will often determine which objects to return based on switch or if
statements. These tend to centralize the conditional code into one place, though.

Asyou have seen, PHP enforces the interfaces defined by abstract classes. This is useful because we
can be sure that a concrete child class will support exactly the same method signatures as those defined by
an abstract parent. This includes type declarations and access controls. Client code can, therefore, treat all
children of a common superclass interchangeably (as long it only relies on only functionality defined in the
parent).

141

CHAPTER 6 © OBJECTS AND DESIGN

Encapsulation

Encapsulation simply means the hiding of data and functionality from a client. And once again, it is a key
object-oriented concept.

On the simplest level, you encapsulate data by declaring properties private or protected. By hiding a
property from client code, you enforce an interface and prevent the accidental corruption of an object’s data.

Polymorphism illustrates another kind of encapsulation. By placing different implementations behind
a common interface, you hide these underlying strategies from the client. This means that any changes that
are made behind this interface are transparent to the wider system. You can add new classes or change the
code in a class without causing errors. The interface is what matters, not the mechanisms working beneath
it. The more independent these mechanisms are kept, the less chance that changes or repairs will have a
knock-on effect in your projects.

Encapsulation is, in some ways, the key to object-oriented programming. Your objective should be to make
each part as independent as possible from its peers. Classes and methods should receive as much information as
is necessary to perform their allotted tasks, which should be limited in scope and clearly identified.

The introduction of the private, protected, and public keywords have made encapsulation easier.
Encapsulation is also a state of mind, though. PHP 4 provided no formal support for hiding data. Privacy had
to be signaled using documentation and naming conventions. An underscore, for example, is a common way
of signaling a private property:

var $_touchezpas;

Code had to be checked closely, of course, because privacy was not strictly enforced. Interestingly,
though, errors were rare because the structure and style of the code made it pretty clear which properties
wanted to be left alone.

By the same token, even after PHP 5 arrived, we could break the rules and discover the exact subtype of
an object that we were using in a class-switching context simply by using the instanceof operator:

function workWithProducts(ShopProduct $prod)

if ($prod instanceof CdProduct) {
// do cd thing

} else if ($prod instanceof BookProduct) {
// do book thing

}

}

You may have a very good reason to do this, but, in general, it carries a slightly uncertain odor. By querying
the specific subtype in the example, I am setting up a dependency. Although the specifics of the subtype were
hidden by polymorphism, it would have been possible to have changed the ShopProduct inheritance hierarchy
entirely with no ill effects. This code ends that. Now, if I need to rationalize the CdProduct and BookProduct
classes, I may create unexpected side effects in the workWithProducts () method.

There are two lessons to take away from this example. First, encapsulation helps you to create
orthogonal code. Second, the extent to which encapsulation is enforceable is beside the point.
Encapsulation is a technique that should be observed equally by classes and their clients.

Forget How to Do It

If you are like me, the mention of a problem will set your mind racing, looking for mechanisms that might
provide a solution. You might select functions that will address an issue, revisit clever regular expressions,
track down Composer packages. You probably have some pasteable code in an old project that does

142

CHAPTER 6 © OBJECTS AND DESIGN

something somewhat similar. At the design stage, you can profit by setting all that aside for a while. Empty
your head of procedures and mechanisms.

Think only about the key participants of your system: the types it will need and their interfaces.

Of course, your knowledge of process will inform your thinking. A class that opens a file will need a
path, database code will need to manage table names and passwords, and so on. Let the structures

and relationships in your code lead you, though. You will find that the implementation falls into place
easily behind a well-defined interface. You then have the flexibility to switch out, improve, or extend an
implementation should you need to, without affecting the wider system.

In order to emphasize interface, think in terms of abstract base classes rather than concrete children.
In my parameter-fetching code, for example, the interface is the most important aspect of the design. I
want a type that reads and writes name/value pairs. It is this responsibility that is important about the type,
not the actual persistence medium or the means of storing and retrieving data. I design the system around
the abstract ParamHandler class, and only add in the concrete strategies for actually reading and writing
parameters later on. In this way, I build both polymorphism and encapsulation into my system from the
start. The structure lends itself to class switching.

Having said that, of course, I knew from the start that there would be text and XML implementations of
ParamHandler, and there is no question that this influenced my interface. There is always a certain amount
of mental juggling to do when designing interfaces.

In Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley Professional,
1995), the Gang of Four summed up this principle with the phrase, “Program to an interface, not an
implementation.” It is a good one to add to your coder’s handbook.

Four Signposts

Very few people get it absolutely right at the design stage. Most of us amend our code as requirements
change or as we gain a deeper understanding of the nature of the problem we are addressing.

As you amend your code, it can easily drift beyond your control. A method is added here and a new
class there, and gradually your system begins to decay. As you have seen already, your code can point the
way to its own improvement. These pointers in code are sometimes referred to as code smells—that is,
features in code that may suggest particular fixes or at least call you to look again at your design. In this
section, I distill some of the points already made into four signs that you should watch out for as you code.

Code Duplication

Duplication is one of the great evils in code. If you get a strange sense of déja vu as you write a routine,
chances are you have a problem.

Take a look at the instances of repetition in your system. Perhaps they belong together. Duplication
generally means tight coupling. If you change something fundamental about one routine, will the similar
routines need amendment? If this is the case, they probably belong in the same class.

The Class Who Knew Too Much

It can be a pain passing parameters around from method to method. Why not simply reduce the pain by
using a global variable? With a global, everyone can get at the data.

Global variables have their place, but they do need to be viewed with some level of suspicion. That’s
quite a high level of suspicion, by the way. By using a global variable, or by giving a class any kind of
knowledge about its wider domain, you anchor it into its context, making it less reusable and dependent
on code beyond its control. Remember, you want to decouple your classes and routines and not create
interdependence. Try to limit a class’s knowledge of its context. I will look at some strategies for doing this
later in the book.

143

CHAPTER 6 © OBJECTS AND DESIGN

The Jack of All Trades

Is your class trying to do too many things at once? If so, see if you can list the responsibilities of the class. You
may find that one of them will form the basis of a good class itself.

Leaving an overzealous class unchanged can cause particular problems if you create subclasses. Which
responsibility are you extending with the subclass? What would you do if you needed a subclass for more
than one responsibility? You are likely to end up with too many subclasses or an over-reliance on conditional
code.

Conditional Statements

You will use if and switch statements with perfectly good reason throughout your projects. Sometimes,
though, such structures can be a cry for polymorphism.

If you find that you are testing for certain conditions frequently within a class, especially if you find
these tests mirrored across more than one method, this could be a sign that your one class should be two or
more. See whether the structure of the conditional code suggests responsibilities that could be expressed
in classes. The new classes should implement a shared abstract base class. Chances are that you will then
have to work out how to pass the right class to client code. I will cover some patterns for creating objects in
Chapter 9.

The UML

So far in this book, I have let the code speak for itself, and I have used short examples to illustrate concepts
such as inheritance and polymorphism.

This is useful because PHP is a common currency here: it’s a language we have in common, if you have
read this far. As our examples grow in size and complexity, though, using code alone to illustrate the broad
sweep of design becomes somewhat absurd. It is hard to see an overview in a few lines of code.

UML stands for Unified Modeling Language. The initials are correctly used with the definite article. This
isn’t just a unified modeling language, it is the Unified Modeling Language.

Perhaps this magisterial tone derives from the circumstances of the language’s forging. According to
Martin Fowler (UML Distilled, Addison-Wesley Professional, 1999), the UML emerged as a standard only
after long years of intellectual and bureaucratic sparring among the great and good of the object-oriented
design community.

The result of this struggle is a powerful graphical syntax for describing object-oriented systems. We will
only scratch the surface in this section, but you will soon find that a little UML (sorry, a little of the UML)
goes a long way.

Class diagrams in particular can describe structures and patterns so that their meaning shines through.
This luminous clarity is often harder to find in code fragments and bullet points.

Class Diagrams

Although class diagrams are only one aspect of the UML, they are perhaps the most ubiquitous. Because
they are particularly useful for describing object-oriented relationships, I will primarily use these in this
book.

Representing Classes

As you might expect, classes are the main constituents of class diagrams. A class is represented by a named
box (see Figure 6-1).

144

http://dx.doi.org/10.1007/978-1-4842-1996-6_9

CHAPTER 6 © OBJECTS AND DESIGN

ShopProduct

Figure 6-1. A class

The class is divided into three sections, with the name displayed in the first. These dividing lines are
optional when we present no more information than the class name. In designing a class diagram, we may
find that the level of detail in Figure 6-1 is enough for some classes. We are not obligated to represent every
field and method, or even every class in a class diagram.

Abstract classes are represented either by italicizing the class name (see Figure 6-2) or by adding
{abstract} to the class name (see Figure 6-3). The first method is the more common of the two, but the
second is more useful when you are making notes.

ShopProductWriter

Figure 6-2. An abstract class

ShopProductWriter
{abstract}

Figure 6-3. An abstract class defined using a constraint

Note The {abstract} syntax is an example of a constraint. Constraints are used in class diagrams to
describe the way in which specific elements should be used. There is no special structure for the text between
the braces; it should simply provide a short clarification of any conditions that may apply to the element.

Interfaces are defined in the same way as classes, except that they must include a stereotype (that is, an
extension to the UML), as shown in Figure 6-4.

<<interface>>

Chargeable

Figure 6-4. An interface

145

CHAPTER 6 © OBJECTS AND DESIGN

Attributes

Broadly speaking, attributes describe a class’s properties. Attributes are listed in the section directly beneath
the class name (see Figure 6-5).

ShopProduct

#price: int = 0

Figure 6-5. An attribute

Let’s take a close look at the attribute in the example. The initial symbol represents the level of visibility,
or access control, for the attribute. Table 6-1 shows the three symbols available.

Table 6-1. Visibility Symbols

Symbol Visibility Explanation

+ Public Available to all code
- Private Available to the current class only
Protected Available to the current class and its subclasses only

The visibility symbol is followed by the name of the attribute. In this case, I am describing the

ShopProduct: : $price property. A colon is used to separate the attribute name from its type (and optionally,
its default value).

Once again, you need only include as much detail as is necessary for clarity.

Operations

Operations describe methods; or, more properly, they describe the calls that can be made on an instance of a
class. Figure 6-6 shows two operations in the ShopProduct class.

ShopProduct

#price: int = 0

+setDiscount (amount:int)
+getTitle(): String

Figure 6-6. Operations

Asyou can see, operations use a similar syntax to that used by attributes. The visibility symbol precedes
the method name. A list of parameters is enclosed in parentheses. The method’s return type, if any, is
delineated by a colon. Parameters are separated by commas and follow the attribute syntax, with the
attribute name separated from its type by a colon.

146

CHAPTER 6 © OBJECTS AND DESIGN

As you might expect, this syntax is relatively flexible. You can omit the visibility flag and the return type.
Parameters are often represented by their type alone, as the argument name is not usually significant.

Describing Inheritance and Implementation

The UML describes the inheritance relationship as generalization. This relationship is signified by a line
leading from the subclass to its parent. The line is tipped with an empty closed arrow.
Figure 6-7 shows the relationship between the ShopProduct class and its child classes.

ShopProduct

CdProduct

BookProduct

Figure 6-7. Describing inheritance

The UML describes the relationship between an interface and the classes that implement it as
realization. So, if the ShopProduct class were to implement the Chargeable interface, we could add it to our
class diagram, as in Figure 6-8.

ShopProductf-------- -[>

<<interface>>

Chargeable

I
CdProduct

BookProduct

Figure 6-8. Describing interface implementation

Associations

Inheritance is only one of a number of relationships in an object-oriented system. An association occurs
when a class property is declared to hold a reference to an instance (or instances) of another class.
In Figure 6-9, we model two classes and create an association between them.

Teacher

Pupil

Figure 6-9. A class association

147

CHAPTER 6 © OBJECTS AND DESIGN

At this stage, we are vague about the nature of this relationship. We have only specified that a Teacher object
will have a reference to one or more Pupil objects, or vice versa. This relationship may or may not be reciprocal.

You can use arrows to describe the direction of the association. If the Teacher class has an instance of
the Pupil class but not the other way round, then you should make your association an arrow leading from
the Teacher to the Pupil class. This association, which is called unidirectional, is shown in Figure 6-10.

Teacher Pupil

Figure 6-10. A unidirectional association

If each class has a reference to the other, you can use a double-headed arrow to describe a bidirectional
relationship, as in Figure 6-11).

Teacher Pupil

Figure 6-11. A bidirectional association

You can also specify the number of instances of a class that are referenced by another in an association.
You do this by placing a number or range beside each class. You can also use an asterisk (*) to stand for any
number. In Figure 6-12, there can be one Teacher object and zero or more Pupil objects.

1 *

Teacher Pupil

Figure 6-12. Defining multiplicity for an association

In Figure 6-13, there can be one Teacher object and between five and ten Pupil objects in the association.

1

Teacher

5..10

Pupil

Figure 6-13. Defining multiplicity for an association

148

CHAPTER 6 © OBJECTS AND DESIGN

Aggregation and Composition

Aggregation and composition are similar to association. All describe a situation in which a class holds a
permanent reference to one or more instances of another. With aggregation and composition, though, the
referenced instances form an intrinsic part of the referring object.

In the case of aggregation, the contained objects are a core part of the container, but they can also be
contained by other objects at the same time. The aggregation relationship is illustrated by a line that begins
with an unfilled diamond.

In Figure 6-14, I define two classes: SchoolClass and Pupil. The SchoolClass class aggregates Pupil.

Pupils make up a class, but the same Pupil object can be referred to by different SchoolClass instances
at the same time. If I were to dissolve a school class, I would not necessarily delete the pupil, who may attend
other classes.

SchoolClass

Pupil

Figure 6-14. Aggregation

Composition represents an even stronger relationship than this. In composition, the contained object
can be referenced by its container only. It should be deleted when the container is deleted. Composition
relationships are depicted in the same way as aggregation relationships, except that the diamond should be
filled (see Figure 6-15).

149

CHAPTER 6 © OBJECTS AND DESIGN

Person

SocialSecurityData

Figure 6-15. Composition

A Person class maintains a reference to a SocialSecurityData object. The contained instance can

belong only to the containing Person object.

Describing Use

The use relationship is described as a dependency in the UML. It is the most transient of the relationships
discussed in this section because it does not describe a permanent link between classes.

A used class may be passed as an argument or acquired as a result of a method call.

The Report class in Figure 6-16 uses a ShopProductWriter object. The use relationship is shown by
the broken line and open arrow that connects the two. It does not, however, maintain this reference as a
property in the same way that a ShopProductWriter object maintains an array of ShopProduct objects.

Report
v *
ShopProductWriter 1 ShopProduct
+addProduct()
[| [|
XmlWriter TextWriter CdProduct BookProduct

Figure 6-16. A dependency relationship

150

CHAPTER 6 © OBJECTS AND DESIGN

Using Notes

Class diagrams can capture the structure of a system, but they provide no sense of process. Figure 6-

16 tells us about the classes in our system. From Figure 6-16, you know that a Report object uses a
ShopProducthriter, but you don’t know the mechanics of this. In Figure 6-17, I use a note to clarify things
somewhat.

Report $writer->addProducts($products);
$writer->write();
R [...

- ShopProduct

[y

ShopProductWriter

+addProduct()

1

| | | |
XmlIWriter TextWriter CdProduct BookProduct

Figure 6-17. Using a note to clarify a dependency

Asyou can see, a note consists of a box with a folded corner. It will often contain scraps of pseudo-code.

This clarifies Figure 6-16; you can now see that the Report object uses a ShopProductWriter to output
product data. This is hardly a revelation, but use relationships are not always so obvious. In some cases, even
a note might not provide enough information. Luckily, you can model the interactions of objects in your
system, as well as the structure of your classes.

Sequence Diagrams

A sequence diagram is object-based rather than class-based. It is used to model a process in a system step-
by-step.

Let’s build up a simple diagram, modeling the means by which a Report object writes product data. A
sequence diagram presents the participants of a system from left to right (see Figure 6-18).

Report ProductStore ShopProductWriter ShopProduct

Figure 6-18. Objects in a sequence diagram

I have labeled my objects with class names alone. If had more than one instance of the same class
working independently in my diagram, I would include an object name using the format, label:class (e.g.,
producti:ShopProduct).

You show the lifetime of the process you are modeling from top to bottom, as in Figure 6-19.

151

CHAPTER 6 © OBJECTS AND DESIGN

Report ProductStore ShopProductWriter ShopProduct

-------------------------------.|:|-----
F-----------

tmmmmmmm e

T
1
1
1
'

Figure 6-19. Object lifelines in a sequence diagram

The vertical broken lines represent the lifetime of the objects in the system. The larger boxes that follow
the lifelines represent the focus of a process. If you read Figure 6-19 from top to bottom, you can see how
the process moves among objects in the system. This is hard to read without showing the messages that are
passed between the objects. I add these in Figure 6-20.

Report ProductStore ShopProductWriter ShopProduct
1 i H 1
-l-getProducts(): 1 !
—— i :
1 1
1 1
addProducts() : ;
> i
1
1
!
write() o * [for each ShopProduct] getSummaryLine()
> >t

-
1
1
1

LT R |

Figure 6-20. The complete sequence diagram

152

CHAPTER 6 © OBJECTS AND DESIGN

The arrows represent the messages sent from one object to another. Return values are often left
implicit (although they can be represented by a broken line, passing from the invoked object to the message
originator). Each message is labeled using the relevant method call. You can be quite flexible with your
labeling, although there is some syntax. Square brackets represent a condition:

[okToPrint]
write()

This snippet means that the write() invocation should only be made if the correct condition is met. An
asterisk is used to indicate a repetition; optionally, further clarification can be in square brackets:

*[for each ShopProduct]
write()

You can interpret Figure 6-20 from top to bottom. First, a Report object acquires a list of ShopProduct
objects from a ProductStore object. It passes these to a ShopProductWriter object, which stores
references to them (though we can only infer this from the diagram). The ShopProductWriter object calls
ShopProduct: :getSummaryLine() for every ShopProduct object it references, adding the result to its output.
Asyou can see, sequence diagrams can model processes, freezing slices of dynamic interaction and
presenting them with surprising clarity.

Note Look at Figures 6-16 and 6-20. Notice how the class diagram illustrates polymorphism, showing the
classes derived from ShopProductWriter and ShopProduct. Now notice how this detail becomes transparent
when we model the communication among objects. Where possible, we want objects to work with the most
general types available, so that we can hide the details of implementation.

Summary

In this chapter, I went beyond the nuts and bolts of object-oriented programming to look at some key design
issues. I examined features such as encapsulation, loose coupling, and cohesion that are essential aspects of
a flexible and reusable object-oriented system. I went on to look at the UML, laying groundwork that will be
essential in working with patterns later in the book.

153

PART Il

Patterns

CHAPTER 7

What Are Design Patterns? Why
Use Them?

Most problems we encounter as programmers have been handled time and again by others in our
community. Design patterns can provide us with the means to mine that wisdom. Once a pattern becomes
a common currency, it enriches our language, making it easy to share design ideas and their consequences.
Design patterns simply distill common problems, define tested solutions, and describe likely outcomes. Many
books and articles focus on the details of computer languages, such as the available functions, classes and
methods, and so on. Pattern catalogs concentrate instead on how you can move on from these basics (the
“what”) to an understanding of the problems and potential solutions in your projects (the “why” and “how”).
In this chapter, I introduce you to design patterns and look at some of the reasons for their popularity.
This chapter will cover the following:

e Pattern basics: What are design patterns?
e Pattern structure: What are the key elements of a design pattern?

e Pattern benefits: Why are patterns worth your time?

What Are Design Patterns?

In the world of software, a pattern is a tangible manifestation of an organization’s tribal
memory.

—Grady Booch in Core J2EE Patterns
[A pattern is] a solution to a problem in a context.

—The Gang of Four, Design Patterns: Elements of Reusable Object-Oriented Software

As these quotations imply, a design pattern is a problem analyzed with good practice for its solution
explained.

Problems tend to recur, and as web programmers we must solve them time and time again. How
should we handle an incoming request? How can we translate this data into instructions for our system?
How should we acquire data? Present results? Over time, we answer these questions with a greater or lesser
degree of elegance and evolve an informal set of techniques that we use and reuse in our projects. These
techniques are patterns of design.

© Matt Zandstra 2016 157
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_7

CHAPTER 7 © WHAT ARE DESIGN PATTERNS? WHY USE THEM?

Design patterns inscribe and formalize these problems and solutions, making hard-won experience
available to the wider programming community. Patterns are (or should be) essentially bottom-up and not
top-down. They are rooted in practice and not theory. That is not to say that there isn’t a strong theoretical
element to design patterns (as we will see in the next chapter), but patterns are based on real-world
techniques used by real programmers. Renowned pattern-hatcher Martin Fowler says that he discovers
patterns, he does not invent them. For this reason, many patterns will engender a sense of déja vu as you
recognize techniques you have used yourself.

A catalog of patterns is not a cookbook. Recipes can be followed slavishly; code can be copied and
slotted into a project with minor changes. You do not always need even to understand all the code used in a
recipe. Design patterns inscribe approaches to particular problems. The details of implementation may vary
enormously according to the wider context. This context might include the programming language you are
using, the nature of your application, the size of your project, and the specifics of the problem.

Let’s say, for example, that your project requires that you create a templating system. Given the name of
a template file, you must parse it and build a tree of objects to represent the tags you encounter.

You start off with a default parser that scans the text for trigger tokens. When it finds a match, it hands
off responsibility for the hunt to another parser object, which is specialized for reading the internals of tags.
This continues examining template data until it either fails, finishes, or finds another trigger. If it finds a
trigger, it, too, must hand off responsibility to a specialist—perhaps an argument parser. Collectively, these
components form what is known as a recursive descent parser.

So these are your participants: aMainParser, a TagParser, and an ArgumentParser. You create a
ParserFactory class to create and return these objects.

Of course, nothing is easy, and you're informed late in the game that you must support more than
one syntax in your templates. Now, you need to create a parallel set of parsers according to syntax: an
OtherTagParser, an OtherArgumentParser, and so on.

This is your problem: you need to generate a different set of objects according to the circumstance, and you
want this to be more or less transparent to other components in the system. It just so happens that the Gang of
Four define the following problem in their book’s summary page for the pattern Abstract Factory, “Provide an
interface for creating families of related or dependent objects without specifying their concrete classes.”

That fits nicely. It is the nature of our problem that determines and shapes our use of this pattern. There is
nothing cut and paste about the solution either, as you can see in Chapter 9, in which I cover Abstract Factory.

The very act of naming a pattern is valuable; it contributes to the kind of common vocabulary that has
arisen naturally over the years in older crafts and professions. Such shorthand greatly aids collaborative
design as alternative approaches and their various consequences are weighed and tested. When you discuss
your alternative parser families, for example, you can simply tell colleagues that the system creates each
set of objects using the Abstract Factory pattern. They will nod sagely, either immediately enlightened or
making a mental note to look it up later. The point is that this bundle of concepts and consequences has a
handle, which makes for a useful shorthand, as I'll illustrate later in this chapter.

Finally, it is illegal, according to international law, to write about patterns without quoting Christopher
Alexander, an architecture academic whose work heavily influenced the original object-oriented pattern
advocates. He states in A Pattern Language (Oxford University Press, 1977):

Each pattern describes a problem which occurs over and over again in our environment,
and then describes the core of the solution to that problem, in such a way that you can use
this solution a million times over, without ever doing it the same way twice.

It is significant that this definition (which applies to architectural problems and solutions) begins with
the problem and its wider setting, and then proceeds to a solution. There has been some criticism in recent
years that design patterns have been overused, especially by inexperienced programmers. This is often a
sign that solutions have been applied where the problem and context are not present. Patterns are more than
a particular organization of classes and objects, cooperating in a particular way. Patterns are structured to
define the conditions in which solutions should be applied and to discuss the effects of the solution.

158

http://dx.doi.org/10.1007/978-1-4842-1996-6_9

CHAPTER 7 © WHAT ARE DESIGN PATTERNS? WHY USE THEM?

In this book, I will focus on a particularly influential strand in the patterns field: the form described
in Design Patterns: Elements of Reusable Object-Oriented Software by the Gang of Four (Addison-Wesley
Professional, 1995). It concentrates on patterns in object-oriented software development and inscribes some
of the classic patterns that are present in most modern object-oriented projects.

The Gang of Four book is important because it inscribes key patterns, but also because it describes the
design principles that inform and motivate these patterns. We will look at some of these principles in the
next chapter.

Note The patterns described by the Gang of Four and in this book are really instances of a pattern
language. A pattern language is a catalog of problems and solutions organized together so that they
complement one another, forming an interrelated whole. There are pattern languages for other problem spaces,
such as visual design and project management (and architecture, of course). When | discuss design patterns
here, | refer to problems and solutions in object-oriented software development.

A Design Pattern Overview

At heart, a design pattern consists of four parts: the name, the problem, the solution, and the consequences.

Name

Names matter. They enrich the language of programmers; a few short words can stand in for quite complex
problems and solutions. They must balance brevity and description. The Gang of Four claims, “Finding good
names has been one of the hardest parts of developing our catalog”

Martin Fowler agrees: “Pattern names are crucial, because part of the purpose of patterns is to create
avocabulary that allows developers to communicate more effectively” (Patterns of Enterprise Application
Architecture, Addison-Wesley Professional, 2002).

In Patterns of Enterprise Application Architecture, Martin Fowler refines a database access pattern I
first encountered in Core J2EE Patterns by Deepak Alur, Dan Malks, and John Crupi (Prentice Hall, 2001).
Fowler defines two patterns that describe specializations of the older pattern. The logic of his approach is
clearly correct (one of the new patterns models domain objects, while the other models database tables, a
distinction that was vague in the earlier work). Nonetheless, it was hard to train myself to think in terms of
the new patterns. I had been using the name of the original in design sessions and documents for so long
that it had become part of my language.

The Problem

No matter how elegant the solution (and some are very elegant indeed), the problem and its context are the
grounds of a pattern. Recognizing a problem is harder than applying any one of the solutions in a pattern
catalog. This is one reason that some pattern solutions can be misapplied or overused.

Patterns describe a problem space with great care. The problem is described in brief and then
contextualized, often with a typical example and one or more diagrams. It is broken down into its specifics,
its various manifestations. Any warning signs that might help in identifying the problem are described.

The Solution

The solution is summarized initially in conjunction with the problem. It is also described in detail, often
using UML class and interaction diagrams. The pattern usually includes a code example.

159

CHAPTER 7 © WHAT ARE DESIGN PATTERNS? WHY USE THEM?

Although code may be presented, the solution is never cut-and-paste. The pattern describes an
approach to a problem. There may be hundreds of nuances in its implementation. Think about instructions
for sowing a food crop. If you simply follow a set of steps blindly, you are likely to go hungry come harvest
time. More useful would be a pattern-based approach that covers the various conditions that may apply. The
basic solution to the problem (making your crop grow) will always be the same (prepare soil, plant seeds,
irrigate, harvest crop), but the actual steps you take will depend on all sorts of factors, such as your soil type,
your location, the orientation of your land, local pests, and so on.

Martin Fowler refers to solutions in patterns as “half-baked.” That is, the coder must take away the
concept and finish it for himself.

Consequences

Every design decision you make will have wider consequences. This should include the satisfactory
resolution of the problem in question, of course. A solution, once deployed, may be ideally suited to work
with other patterns. There may also be dangers to watch for.

The Gang of Four Format

As Iwrite, I have five pattern catalogs on the desk in front of me. A quick look at the patterns in each
confirms that none of them use the same structure. Some are formal; some are fine-grained, with many
subsections; and others are discursive.

There are a number of well-defined pattern structures, including the original form developed by
Christopher Alexander (the Alexandrian form), and the narrative approach favored by the Portland Pattern
Repository (the Portland form). Because the Gang of Four book is so influential, and because we will cover
many of the patterns they describe, let’s examine a few of the sections they include in their patterns:

e Intent: A brief statement of the pattern’s purpose. You should be able to see the point
of the pattern at a glance.

e Motivation: The problem described, often in terms of a typical situation. The
anecdotal approach can help make the pattern easy to grasp.

e Applicability: An examination of the different situations in which you might apply
the pattern. While the motivation describes a typical problem, this section defines
specific situations and weighs the merits of the solution in the context of each.

e Structure/Interaction: These sections may contain UML class and interaction
diagrams describing the relationships among classes and objects in the solution.

e Implementation: This section looks at the details of the solution. It examines
any issues that may come up when applying the technique and provides tips for
deployment.

e Sample Code: 1 always skip ahead to this section. I find that a simple code example
often provides a way into a pattern. The example is often chopped down to the basics
in order to lay the solution bare. It could be in any object-oriented language. Of
course, in this book, it will always be PHP.

e Known Uses: These describe real systems in which the pattern (problem, context,
and solution) occurs. Some people say that for a pattern to be genuine, it must be
found in at least three publicly available contexts. This is sometimes called the “rule
of three.”

160

CHAPTER 7 © WHAT ARE DESIGN PATTERNS? WHY USE THEM?

e Related Patterns: Some patterns imply others. In applying one solution, you can
create the context in which another becomes useful. This section examines these
synergies. It may also discuss patterns that have similarities to the problem or the
solution, as well as any antecedents (i.e., patterns defined elsewhere on which the
current pattern builds).

Why Use Design Patterns?

So what benefits can patterns bring? Given that a pattern is a problem defined and a solution described, the
answer should be obvious. Patterns can help you to solve common problems. There is more to patterns, of course.

A Design Pattern Defines a Problem

How many times have you reached a stage in a project and found that there is no going forward? Chances
are you must backtrack some way before starting out again.

By defining common problems, patterns can help you to improve your design. Sometimes, the first step
to a solution is recognizing that you have a problem.

A Design Pattern Defines a Solution

Having defined and recognized the problem (and made certain that it is the right problem), a pattern gives
you access to a solution, together with an analysis of the consequences of its use. Although a pattern does
not absolve you of the responsibility to consider the implications of a design decision, you can at least be
certain that you are using a tried-and-tested technique.

Design Patterns Are Language Independent

Patterns define objects and solutions in object-oriented terms. This means that many patterns apply equally
in more than one language. When I first started using patterns, I read code examples in C++ and Smalltalk,
and then deployed my solutions in Java. Others transfer with modifications to the pattern’s applicability or
consequences, but remain valid. Either way, patterns can help you as you move between languages. Equally,
an application that is built on good object-oriented design principles can be relatively easy to port between
languages (although there are always issues that must be addressed).

Patterns Define a Vocabulary

By providing developers with names for techniques, patterns make communication richer. Imagine a design
meeting. I have already described my Abstract Factory solution, and now I need to describe my strategy for
managing the data the system compiles. I describe my plans to Bob:

ME: I'm thinking of using a Composite.
Bog: I don’t think you've thought that through.

Okay, Bob didn’t agree with me. He never does. But he knew what I was talking about, and therefore
why my idea sucked. Let’s play that scene through again without a design vocabulary.

ME: lintend to use a tree of objects that share the same type. The type’s interface
will provide methods for adding child objects of its own type. In this way, we can
build up complex combinations of implementing objects at runtime.

BoB: Huh?
161

CHAPTER 7 © WHAT ARE DESIGN PATTERNS? WHY USE THEM?

Patterns, or the techniques they describe, tend to interoperate. The Composite pattern lends itself to
collaboration with the Visitor pattern, for example:

ME: And then we can use Visitors to summarize the data.
BoB: You're missing the point.

Ignore Bob. I won’t describe the tortuous nonpattern version of this; I will cover Composite in Chapter
10 and Visitor in Chapter 11.

The point is that, without a pattern language, we would still use these techniques. They precede their
naming and organization. If patterns did not exist, they would evolve on their own, anyway. Any tool that is
used sufficiently will eventually acquire a name.

Patterns Are Tried and Tested

So if patterns document good practice, is naming the only truly original thing about pattern catalogs? In
some senses, that would seem to be true. Patterns represent best practice in an object-oriented context. To
some highly experienced programmers, this may seem an exercise in repackaging the obvious. To the rest of
us, patterns provide access to problems and solutions we would otherwise have to discover the hard way.
Patterns make design accessible. As pattern catalogs emerge for more and more specializations, even
the highly experienced can find benefits as they move into new aspects of their fields. A GUI programmer
can gain fast access to common problems and solutions in enterprise programming, for example. A web
programmer can quickly chart strategies for avoiding the pitfalls that lurk in tablet and smart phone projects.

Patterns Are Designed for Collaboration

By their nature, patterns should be generative and composable. This means that you should be able to apply
one pattern and thereby create conditions suitable for the application of another. In other words, in using a
pattern you may find other doors opened for you.

Pattern catalogs are usually designed with this kind of collaboration in mind, and the potential for
pattern composition is always documented in the pattern itself.

Design Patterns Promote Good Design

Design patterns demonstrate and apply principles of object-oriented design. So, a study of design patterns
can yield more than a specific solution in a context. You can come away with a new perspective on the ways
that objects and classes can be combined to achieve an objective.

Design Patterns are Used By Popular Frameworks

This book is primarily about designing from the ground up. The patterns and principles covered here should
enable you to design your own core frameworks with the needs of your projects in mind. However, laziness
is also a virtue, and you may wish to work with (or you may inherit code that already uses) a framework such
as Zend, Laravel, or Symfony. A good understanding of core design patterns will help you as you engage with
these framework APIs.

PHP and Design Patterns

There is little in this chapter that is specific to PHP, which is characteristic of our topic to some extent. Many
patterns apply to many object-capable languages with few or no implementation issues.

162

http://dx.doi.org/10.1007/978-1-4842-1996-6_10
http://dx.doi.org/10.1007/978-1-4842-1996-6_11

CHAPTER 7 © WHAT ARE DESIGN PATTERNS? WHY USE THEM?

This is not always the case, of course. Some enterprise patterns work well in languages in which an
application process continues to run between server requests. PHP does not work that way. A new script
execution is kicked off for every request. This means that some patterns need to be treated with more
care. Front Controller, for example, often requires some serious initialization time. This is fine when the
initialization takes place once at application startup, but it’s more of an issue when it must take place for
every request. That is not to say that we can’t use the pattern; I have deployed it with very good results in the
past. We must simply ensure that we take account of PHP-related issues when we discuss the pattern. PHP
forms the context for all the patterns that this book examines.

I referred to object-capable languages earlier in this section. You could code in PHP without defining
any classes at all. With a few notable exceptions, however, objects and object-oriented design lie at the heart
of most PHP projects and libraries.

Summary

In this chapter, I introduced design patterns, showed you their structure (using the Gang of Four form), and
suggested some reasons why you might want to use design patterns in your scripts.

It is important to remember that design patterns are not snap-on solutions that can be combined like
components to build a project. They are suggested approaches to common problems. These solutions
embody some key design principles. It is these that we will examine in the next chapter.

163

CHAPTER 8

Some Pattern Principles

Although design patterns simply describe solutions to problems, they tend to emphasize solutions that
promote reusability and flexibility. To achieve this, they manifest some key object-oriented design principles.
We will encounter some of them in this chapter and in more detail throughout the rest of the book.

This chapter will cover the following topics:

e Composition: How to use object aggregation to achieve greater flexibility than you
could with inheritance alone

e Decoupling: How to reduce dependency between elements in a system
e The power of the interface: Patterns and polymorphism

e Pattern categories: The types of patterns that this book will cover

The Pattern Revelation

I first started working with objects in the Java language. As you might expect, it took a while before some
concepts clicked. When it did happen, though, it happened very fast, almost with the force of revelation.
The elegance of inheritance and encapsulation bowled me over. I could sense that this was a different way
of defining and building systems. I got polymorphism, working with a type and switching implementations
at runtime. It seemed to me that this understanding would solve most of my design problems, and help me
design beautiful and elegant systems.

All the books on my desk at the time focused on language features and the very many APIs available to
the Java programmer. Beyond a brief definition of polymorphism, there was little attempt to examine design
strategies.

Language features alone do not engender object-oriented design. Although my projects fulfilled their
functional requirements, the kind of design that inheritance, encapsulation and polymorphism had seemed
to offer continued to elude me.

My inheritance hierarchies grew wider and deeper as I attempted to build a new class for every
eventuality. The structure of my systems made it hard to convey messages from one tier to another without
giving intermediate classes too much awareness of their surroundings, binding them into the application
and making them unusable in new contexts.

It wasn’t until I discovered Design Patterns: Elements of Reusable Object-Oriented Software (Addison-
Wesley Professional, 1995), otherwise known as the Gang of Four book, that I realized I had missed an entire
design dimension. By that time, I had already discovered some of the core patterns for myself, but others
contributed to a new way of thinking.

I found that I had over-privileged inheritance in my designs, trying to build too much functionality into
my classes. But where else can functionality go in an object-oriented system?

© Matt Zandstra 2016 165
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_8

CHAPTER 8 © SOME PATTERN PRINCIPLES

I found the answer in composition. Software components can be defined at runtime by combining
objects in flexible relationships. The Gang of Four boiled this down into a principle: “favor composition over
inheritance.” The patterns described ways in which objects could be combined at runtime to achieve a level
of flexibility impossible in an inheritance tree alone.

Composition and Inheritance

Inheritance is a powerful way of designing for changing circumstances or contexts. It can limit flexibility,
however, especially when classes take on multiple responsibilities.

The Problem

As you know, child classes inherit the methods and properties of their parents (as long as they are protected
or public elements). You can use this fact to design child classes that provide specialized functionality.
Figure 8-1 presents a simple example using the UML.
The abstract Lesson class in Figure 8-1 models a lesson in a college. It defines abstract cost ()
and chargeType() methods. The diagram shows two implementing classes, FixedPricelLesson and
TimedPricelLesson, which provide distinct charging mechanisms for lessons.

Lesson
+__construct(duration)
+cost()
+chargeType()
FixedPriceLesson TimedPriceLesson
+cost() +cost()
+chargeType() +chargeType()

Figure 8-1. A parent class and two child classes

Using this inheritance scheme, I can switch between lesson implementations. Client code will know
only that it is dealing with a Lesson object, so the details of cost will be transparent.

What happens, though, if I introduce a new set of specializations? I need to handle lectures and
seminars. Because these organize enrollment and lesson notes in different ways, they require separate
classes. Now I have two forces that operate upon my design. I need to handle pricing strategies, and separate
lectures and seminars.

Figure 8-2 shows a brute-force solution.

166

CHAPTER 8 © SOME PATTERN PRINCIPLES

Lesson

+cost()

+_construct(duration)

+chargeType()

Lecture

Seminar

FixedPriceLecture

TimedPricelLecture

FixedPriceSeminar

TimedPriceSeminar

+cost()
+chargeType()

+cost()

+chargeType()

+cost()
+chargeType()

+cost()
+chargeType()

Figure 8-2. A poor inheritance structure

Figure 8-2 shows a hierarchy that is clearly faulty. I can no longer use the inheritance tree to manage my
pricing mechanisms without duplicating great swathes of functionality. The pricing strategies are mirrored
across the Lecture and Seminar class families.

At this stage, I might consider using conditional statements in the Lesson super class, removing those
unfortunate duplications. Essentially, I remove the pricing logic from the inheritance tree altogether, moving
it up into the super class. This is the reverse of the usual refactoring, where you replace a conditional with

polymorphism. Here is an

// listing 08.01
abstract class Lesson

{

amended Lesson class:

protected $duration;

const FIXED = 1;
const TIMED = 2;
private $costtype;

public function _ construct(int $duration, int $costtype = 1)

{

$this->duration
$this->costtype

}

$duration;
$costtype;

public function cost(): int

{

switch ($this->costtype) {

case self:

return (5 * $this->duration);

break;
case self:

:TIMED:

:FIXED:

return 30;

break;

167

CHAPTER 8 © SOME PATTERN PRINCIPLES

default:
$this->costtype = self::FIXED;
return 30;

}

public function chargeType(): string

{
switch ($this->costtype) {

case self::TIMED:
return "hourly rate";
break;

case self::FIXED:
return "fixed rate";
break;

default:
$this->costtype = self::FIXED;
return "fixed rate";

}

// more lesson methods...

}

// listing 08.02
class Lecture extends Lesson

{
}

// listing 08.03
class Seminar extends Lesson

{
}

// Lecture-specific implementations ..

// Seminar-specific implementations ..

Here’s how I might work with these classes:
// listing 08.04
$lecture = new Lecture(5, Lesson::FIXED);
print "{$lecture->cost()} ({$lecture->chargeType()})\n";

$seminar = new Seminar(3, Lesson::TIMED);
print "{$seminar->cost()} ({$seminar->chargeType()})\n";

And here’s the output:

30 (fixed rate)
15 (hourly rate)

You can see the new class diagram in Figure 8-3.

168

CHAPTER 8 © SOME PATTERN PRINCIPLES

Lesson

+_ construct(duration,costtype=1)

+cost()

+chargeType()

|
Seminar

Lecture

Figure 8-3. Inheritance hierarchy improved by removing cost calculations from subclasses

I have made the class structure much more manageable, but at a cost. Using conditionals in this code
is a retrograde step. Usually, you would try to replace a conditional statement with polymorphism. Here, I
have done the opposite. As you can see, this has forced me to duplicate the conditional statement across the
chargeType() and cost() methods.

I seem doomed to duplicate code.

Using Composition

I can use the Strategy pattern to compose my way out of trouble. Strategy is used to move a set of
algorithms into a separate type. By moving cost calculations, I can simplify the Lesson type. You can see
this in Figure 8-4.

Lesson | CostStrategy

+cost() +cost(lesson:Lesson)

+chargeType() +chargeType()

+getDuration() 4

Lecture Seminar| |FixedCostStrategy TimeCostStrategy
+cost(lesson:Lesson) +cost(lesson:Lesson)
+chargeType() +chargeType()
— $this->costStrategy->cost($this) Iﬁ return($1esson—>getDuration()*S)Iﬁ

Figure 8-4. Moving algorithms into a separate type

I create an abstract class, CostStrategy, which defines the abstract methods, cost() and chargeType().
The cost() method requires an instance of Lesson, which it will use to generate cost data. I provide two
implementations for CostStrategy. Lesson objects work only with the CostStrategy type, not a specific
implementation, so I can add new cost algorithms at any time by subclassing CostStrategy. This would
require no changes at all to any Lesson classes.

169

CHAPTER 8 © SOME PATTERN PRINCIPLES

Here’s a simplified version of the new Lesson class illustrated in Figure 8-4:

// listing 08.05
abstract class Lesson

{

private $duration;
private $costStrategy;

public function _ construct(int $duration, CostStrategy $strategy)
{

$this->duration = $duration;
$this->costStrategy = $strategy;

}

public function cost(): int

{
}

return $this->costStrategy->cost($this);

public function chargeType(): string
{

}

public function getDuration(): int

{
}

return $this->costStrategy->chargeType();

return $this->duration;

// more lesson methods...

}

// listing 08.06
class Lecture extends Lesson

{
}

// listing 08.07
class Seminar extends Lesson

{
}

// Lecture-specific implementations ...

// Seminar-specific implementations ...

The Lesson class requires a CostStrategy object, which it stores as a property. The Lesson: :cost()
method simply invokes CostStrategy: :cost(). Equally, Lesson: : chargeType() invokes
CostStrategy: :chargeType(). This explicit invocation of another object’s method in order to fulfill a
request is known as delegation. In my example, the CostStrategy object is the delegate of Lesson. The
Lesson class washes its hands of responsibility for cost calculations and passes on the task to a CostStrategy
implementation. Here, it is caught in the act of delegation:

170

CHAPTER 8 © SOME PATTERN PRINCIPLES

public function cost(): int

{
}

return $this->costStrategy->cost($this);

Here is the CostStrategy class, together with its implementing children:

// listing 08.08
abstract class CostStrategy

{
abstract public function cost(Lesson $lesson): int;
abstract public function chargeType(): string;

}

// listing 08.09
class TimedCostStrategy extends CostStrategy

{
public function cost(Lesson $lesson): int
{
return ($lesson->getDuration() * 5);
}
public function chargeType(): string
{
return "hourly rate";
}
}

// listing 08.10
class FixedCostStrategy extends CostStrategy

public function cost(Lesson $lesson): int

{
return 30;
}
public function chargeType(): string
{
return "fixed rate";
}

I can change the way that any Lesson object calculates cost by passing it a different CostStrategy object
at runtime. This approach then makes for highly flexible code. Rather than building functionality into my
code structures statically, I can combine and recombine objects dynamically:

// listing 08.11
$lessons[] = new Seminar(4, new TimedCostStrategy());

$lessons[] = new Lecture(4, new FixedCostStrategy());

foreach ($lessons as $lesson) {

171

CHAPTER 8 © SOME PATTERN PRINCIPLES

print "lesson charge {$lesson->cost()}. ";
print "Charge type: {$lesson->chargeType()}\n";

lesson charge 20. Charge type: hourly rate
lesson charge 30. Charge type: fixed rate

Asyou can see, one effect of this structure is that I have focused the responsibilities of my classes.
CostStrategy objects are responsible solely for calculating cost, and Lesson objects manage lesson data.
So, composition can make your code more flexible because objects can be combined to handle tasks
dynamically in many more ways than you can anticipate in an inheritance hierarchy alone. There can
be a penalty with regard to readability, though. Because composition tends to result in more types, with
relationships that aren’t fixed with the same predictability as they are in inheritance relationships, it can be
slightly harder to digest the relationships in a system.

Decoupling

You saw in Chapter 6 that it makes sense to build independent components. A system with highly
interdependent classes can be hard to maintain. A change in one location can require a cascade of related
changes across the system.

The Problem

Reusability is one of the key objectives of object-oriented design, and tight coupling is its enemy. You can
diagnose tight coupling when you see that a change to one component of a system necessitates many
changes elsewhere. You should aspire to create independent components, so that you can make changes
without a domino effect of unintended consequences. When you alter a component, the extent to which it is
independent is related to the likelihood that your changes will cause other parts of your system to fail.

You saw an example of tight coupling in Figure 8-2. Because the cost logic was mirrored across the
Lecture and Seminar types, a change to TimedPricelecture would necessitate a parallel change to the same
logic in TimedPriceSeminar. By updating one class and not the other, I would break my system—without
any warning from the PHP engine. My first solution, using a conditional statement, produced a similar
dependency between the cost () and chargeType() methods.

By applying the Strategy pattern, I distilled my cost algorithms into the CostStrategy type, locating
them behind a common interface and implementing each only once.

Coupling of another sort can occur when many classes in a system are embedded explicitly into a
platform or environment. Let’s say that you are building a system that works with a MySQL database, for
example. You might use methods such as mysqli: : query() to speak to the database server.

Should you be required to deploy the system on a server that does not support MySQL, you could
convert your entire project to use SQLite. You would be forced to make changes throughout your code,
though, and face the prospect of maintaining two parallel versions of your application.

The problem here is not the system’s dependency on an external platform. Such a dependency is
inevitable. You need to work with code that speaks to a database. The problem comes when such code is
scattered throughout a project. Talking to databases is not the primary responsibility of most classes in a
system, so the best strategy is to extract such code and group it together behind a common interface. In this
way, you promote the independence of your classes. At the same time, by concentrating your gateway code
in one place, you make it much easier to switch to a new platform without disturbing your wider system. This
process, the hiding of implementation behind a clean interface, is known as encapsulation. The Doctrine
database library solves this problem with the DBAL (database abstraction layer) project. This provides a single
point of access for multiple databases.

172

http://dx.doi.org/10.1007/978-1-4842-1996-6_6

CHAPTER 8 © SOME PATTERN PRINCIPLES

The DriverManager class provides a static method called getConnection() that accepts a parameters
array. According to the makeup of this array, it returns a particular implementation of an interface called
Doctrine\DBAL\Driver. You can see the class structure in Figure 8-5.

DriverManager f------- <SCreates?> > priver
+getConnection() A
1
PDOSqlite\Driver PDOMySql\Driver

Figure 8-5. The DBAL package decouples client code from database objects

The DBAL package, then, lets you decouple your application code from the specifics of your database
platform. You should be able to run a single system with MySQL, SQLite, MSSQL, and others without
changing a line of code (apart from your configuring parameters, of course).

Loosening Your Coupling

To handle database code flexibly, you should decouple the application logic from the specifics of the
database platform it uses. You will see lots of opportunities for this kind of separation of components in your
own projects.

Imagine, for example, that the Lesson system must incorporate a registration component to add new
lessons to the system. As part of the registration procedure, an administrator should be notified when a
lesson is added. The system’s users can’t agree whether this notification should be sent by mail or by text
message. In fact, they're so argumentative that you suspect they might want to switch to a new mode of
communication in the future. What’s more, they want to be notified of all sorts of things, so that a change to
the notification mode in one place will mean a similar alteration in many other places.

If you've hard-coded calls to a Mailer class or a Texter class, then your system is tightly coupled to
a particular notification mode, just as it would be tightly coupled to a database platform by the use of a
specialized database API.

Here is some code that hides the implementation details of a notifier from the system that uses it:

// listing 08.12
class RegistrationMgr

{
public function register(Lesson $lesson)
{
// do something with this Lesson
// now tell someone
$notifier = Notifier::getNotifier();
$notifier->inform("new lesson: cost ({$lesson->cost()})");
}
}

173

CHAPTER 8 © SOME PATTERN PRINCIPLES

// listing 08.13
abstract class Notifier

{
public static function getNotifier(): Notifier
{
// acquire concrete class according to
// configuration or other logic
if (rand(1, 2) === 1) {
return new MailNotifier();
} else {
return new TextNotifier();
}
}
abstract public function inform($message);
}

// listing 08.14
class MailNotifier extends Notifier

{
public function inform($message)
{
print "MAIL notification: {$message}\n";
}
}

// listing 08.15
class TextNotifier extends Notifier

{
public function inform($message)
{
print "TEXT notification: {$message}\n";
}
}

I create RegistrationMgr, a sample client for my Notifier classes. The Notifier class is abstract, but it
does implement a static method, getNotifier(), which fetches a concrete Notifier object (TextNotifier or
MailNotifier). In areal project, the choice of Notifier would be determined by a flexible mechanism, such as
a configuration file. Here, I cheat and make the choice randomly. MailNotifier and TextNotifier do nothing
more than print out the message they are passed along with an identifier to show which one has been called.

Notice how the knowledge of which concrete Notifier should be used has been focused in the
Notifier::getNotifier() method.Icould send notifier messages from a hundred different parts of my
system, and a change in Notifier would only have to be made in that one method.

Here is some code that calls the RegistrationMgr

// listing 08.16

$lessonsl = new Seminar(4, new TimedCostStrategy());
$lessons2 = new Lecture(4, new FixedCostStrategy());
$mgr = new RegistrationMgr();
$mgr->register($lessonsi);
$mgr->register($lessons2);

174

CHAPTER 8 © SOME PATTERN PRINCIPLES

And here’s the output from a typical run:

TEXT notification: new lesson: cost (20)
MAIL notification: new lesson: cost (30)

RegistrationMgr ---------3> Notifier
+register(lesson:Lesson) +getNotifier()
+inform(message)

[P

MailNotifier TextNotifier

Figure 8-6. The Notifier class separates client code from Notifier implementations

Figure 8-6 shows these classes.
Notice how similar the structure in Figure 8-6 is to that formed by the Doctrine components shown in
Figure 8-5.

Code to an Interface, Not to an Implementation

This principle is one of the all-pervading themes of this book. You saw in Chapter 6 (and in the last section)
that you can hide different implementations behind the common interface defined in a superclass.
Client code can then require an object of the superclass’s type rather than that of an implementing class,
unconcerned by the specific implementation it is actually getting.

Parallel conditional statements, like the ones I rooted out from Lesson: :cost() and
Lesson: :chargeType(), are a common sign that polymorphism is needed. They make code hard to maintain
because a change in one conditional expression necessitates a change in its siblings. Conditional statements
are occasionally said to implement a “simulated inheritance.”

By placing the cost algorithms in separate classes that implement CostStrategy, I remove duplication. I
also make it much easier should I need to add new cost strategies in the future.

From the perspective of client code, it is often a good idea to require abstract or general types in your
methods’ parameters. By requiring more specific types, you could limit the flexibility of your code at runtime.

Having said that, of course, the level of generality you choose in your argument hints is a matter of
judgment. Make your choice too general, and your method may become less safe. If you require the specific
functionality of a subtype, then accepting a differently equipped sibling into a method could be risky.

Still, make your choice of argument hint too restricted, and you lose the benefits of polymorphism. Take
alook at this altered extract from the Lesson class:

// listing 08.17
public function _ construct(int $duration, FixedCostStrategy $strategy)
{

$this->duration = $duration;
$this->costStrategy = $strategy;

175

http://dx.doi.org/10.1007/978-1-4842-1996-6_6

CHAPTER 8 © SOME PATTERN PRINCIPLES

There are two issues arising from the design decision in this example. First, the Lesson object is now
tied to a specific cost strategy, which closes down my ability to compose dynamic components. Second, the
explicit reference to the FixedPriceStrategy class forces me to maintain that particular implementation.

By requiring a common interface, I can combine a Lesson object with any CostStrategy
implementation:

// listing 08.18
public function _ construct(int $duration, CostStrategy $strategy)
{
$this->duration = $duration;
$this->costStrategy = $strategy;
}

I have, in other words, decoupled my Lesson class from the specifics of cost calculation. All that matters
is the interface and the guarantee that the provided object will honor it.

Of course, coding to an interface can often simply defer the question of how to instantiate your objects.
When I say that a Lesson object can be combined with any CostStrategy interface at runtime, I beg the
question, “But where does the CostStrategy object come from?”

When you create an abstract superclass, there is always the issue of how its children should be
instantiated. Which child do you choose and according to which condition? This subject forms a category of
its own in the Gang of Four pattern catalog, and I will examine this further in the next chapter.

The Concept that Varies

It’s easy to interpret a design decision once it has been made, but how do you decide where to start?

The Gang of Four recommend that you “encapsulate the concept that varies.” In terms of my lesson
example, the varying concept is the cost algorithm. Not only is the cost calculation one of two possible
strategies in the example, but it is obviously a candidate for expansion: special offers, overseas student rates,
introductory discounts-all sorts of possibilities present themselves.

I quickly established that subclassing for this variation was inappropriate, and I resorted to a
conditional statement. By bringing my variation into the same class, I underlined its suitability for
encapsulation.

The Gang of Four recommend that you actively seek varying elements in your classes and assess their
suitability for encapsulation in a new type. Each alternative in a suspect conditional may be extracted to
form a class that extends a common abstract parent. This new type can then be used by the class or classes
from which it was extracted. This has the following effects:

e Focusing responsibility

e Promoting flexibility through composition

e Making inheritance hierarchies more compact and focused
¢ Reducing duplication

So how do you spot variation? One sign is the misuse of inheritance. This might include inheritance
deployed according to multiple forces at one time (e.g., lecture/seminar and fixed/timed cost). It might also
include subclassing on an algorithm where the algorithm is incidental to the core responsibility of the type.
The other sign of variation suitable for encapsulation is, as you have seen, a conditional expression.

176

CHAPTER 8 © SOME PATTERN PRINCIPLES

Patternitis

One problem for which there is no pattern is the unnecessary or inappropriate use of patterns. This has
earned patterns a bad name in some quarters. Because pattern solutions are neat, it is tempting to apply
them wherever you see a fit, whether they truly fulfill a need or not.

The eXtreme Programming (XP) methodology offers a couple of principles that might apply here. The
firstis, “You aren’t going to need it” (often abbreviated to YAGNI). This is generally applied to application
features, but it also makes sense for patterns.

When I build large environments in PHP, I tend to split my application into layers, separating
application logic from presentation and persistence layers. I use all sorts of core and enterprise patterns in
conjunction with one another.

When I am asked to build a feedback form for a small business web site, however, I may simply use
procedural code in a single page script. I do not need enormous amounts of flexibility; I won’t be building on
the initial release. I don’t need to use patterns that address problems in larger systems. Instead, I apply the
second XP principle: “Do the simplest thing that works.”

When you work with a pattern catalog, the structure and process of the solution are what stick in the
mind, consolidated by the code example. Before applying a pattern, though, pay close attention to the
problem, or “when to use it,” section, and then read up on the pattern’s consequences. In some contexts, the
cure may be worse than the disease.

The Patterns

This book is not a pattern catalog. Nevertheless, in the coming chapters, I will introduce a few of the key
patterns in use at the moment, providing PHP implementations and discussing them in the broad context of
PHP programming.

The patterns described will be drawn from key catalogs, including Design Patterns: Elements of Reusable
Object-Oriented Software, Patterns of Enterprise Application Architecture by Martin Fowler (Addison-Wesley
Professional, 2002) and Core J2EE Patterns: Best Practices and Design Strategies (Prentice Hall, 2001) by Alur,
et al. T use the Gang of Four’s categorization as a starting point, dividing patterns into five categories, as
follows.

Patterns for Generating Objects

These patterns are concerned with the instantiation of objects. This is an important category given the
principle, “Code to an interface.” If you are working with abstract parent classes in your design, then you
must develop strategies for instantiating objects from concrete subclasses. It is these objects that will be
passed around your system.

Patterns for Organizing Objects and Classes

These patterns help you to organize the compositional relationships of your objects. More simply, these
patterns show how you combine objects and classes.

Task-Oriented Patterns

These patterns describe the mechanisms by which classes and objects cooperate to achieve objectives.

177

CHAPTER 8 © SOME PATTERN PRINCIPLES

Enterprise Patterns

I'look at some patterns that describe typical Internet programming problems and solutions. Drawn largely
from Patterns of Enterprise Application Architecture and Core J2EE Patterns: Best Practices and Design
Strategies, the patterns deal with presentation and application logic.

Database Patterns

An examination of patterns that help with storing and retrieving data, and with mapping objects to and from
databases.

Summary

In this chapter, I examined some of the principles that underpin many design patterns. I looked at the use

of composition to enable object combination and recombination at runtime, resulting in more flexible

structures than would be available using inheritance alone. I also introduced you to decoupling, the practice

of extracting software components from their context to make them more generally applicable. Finally, I

reviewed the importance of interface as a means of decoupling clients from the details of implementation.
In the coming chapters, I will examine some design patterns in detail.

178

CHAPTER 9

Generating Objects

Creating objects is a messy business. So, many object-oriented designs deal with nice, clean abstract
classes, taking advantage of the impressive flexibility afforded by polymorphism (the switching of concrete
implementations at runtime). To achieve this flexibility, though, I must devise strategies for object
generation. This is the topic I will look at in this chapter.

This chapter will cover the following patterns:

e The Singleton pattern: A special class that generates one—and only one—object
instance

e The Factory Method pattern: Building an inheritance hierarchy of creator classes

e The Abstract Factory pattern: Grouping the creation of functionally related products
e The Prototype pattern: Using clone to generate objects

e The Service Locator pattern: Asking your system for objects

e The Dependency Injection pattern: Letting your system give you objects

Problems and Solutions in Generating Objects

Object creation can be a weak point in object-oriented design. In the previous chapter, you saw the principle,
“Code to an interface, not to an implementation.” To this end, you are encouraged to work with abstract
supertypes in your classes. This makes code more flexible, allowing you to use objects instantiated from
different concrete subclasses at runtime. This has the side effect that object instantiation is deferred.

Here’s a class that accepts a name string and instantiates a particular object:

// listing 09.01

abstract class Employee

{
protected $name;
public function _ construct(string $name)
{
$this->name = $name;
}
abstract public function fire();
}
© Matt Zandstra 2016 179

M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_9

CHAPTER 9 © GENERATING OBJECTS

// listing 09.02

class Minion extends Employee

{
public function fire()
{
print "{$this->name}: I'll clear my desk\n";
}
}

// listing 09.03

class NastyBoss

{
private $employees = [];
public function addEmployee(string $employeeName)
{
$this->employees[] = new Minion($employeeName);
}
public function projectFails()
{
if (count($this->employees) > 0) {
$emp = array pop($this->employees);
$emp->Ffire();
}
}
}

// listing 09.04

$boss = new NastyBoss();
$boss->addEmployee("harry");
$boss->addEmployee("bob");
$boss->addEmployee("mary");
$boss->projectFails();

mary: I'll clear my desk

Asyou can see, I define an abstract base class, Employee, with a downtrodden implementation, Minion.
Given a name string, the NastyBoss: :addEmployee() method instantiates a new Minion object. Whenever
aNastyBoss object runs into trouble (via the NastyBoss: :projectFails() method), it looks for a Minion to
fire.

By instantiating a Minion object directly in the NastyBoss class, we limit flexibility. If a NastyBoss
object could work with any instance of the Employee type, we could make our code amenable to variation at
runtime as we add more Employee specializations. You should find the polymorphism in Figure 9-1 familiar.

180

CHAPTER 9 ' GENERATING OBJECTS

NastyBoss <@—— Employee
+addEmployee(employee:Employee) +fire()
+projectFails()

Minion| |WellConnected CluedUp

I'll clear my desgﬁr——-+fire() +fire()

+fire()

I'LL call my dadBi

I'll call my lawyer |

Figure 9-1. Working with an abstract type enables polymorphism

If the NastyBoss class does not instantiate a Minion object, where does it come from? Authors often
duck out of this problem by constraining an argument type in a method declaration, and then conveniently
omitting to show the instantiation in anything other than a test context:

// listing 09.05

class NastyBoss

{
private $employees = [];
public function addEmployee(Employee $employee)
{
$this->employees[] = $employee;
}
public function projectFails()
{
if (count($this->employees)) {
$emp = array pop($this->employees);
$emp->Ffire();
}
}
}

// listing 09.06
// new Employee class...

class CluedUp extends Employee

public function fire()

{

181

CHAPTER 9 © GENERATING OBJECTS

print "{$this->name}: I'1l call my lawyer\n";

}
// listing 09.07

$boss = new NastyBoss();
$boss->addEmployee(new Minion("harry"));
$boss->addEmployee(new CluedUp("bob"));
$boss->addEmployee(new Minion("mary"));
$boss->projectFails();
$boss->projectFails();
$boss->projectFails();

mary: I'll clear my desk
bob: I'll call my lawyer
harry: I'll clear my desk

Although this version of the NastyBoss class works with the Employee type, and therefore benefits from
polymorphism, I still haven’t defined a strategy for object creation. Instantiating objects is a dirty business,
but it has to be done. This chapter is about classes and objects that work with concrete classes, so that the
rest of your classes do not have to.

If there is a principle to be found here, it is “delegate object instantiation.” I did this implicitly in the previous
example by demanding that an Employee object be passed to the NastyBoss : :addEmployee() method. I could,
however, equally delegate to a separate class or method that takes responsibility for generating Employee objects.
Here I add a static method to the Employee class that implements a strategy for object creation:

// listing 09.08
abstract class Employee

{
protected $name;
private static $types = ['Minion', 'CluedUp', 'WellConnected'];
public static function recruit(string $name)
{
$num = rand(1, count(self::$types)) - 1;
$class = _ NAMESPACE . "\\".self::$types[$num];
return new $class($name);
}
public function _ construct(string $name)
{
$this->name = $name;
}
abstract public function fire();
}

// listing 09.09

// new Employee class...

182

CHAPTER 9 ' GENERATING OBJECTS

class WellConnected extends Employee

public function fire()

{
}

print "{$this->name}: I'll call my dad\n";

As you can see, this takes a name string and uses it to instantiate a particular Employee subtype at
random. I can now delegate the details of instantiation to the Employee class’s recruit() method:

// listing 09.10

$boss = new NastyBoss();
$boss->addEmployee(Employee: :recruit("harry"));
$boss->addEmployee(Employee: :recruit("bob"));
$boss->addEmployee(Employee: :recruit("mary"));

You saw a simple example of such a class in Chapter 4. I placed a static method in the ShopProduct class
called getInstance().

Note | use the term “factory” frequently in this chapter. A factory is a class or method with responsibility
for generating objects.

getInstance() is responsible for generating the correct ShopProduct subclass based on a database
query. The ShopProduct class, therefore, has a dual role. It defines the ShopProduct type, but it also acts as a
factory for concrete ShopProduct objects:

public static function getInstance(int $id, PDO $pdo): ShopProduct
{

$stmt = $pdo->prepare("select * from products where id=?");
$result = $stmt->execute([$id]);

$row = $stmt->fetch();

if (empty($row)) {
return null;

}

if ($row['type'] == "book") {

// instantiate a BookProduct object
} elseif ($row['type'] == "cd") {

// instantiate a CdProduct object
} else {

// instantiate a ShopProduct object
}

$product->setId($row['id']);

$product->setDiscount($row['discount']);
return $product;

183

http://dx.doi.org/10.1007/978-1-4842-1996-6_4

CHAPTER 9 © GENERATING OBJECTS

The getInstance() method uses a large if/else statement to determine which subclass to instantiate.
Conditionals like this are quite common in factory code. Although you should attempt to excise large
conditional statements from your projects, doing so often has the effect of pushing the conditional back to
the moment at which an object is generated. This is not generally a serious problem because you remove
parallel conditionals from your code in pushing the decision-making back to this point.

In this chapter, then, I will examine some of the key Gang of Four patterns for generating objects.

The Singleton Pattern

The global variable is one of the great bugbears of the object-oriented programmer. The reasons should
be familiar to you by now. Global variables tie classes into their context, undermining encapsulation (see
Chapter 6, “Objects and Design,” and Chapter 8, “Some Pattern Principles,” for more on this). A class that
relies on global variables becomes impossible to pull out of one application and use in another, without first
ensuring that the new application itself defines the same global variables.

Although this is undesirable, the unprotected nature of global variables can be a greater problem. Once
you start relying on global variables, it is perhaps just a matter of time before one of your libraries declares
a global that clashes with another declared elsewhere. You have seen already that, if you are not using
namespaces, PHP is vulnerable to class name clashes. But this is much worse. PHP will not warn you when
globals collide. The first you will know about it is when your script begins to behave oddly. Worse still, you
may not notice any issues at all in your development environment. By using globals, though, you potentially
leave your users exposed to new and interesting conflicts when they attempt to deploy your library alongside
others.

Globals remain a temptation, however. This is because there are times when the sin inherent in global
access seems a price worth paying in order to give all of your classes access to an object.

AsThinted, namespaces provide some protection from this. You can at least scope variables to a
package, which means that third-party libraries are less likely to clash with your own system. Even so, the
risk of collision exists within the namespace itself.

The Problem

Well-designed systems generally pass object instances around via method calls. Each class retains its
independence from the wider context, collaborating with other parts of the system via clear lines of
communication. Sometimes, though, you find that this forces you to use some classes as conduits for objects
that do not concern them, introducing dependencies in the name of good design.

Imagine a Preferences class that holds application-level information. We might use a Preferences
object to store data such as DSN strings (Data Source Names hold table and user information about a
database), URL roots, file paths, and so on. This is the sort of information that will vary from installation to
installation. The object may also be used as a notice board, a central location for messages that could be set
or retrieved by otherwise unrelated objects in a system.

Passing a Preferences object around from object to object may not always be a good idea. Many classes
that do not otherwise use the object could be forced to accept it simply so that they could pass it on to the
objects that they work with. This is just another kind of coupling.

You also need to be sure that all objects in your system are working with the same Preferences object.
You do not want objects setting values on one object, while others read from an entirely different one.

Let’s distill the forces in this problem:

e APreferences object should be available to any object in your system.

184

http://dx.doi.org/10.1007/978-1-4842-1996-6_6
http://dx.doi.org/10.1007/978-1-4842-1996-6_8

CHAPTER 9 ' GENERATING OBJECTS

e APreferences object should not be stored in a global variable, which can be
overwritten.

e There should be no more than one Preferences object in play in the system. This
means that object Y can set a property in the Preferences object, and object Z can
retrieve the same property, without either one talking to the other directly (assuming
both have access to the Preferences object).

Implementation

To address this problem, I can start by asserting control over object instantiation. Here, I create a class that
cannot be instantiated from outside of itself. That may sound difficult, but it’s simply a matter of defining a
private constructor:

class Preferences

{
private $props = [];
private function _ construct()
{
}
public function setProperty(string $key, string $val)
{
$this->props[$key] = $val;
}
public function getProperty(string $key): string
{
return $this->props|[$key];
}
}

Of course, at this point, the Preferences class is entirely unusable. I have taken access restriction to an
absurd level. Because the constructor is declared private, no client code can instantiate an object from it.
The setProperty() and getProperty() methods are therefore redundant.

I can use a static method and a static property to mediate object instantiation:

// listing 09.11

class Preferences

{
private $props = [];
private static $instance;

private function _ construct()

{
}

public static function getInstance()

{

185

CHAPTER 9 © GENERATING OBJECTS

if (empty(self::$instance)) {
self::$instance = new Preferences();

}
return self::$instance;
}
public function setProperty(string $key, string $val)
{
$this->props[$key] = $val;
}
public function getProperty(string $key): string
{
return $this->props[$key];
}

The $instance property is private and static, so it cannot be accessed from outside the class. The
getInstance() method has access, though. Because getInstance() is public and static, it can be called via
the class from anywhere in a script:

// listing 09.12

$pref = Preferences::getInstance();

$pref->setProperty("name", "matt");

unset($pref); // remove the reference

$pref2 = Preferences::getInstance();

print $pref2->getProperty(“"name") ."\n"; // demonstrate value is not lost

The output is the single value we added to the Preferences object initially, available through a separate
access:

matt

A static method cannot access object properties because it is, by definition, invoked in a class and
not an object context. It can, however, access a static property. When getInstance() is called, I check the
Preferences::$instance property. If it is empty, then I create an instance of the Preferences class and
store it in the property. Then I return the instance to the calling code. Because the static getInstance()
method is part of the Preferences class, I have no problem instantiating a Preferences object, even though
the constructor is private.

Figure 9-2 shows the Singleton pattern.

186

CHAPTER 9 ' GENERATING OBJECTS

HE H
1 1
1 1
1 1
1 1
! :
I<<c reates>> V
1

' Preferences
: -instance

H -_construct()

+getInstance()
+setProperty(key:String,value:String)

+getProperty(key:String)

if (empty(self::$instance)) {
self::$instance = new Preferences();

}

return self::$instance;

Figure 9-2. An example of the Singleton pattern

Consequences

So, how does the Singleton approach compare to using a global variable? First, the bad news. Both
Singletons and global variables are prone to misuse. Because Singletons can be accessed from anywhere
in a system, they can serve to create dependencies that can be hard to debug. Change a Singleton, and
classes that use it may be affected. Dependencies are not a problem in themselves. After all, we create a
dependency every time we declare that a method requires an argument of a particular type. The problem
is that the global nature of the Singleton lets a programmer bypass the lines of communication defined by
class interfaces. When a Singleton is used, the dependency is hidden away inside a method and not declared
in its signature. This can make it harder to trace the relationships within a system. Singleton classes should
therefore be deployed sparingly and with care.

Nevertheless, I think that moderate use of the Singleton pattern can improve the design of a system,
saving you from horrible contortions as you pass objects unnecessarily around your system.

Singletons represent an improvement over global variables in an object-oriented context. You cannot
overwrite a Singleton with the wrong kind of data.

Factory Method Pattern

Object-oriented design emphasizes the abstract class over the implementation. That is, it works with
generalizations rather than specializations. The Factory Method pattern addresses the problem of how to
create object instances when your code focuses on abstract types. The answer? Let specialist classes handle
instantiation.

187

CHAPTER 9 © GENERATING OBJECTS

The Problem

Imagine a personal organizer project that manages Appointment objects, among other object types. Your
business group has forged a relationship with another company, and you must communicate appointment
data to it using a format called BloggsCal. The business group warns you that you may face yet more formats
as time wears on, though.

Staying at the level of interface alone, you can identify two participants right away. You need a data
encoder that converts your Appointment objects into a proprietary format. Let’s call that class ApptEncoder.
You need a manager class that will retrieve an encoder and maybe work with it to communicate with a third
party. You might call that CommsManager. Using the terminology of the pattern, the CommsManager is the
creator, and the ApptEncoder is the product. You can see this structure in Figure 9-3.

<<creates>>
------------- =

CommsManager ApptEncoder

+getApptEncoder(): ApptEncoder +encode(): String

Figure 9-3. Abstract creator and product classes

How do you get your hands on a real concrete ApptEncoder, though?

You could demand that an ApptEncoder be passed to the CommsManager, but that simply defers your
problem, and you want the buck to stop about here. Here I instantiate a BloggsApptEncoder object directly
within the CommsManager class:

// listing 09.13

abstract class ApptEncoder

{
}

// listing 09.14

abstract public function encode(): string;

class BloggsApptEncoder extends ApptEncoder

public function encode(): string

{
}

return "Appointment data encoded in BloggsCal format\n";
}
// listing 09.15
class MegaApptEncoder extends ApptEncoder

public function encode(): string

{
}

return "Appointment data encoded in MegaCal format\n";

188

CHAPTER 9 ' GENERATING OBJECTS

// listing 09.16

class CommsManager

{
public function getApptEncoder(): ApptEncoder
{
return new BloggsApptEncoder();
}
}

The CommsManager class is responsible for generating BloggsApptEncoder objects. When the sands
of corporate allegiance inevitably shift, and we are asked to convert our system to work with a new format
called MegaCal, we can simply add a conditional into the CommsManager : : getApptEncoder () method. This
is the strategy we have used in the past, after all. Let’s build a new implementation of CommsManager that
handles both BloggsCal and MegaCal formats:

// listing 09.17

class CommsManager

{
const BLOGGS = 1;
const MEGA = 2;
private $mode;
public function _ construct(int $mode)
{
$this->mode = $mode;
}
public function getApptEncoder(): ApptEncoder
{
switch ($this->mode) {
case (self::MEGA):
return new MegaApptEncoder();
default:
return new BloggsApptEncoder();
}
}
}

// listing 09.18

$man = new CommsManager (CommsManager: :MEGA);
print (get_class($man->getApptEncoder())) . "\n";
$man = new CommsManager(CommsManager: :BLOGGS);
print (get class($man->getApptEncoder())) . "\n";

I use constant flags to define two modes in which the script might be run: MEGA and BLOGGS. I use

a switch statement in the getApptEncoder () method to test the $mode property and instantiate the
appropriate implementation of ApptEncoder.

189

CHAPTER 9 © GENERATING OBJECTS

There is little wrong with this approach. Conditionals are sometimes considered examples of bad
“code smells,” but object creation often requires a conditional at some point. You should be less sanguine if
you see duplicate conditionals creeping into your code. The CommsManager class provides functionality for
communicating calendar data. Imagine that the protocols you work with require you to provide header and
footer data to delineate each appointment. I can extend the previous example to support a getHeaderText ()
method:

// listing 09.19

class CommsManager

{
const BLOGGS = 1;
const MEGA = 2;
private $mode;
public function _ construct(int $mode)
{
$this->mode = $mode;
}
public function getApptEncoder(): ApptEncoder
{
switch ($this->mode) {
case (self::MEGA):
return new MegaApptEncoder();
default:
return new BloggsApptEncoder();
}
}
public function getHeaderText(): string
{
switch ($this->mode) {
case (self::MEGA):
return "MegaCal header\n";
default:
return "BloggsCal header\n";
}
}
}

Asyou can see, the need to support header output has forced me to duplicate the protocol conditional
test. This will become unwieldy as I add new protocols, especially if I also add a getFooterText() method.
So, let’s summarize the problem so far:

e Ido not know until runtime the kind of object I need to produce
(BloggsApptEncoder or MegaApptEncoder)

e Ineed to be able to add new product types with relative ease (SyncML support is just
anew business deal away!)

e Each product type is associated with a context that requires other customized
operations (e.g., getHeaderText (), getFooterText())

190

CHAPTER 9 ' GENERATING OBJECTS

Additionally, I am using conditional statements, and you have seen already that these are naturally
replaceable by polymorphism. The Factory Method pattern enables you to use inheritance and
polymorphism to encapsulate the creation of concrete products. In other words, you create a CommsManager
subclass for each protocol, each one implementing the getApptEncoder () method.

Implementation

The Factory Method pattern splits creator classes from the products they are designed to generate. The
creator is a factory class that defines a method for generating a product object. If no default implementation
is provided, it is left to creator child classes to perform the instantiation. Typically, each creator subclass
instantiates a parallel product child class.

I can redesignate CommsManager as an abstract class. That way, I keep a flexible superclass and put all my
protocol-specific code in the concrete subclasses. You can see this alteration in Figure 9-4.

CommsManager ApptEncoder

+getHeaderText(): String +encode(): String
+getApptEncoder(): ApptEncoder
+getFooterText(): String

T

BloggsCommsManager

--sscreatesz_ . BloggsApptEncoder

+getHeaderText(): String +encode(): String
+getApptEncoder(): ApptEncoder
+getFooterText(): String

return new BloggsApptEncoder();Iﬁ

Figure 9-4. Concrete creator and product classes

Here'’s some simplified code:
// listing 09.20

abstract class ApptEncoder

{
}

// listing 09.21

abstract public function encode(): string;

class BloggsApptEncoder extends ApptEncoder

public function encode(): string

191

CHAPTER 9 © GENERATING OBJECTS

return "Appointment data encode in BloggsCal format\n";

}
// listing 09.22

abstract class CommsManager

{
abstract public function getHeaderText(): string;
abstract public function getApptEncoder(): ApptEncoder;
abstract public function getFooterText(): string;

}

// listing 09.23
class BloggsCommsManager extends CommsManager

public function getHeaderText(): string

{
return "BloggsCal header\n";
}
public function getApptEncoder(): ApptEncoder
{
return new BloggsApptEncoder();
}
public function getFooterText(): string
{
return "BloggsCal footer\n";
}

}
// listing 09.24

$mgr = new BloggsCommsManager();

print $mgr->getHeaderText();

print $mgr->getApptEncoder()->encode();
print $mgr->getFooterText();

BloggsCal header
Appointment data encode in BloggsCal format
BloggsCal footer

So, when I am required to implement MegaCal, supporting it is simply a matter of writing a new
implementation for my abstract classes. Figure 9-5 shows the MegaCal classes.

192

CHAPTER 9 ' GENERATING OBJECTS

CommsManager

+getHeaderText(): String
+getApptEncoder(): ApptEncoder
+getFooterText(): String

A

MegaCommsManager

BloggsCommsManager

+getHeaderText(): String
+getApptEncoder(): ApptEncoder
+getFooterText(): String

+getHeaderText(): String
+getApptEncoder(): ApptEncoder
+getFooterText(): String

return new MegaApptEncoder();Iﬁ

return new BloggsApptEncoder();

<<Creates>>
ApptEncoder
+encode(): String
[|
--------- > MegaApptEncoder BloggsApptEncoder
+encode(): String +encode(): String

Figure 9-5. Extending the design to support a new protocol

Consequences

<<creates>>

Notice that the creator classes mirror the product hierarchy. This is a common consequence of the Factory
Method pattern and disliked by some as a special kind of code duplication. Another issue is the possibility

that the pattern could encourage unnecessary subclassing. If your only reason for subclassing a creator is

to deploy the Factory Method pattern, you may need to think again (that’s why I introduced the header and
footer constraints to the example here).
I have focused only on appointments in my example. If I extend it somewhat to include to-do items and

contacts, I face a new problem. I need a structure that will handle sets of related implementations at one

time. The Factory Method pattern is often used with the Abstract Factory pattern, as you will see in the next
section.

Abstract Factory Pattern

In large applications, you may need factories that produce related sets of classes. The Abstract Factory

pattern addresses this problem.

193

CHAPTER 9 © GENERATING OBJECTS

The Problem

Let’s look again at the organizer example. I manage encoding in two formats, BloggsCal and MegaCal. I can
grow this structure horizontally by adding more encoding formats, but how can I grow vertically, adding
encoders for different types of PIM objects? In fact, I have been working toward this pattern already.

In Figure 9-6, you can see the parallel families with which I will want to work. These are appointments
(Appt), things to do (Ttd), and contacts (Contact).

ApptEncoder

+encode(): String

MegaApptEncoder BloggsApptEncoder
+encode(): String +encode(): String
TtdEncoder

+encode(): String

A

MegaTtdEncoder BloggsTtdEncoder
+encode(): String +encode(): String
ContactEncoder

+encode(): String

T
I I

MegaContactEncoder BloggsContactEncoder

+encode(): String +encode(): String

Figure 9-6. Three product families

The BloggsCal classes are unrelated to one another by inheritance (although they could implement
a common interface), but they are functionally parallel. If the system is currently working with
BloggsTtdEncoder, it should also be working with BloggsContactEncoder.

To see how I enforce this, you can begin with the interface, as I did with the Factory Method pattern (see
Figure 9-7).

194

CommsManager

+getHeaderText(): String
+getApptEncoder(): ApptEncoder
+getTtdEncoder(): TtdEncoder
+getContactEncoder(): ContactEncoder
+getFooterText(): String

<<Cr

B el el

!-=---->|ContactEncoder

Figure 9-7. An abstract creator and its abstract products

Implementation

The abstract CommsManager class defines the interface for generating each of the three products
(ApptEncoder, TtdEncoder, and ContactEncoder). You need to implement a concrete creator in order to
actually generate the concrete products for a particular family. I illustrate that for the BloggsCal format in

Figure 9-8.

CommsManager

+getHeaderText(): String
+getApptEncoder(): ApptEncoder
+getTtdEncoder(): TtdEncoder
+getContactEncoder(): ContactEncoder
+getFooterText(): String

BloggsCommsManager

+getHeaderText(): String
+getApptEncoder(): ApptEncoder
+getTtdEncoder(): TtdEncoder
+getContactEncoder(): ContactEncoder
+getFooterText(): String

eates>>
...... >

------ > TtdEncoder

CHAPTER 9 ' GENERATING OBJECTS

ApptEncoder

+encode(): String

+encode(): String

+encode(): String

ApptEncoder

+encode(): String

7

rmmmmnn >

BloggsApptEncoder

+encode(): String

TtdEncoder

+encode(): String

I

BloggsTtdEncoder

+encode(): String

ContactEncoder

+encode(): String

1

----->{BloggsContactEncoder

+encode(): String

Figure 9-8. Adding a concrete creator and some concrete products

195

CHAPTER 9 © GENERATING OBJECTS

Here is a code version of CommsManager and BloggsCommsManager:
// listing 09.25

abstract class CommsManager

{
abstract public function getHeaderText(): string;
abstract public function getApptEncoder(): ApptEncoder;
abstract public function getTtdEncoder(): TtdEncoder;
abstract public function getContactEncoder(): ContactEncoder;
abstract public function getFooterText(): string;

}

// listing 09.26

class BloggsCommsManager extends CommsManager

{
public function getHeaderText(): string
{
return "BloggsCal header\n";
}
public function getApptEncoder(): ApptEncoder
{
return new BloggsApptEncoder();
}
public function getTtdEncoder(): TtdEncoder
{
return new BloggsTtdEncoder();
}
public function getContactEncoder(): ContactEncoder
{
return new BloggsContactEncoder();
}
public function getFooterText(): string
{
return "BloggsCal footer\n";
}
}

Notice that I use the Factory Method pattern in this example. getContactEncoder() is abstract in
CommsManager and implemented in BloggsCommsManager. Design patterns tend to work together in this way,
one pattern creating the context that lends itself to another. In Figure 9-9, I add support for the MegaCal
format.

196

CommsManager

+getHeaderText(): String
+getApptEncoder(): ApptEncoder
+getTtdEncoder(): TtdEncoder
+getContactEncoder(): ContactEncoder
+getFooterText(): String

A

BloggsCommsManager

MegaCommsManager

+getHeaderText(): String
+getApptEncoder(): ApptEncoder
+getTtdEncoder(): TtdEncoder
+getContactEncoder(): ContactEncoder
+getFooterText(): String

+getHeaderText(): String
+getApptEncoder(): ApptEncoder
+getTtdEncoder(): TtdEncoder
+getContactEncoder(): ContactEncoder
+getFooterText(): String

CHAPTER 9 ' GENERATING OBJECTS

ApptEncoder

+encode(): String

v

MegaApptEncoder

BloggsApptEncoder

[<= =

+encode(): String

+encode(): String

TtdEncoder

+encode(): String

= ==3>]MegaTtdEncoder

+encode():

String

+encode(): String

ContactEncoder

+encode(): String

BloggsTtdEncoder <& = = =

>|MegaContactEncoder

BloggsContactEncoder <=

+en

code(): String

+encode(): String

Figure 9-9. Adding concrete creators and some concrete products

Consequences

So, let’s look at what this pattern buys:

e First, I decouple my system from the details of implementation. I can add or remove
any number of encoding formats in my example without causing a knock-on effect.

e Ienforce the grouping of functionally related elements of my system. So, by using
BloggsCommsManager, I am guaranteed that I will work only with BloggsCal-related

classes.

e Adding new products can be a pain. Not only do I have to create concrete

implementations of the new product, but I also have to amend the abstract creator
and every one of its concrete implementers in order to support it.

gy

Many implementations of the Abstract Factory pattern use the Factory Method pattern. This may be
because most examples are written in Java or C++. PHP, however, does not have to enforce a return type for a

method (though it now can), which affords us some flexibility that we might leverage.

Rather than create separate methods for each Factory Method, you can create a single make () method
that uses a flag argument to determine which object to return:

// listing 09.27

interface Encoder

public function encode(): string;

197

CHAPTER 9 © GENERATING OBJECTS

// listing 09.28

abstract class CommsManager

{
const APPT = 1;
const TTD = 2;
const CONTACT = 3;
abstract public function getHeaderText(): string;
abstract public function make(int $flag int): Encoder;
abstract public function getFooterText(): string;

}

// listing 09.29
class BloggsCommsManager extends CommsManager

public function getHeaderText(): string

{
return "BloggsCal header\n";
}
public function make(int $flag_int): Encoder
{
switch ($flag_int) {
case self::APPT:
return new BloggsApptEncoder();
case self::CONTACT:
return new BloggsContactEncoder();
case self::TTD:
return new BloggsTtdEncoder();
}
}
public function getFooterText(): string
{
return "BloggsCal footer\n";
}

Asyou can see, I have made the class interface more compact. I've done this at a considerable cost,
though. In using a factory method, I define a clear interface and force all concrete factory objects to honor it.
In using a single make () method, I must remember to support all product objects in all the concrete creators.
I also introduce parallel conditionals, as each concrete creator must implement the same flag tests. A client
class cannot be certain that concrete creators generate all the products because the internals of make () are a
matter of choice in each case.

On the other hand, I can build more flexible creators. The base creator class can provide a make ()
method that guarantees a default implementation of each product family. Concrete children could then
modify this behavior selectively. It would be up to implementing creator classes to call the default make ()
method after providing their own implementation.

You will see another variation on the Abstract Factory pattern in the next section.

198

Prototype

CHAPTER 9 ' GENERATING OBJECTS

The emergence of parallel inheritance hierarchies can be a problem with the Factory Method pattern.
This is a kind of coupling that makes some programmers uncomfortable. Every time you add a product
family, you are forced to create an associated concrete creator (the BloggsCal encoders are matched by
BloggsCommsManager, for example). In a system that grows fast enough to encompass many products,
maintaining this kind of relationship can quickly become tiresome.
One way of avoiding this dependency is to use PHP’s clone keyword to duplicate existing concrete
products. The concrete product classes themselves then become the basis of their own generation. This is
the Prototype pattern. It enables you to replace inheritance with composition. This in turn promotes runtime
flexibility and reduces the number of classes you must create.

The Problem

Imagine a Civilization-style web game in which units operate on a grid of tiles. Each tile can represent sea,
plains, or forests. The terrain type constrains the movement and combat abilities of units occupying the tile.
You might have a TerrainFactory object that serves up Sea, Forest, and Plains objects. You decide that
you will allow the user to choose among radically different environments, so the Sea object is an abstract
superclass implemented by MarsSea and EarthSea. Forest and Plains objects are similarly implemented.
The forces here lend themselves to the Abstract Factory pattern. You have distinct product hierarchies (Sea,
Plains, Forests), with strong family relationships cutting across inheritance (Earth, Mars). Figure 9-10
presents a class diagram that shows how you might deploy the Abstract Factory and Factory Method patterns

to work with these products.

TerrainFactory

+getSea(): Sea
+getPlains(): Plains
+getForest(): Forest

1

===

EarthTerrainFactory

MarsTerrainFactory

+getSea(): Sea
+getPlains(): Plains
+getForest(): Forest

+getSea(): Sea
+getPlains(): Plains
+getForest(): Forest

Sea

A

MarsSea

EarthSea

Plains

<<~ - - -

-

MarsPlains

EarthPlains

Forest

A

-->

MarsForest

EarthForest

<<~

Figure 9-10. Handling terrains with the Abstract Factory method

199

CHAPTER 9 © GENERATING OBJECTS

Asyou can see, I rely on inheritance to group the terrain family for the products that a factory will
generate. This is a workable solution, but it requires a large inheritance hierarchy, and it is relatively
inflexible. When you do not want parallel inheritance hierarchies, and when you need to maximize runtime
flexibility, the Prototype pattern can be used in a powerful variation on the Abstract Factory pattern.

Implementation

When you work with the Abstract Factory/Factory Method patterns, you must decide, at some point, which
concrete creator you wish to use, probably by checking some kind of preference flag. As you must do this
anyway, why not simply create a factory class that stores concrete products, and then populate this during
initialization? You can cut down on a couple of classes this way and, as you shall see, take advantage of other
benefits. Here’s some simple code that uses the Prototype pattern in a factory:

// listing 09.30

class Sea

class EarthSea extends Sea

class MarsSea extends Sea

class Plains

class EarthPlains extends Plains

class MarsPlains extends Plains

class Forest

class EarthForest extends Forest

class MarsForest extends Forest

200

// listing 09.31

class TerrainFactory

CHAPTER 9 ' GENERATING OBJECTS

public function _ construct(Sea $sea, Plains $plains, Forest $forest)

{
private $sea;
private $forest;
private $plains;
{
$this->sea = $sea;
$this->plains = $plains;
$this->forest = $forest;
}
public function getSea(): Sea
{
return clone $this->sea;
}
public function getPlains(): Plains
{
return clone $this->plains;
}
public function getForest(): Forest
{
return clone $this->forest;
}
}

// listing 09.32

$factory = new TerrainFactory(
new EarthSea(),
new EarthPlains(),
new EarthForest()
)5
print_r($factory->getSea());
print_r($factory->getPlains());
print_r($factory->getForest());

popp\ch09\batchi1\EarthSea Object

)
popp\ch09\batch11\EarthPlains Object

)
popp\cho9\batchi1\EarthForest Object

)

201

CHAPTER 9 © GENERATING OBJECTS

Asyou can see, I load up a concrete TerrainFactory with instances of product objects. When a client
calls getSea(), Ireturn a clone of the Sea object that I cached during initialization. This structure buys
me additional flexibility. Want to play a game on a new planet with Earth-like seas and forests, but Mars-
like plains? No need to write a new creator class—you can simply change the mix of classes you add to
TerrainFactory:

$factory = new TerrainFactory(
new EarthSea(),
new MarsPlains(),
new EarthForest()

);

So the Prototype pattern allows you to take advantage of the flexibility afforded by composition. We get
more than that, though. Because you are storing and cloning objects at runtime, you reproduce object state
when you generate new products. Imagine that Sea objects have a $navigability property. The property
influences the amount of movement energy a sea tile saps from a vessel and can be set to adjust the difficulty
level of a game:

// listing 09.33
class Sea
{

private $navigability = 0;

public function _ construct(int $navigability)

{
}

$this->navigability = $navigability;

Now when I initialize the TerrainFactory object, I can add a Sea object with a navigability modifier.
This will then hold true for all Sea objects served by TerrainFactory:

// listing 09.34

$factory = new TerrainFactory(
new EarthSea(-1),
new EarthPlains(),
new EarthForest()

);

This flexibility is also apparent when the object you wish to generate is composed of other objects.

Note | covered object cloning in Chapter 4. The clone keyword generates a shallow copy of any object to
which it is applied. This means that the product object will have the same properties as the source. If any of the
source’s properties are objects, then these will not be copied into the product. Instead, the product will reference
the same object properties. It is up to you to change this default and to customize object copying in any other way,
by implementing a __ clone() method. This is called automatically when the clone keyword is used.

202

http://dx.doi.org/10.1007/978-1-4842-1996-6_4

CHAPTER 9 ' GENERATING OBJECTS

Perhaps all Sea objects can contain Resource objects (FishResource, OilResource, etc.). According to
a preference flag, we might give all Sea objects a FishResource by default. Remember that if your products
reference other objects, you should implementa __clone() method to ensure that you make a deep copy:

class Contained

{
}
class Container
{
public $contained;
function _ construct()
{
$this->contained = new Contained();
}
function _ clone()
{
// Ensure that cloned object holds a
// clone of self::$contained and not
// a reference to it
$this->contained = clone $this->contained;
}
}

Pushing to the Edge: Service Locator

I promised that this chapter would deal with the logic of object creation, doing away with the sneaky buck-
passing of many object-oriented examples. Yet some patterns here have slyly dodged the decision-making
part of object creation, if not the creation itself.

The Singleton pattern is not guilty. The logic for object creation is built-in and unambiguous. The
Abstract Factory pattern groups the creation of product families into distinct concrete creators. How do we
decide which concrete creator to use, though? The Prototype pattern presents us with a similar problem.
Both these patterns handle the creation of objects, but they defer the decision as to which object or group of
objects should be created.

The particular concrete creator that a system chooses is often decided according to the value of a
configuration switch of some kind. This could be located in a database, a configuration file, or a server file
(such as Apache’s directory-level configuration file, usually called .htaccess), or it could even be hard-
coded as a PHP variable or property. Because PHP applications must be reconfigured for every request, you
need script initialization to be as painless as possible. For this reason, I often opt to hard-code configuration
flags in PHP code. This can be done by hand or by writing a script that autogenerates a class file. Here’s a
crude class that includes a flag for calendar protocol types:

// listing 09.35
class Settings

{
}

static $COMMSTYPE = 'Bloggs';

203

CHAPTER 9 © GENERATING OBJECTS

Now that I have a flag (however inelegant), I can create a class that uses it to decide which CommsManager
to serve on request. It is quite common to see a Singleton used in conjunction with the Abstract Factory
pattern, so let’s do that:

// listing 09.36
class AppConfig

private static $instance;
private $commsManager;

private function _ construct()

{

// will run once only
$this->init();

private function init()

{
switch (Settings::$COMMSTYPE) {
case 'Mega':
$this->commsManager = new MegaCommsManager();
break;
default:
$this->commsManager = new BloggsCommsManager();
}
}
public static function getInstance(): AppConfig
{
if (empty(self::$instance)) {
self::$instance = new self();
}
return self::$instance;
}
public function getCommsManager(): CommsManager
{
return $this->commsManager;
}

The AppConfig class is a standard Singleton. For that reason, I can get an AppConfig instance anywhere
in the system, and I will always get the same one. The init() method is invoked by the class’s constructor
and is therefore only run once in a process. It tests the Settings: : $COMMSTYPE property, instantiating a
concrete CommsManager object according to its value. Now my script can get a CommsManager object and work
with it without ever knowing about its concrete implementations or the concrete classes it generates:

$commsMgr = AppConfig::getInstance()->getCommsManager();
$commsMgr->getApptEncoder()->encode();

204

CHAPTER 9 ' GENERATING OBJECTS

Because AppConfig manages the work of finding and creating components for us, it is an instance of
what’s known as the Service Locator pattern. It's neat (and we'll see it again in more detail in Chapter 12),
but it does introduce a more benign dependency than direct instantiation. Any classes using its service
must explicitly invoke this monolith, binding them to the wider system. For this reason, some prefer another
approach.

Splendid Isolation: Dependency Injection

In the previous section, I used a flag and a conditional statement within a factory to determine which of two
CommsManager classes to serve up. The solution was not as flexible as it might have been. The classes on offer
were hard-coded within a single locator, with a choice of two components built-in to a conditional. That
inflexibility was a facet of my demonstration code, though, rather than a problem with Service Locator, per
se. I could have used any number of strategies to locate, instantiate, and return objects on behalf of client
code. The real reason Service Locator is often treated with suspicion, however, is the fact that a component
must explicitly invoke the locator. This feels a little, well, global. And object-oriented developers are rightly
suspicious of all things global.

The Problem

Whenever you use the new operator, you close down the possibility of polymorphism within that scope.
Imagine a method that deploys a hard-coded BloggsApptEncoder object, for example:

// listing 09.37
class AppointmentMaker

public function makeAppointment()

{
$encoder = new BloggsApptEncoder();
return $encoder->encode();

This might work for our initial needs, but it will not allow any other ApptEncoder implementation
to be switched in at runtime. That limits the ways in which the class can be used, and it makes the class
harder to test. Much of this chapter addresses precisely this kind of inflexibility. But, as I pointed out in the
previous section, I have skated over the fact that, even if we use the Prototype or Abstract Factory patterns,
instantiation has to happen somewhere. Here again is a fragment of code that creates a Prototype object:

// listing 09.32

$factory = new TerrainFactory(
new EarthSea(),
new EarthPlains(),
new EarthForest()

)s

205

http://dx.doi.org/10.1007/978-1-4842-1996-6_12

CHAPTER 9 © GENERATING OBJECTS

The Prototype TerrainFactory class called here is a step in the right direction—it demands generic
types: Sea, Plains, and Forest. The class leaves it up to the client code to determine which implementations
should be provided. But how is this done?

Implementation

Much of our code calls out to factories. As we have seen, this model is known as the Service Locator
pattern. A method delegates responsibility to a provider which it trusts to find and serve up an instance
of the desired type. The Prototype example inverts this; it simply expects the instantiating code to
provide implementations at call time. There’s no magic here—it’s simply a matter of requiring types in a
constructor’s signature, instead of creating them directly within the method. A variation on this is to provide
setter methods, so that clients can pass in objects before invoking a method that uses them.

So let’s fix up AppointmentMaker in this way:

// listing 09.38
class AppointmentMaker2
{
private $encoder;
public function _ construct(ApptEncoder $encoder) {
$this->encoder = $encoder;
}
public function makeAppointment()
{

}

return $this->encoder->encode();

AppointmentMaker2 has given up control—it no longer creates the BloggsApptEncoder, and we have
gained flexibility. What about the logic for the actual creation of objects, though? Where do the dreaded
new statements live? We need an assembler component to take on the job. Typically, this approach uses a
configuration file to figure out which implementations should be instantiated. There are tools to help us with
this, but this book is all about doing it ourselves, so let’s build a very naive implementation. I'll start with a
crude XML format which describes the relationships between classes in our system and the concrete types
that should be passed to their constructors:

<objects>
<class name="\popp\cho9\batchi1\TerrainFactory">
<arg num="0" inst="\popp\cho9\batchi1\EarthSea" />
<arg num="1" inst="\popp\cho9\batchi1\MarsPlains" />
<arg num="2" inst="\popp\cho9\batchi1\EarthForest" />
</class>

<class name="\popp\cho9\batch14\AppointmentMaker2">
<arg num="0" inst="\popp\cho9\batcho6\BloggsApptEncoder" />
</class>
</objects>

206

CHAPTER 9 ' GENERATING OBJECTS

I've described two classes from this chapter: TerrainFactory and AppointmentMaker2. I want
TerrainFactory to be instantiated with an EarthSea object, aMarsPlains object, and an EarthForest
object. I would also like AppointmentMaker2 to be passed a BloggsApptEncoder object.

Here’s a very simple assembler class that reads this configuration data and instantiates objects on
demand:

// listing 09.39
class ObjectAssembler

{
private $components = [];
public function _ construct(string $conf)
{
$this->configure($conf);
}
private function configure(string $conf)
{
$data = simplexml:load file($conf);
foreach ($data->class as $class) {
$args = [1;
$name = (string)$class['name'];
foreach ($class->arg as $arg) {
$argclass = (string)$arg['inst'];
$args[(int)$arg['num']] = $argclass;
ksort($args);
$this->components[$name] = function () use ($name, $args) {
$expandedargs = [];
foreach ($args as $arg) {
$expandedargs[] = new $arg();
}
$rclass = new \ReflectionClass($name);
return $rclass->newInstanceArgs($expandedargs);
};
}
}
public function getComponent(string $class)
{
if (! isset($this->components[$class])) {
throw new \Exception("unknown component '$class'");
}
$ret = $this->components[$class]();
return $ret;
}
}

This is pretty crude, and it is a little dense at first reading, so let’s work through it briefly. Most of the
real action takes place in configure(). The method accepts a path which is passed on from the constructor.
It uses the simplexml extension to parse the configuration XML. In a real project, of course, we'd add more
error handling here and throughout. For now, I'm pretty trusting of the XML I'm parsing. For every <class>

207

CHAPTER 9 © GENERATING OBJECTS

element, I extract the fully qualified class name and store it in the $name variable. Then I acquire all the
<arg> subelements, all of which have their own class names. I store the arguments in an array named $args,
ordered according to the XML num argument. I pack all of this in an anonymous function which I store in the
$components property. This function, which instantiates a requested class and all its required objects, is only
invoked when getComponent () is called with the correct class name. In this way the ObjectAssembler can
maintain a pretty small footprint. Note the use of a closure here. The anonymous function has access to the
$name and $args variables declared in the scope of its creation, thanks to the use keyword.

Of course, this is really toy code. In addition to improved error checking, a robust implementation
would need to handle the possibility that the objects to be injected into a component might themselves
require arguments. We might also want to address issues around caching. For example, should a contained
object be instantiated for every call, or only once?

Note If you are considering building a Dependency Injection assembler/container, you should look at a
couple of options: Pimple (notwithstanding its unpleasant name) and Symfony DI. You can find out more about
Pimple at http://pimple.sensiolabs.org/; you can learn more about the Symfony DI component at http://
symfony.com/doc/current/components/dependency injection/introduction.html.

Nevertheless, we can now maintain the flexibility of our components and handle instantiation
dynamically. Let’s try out the ObjectAssembler:

// listing 09.40

$assembler = new ObjectAssembler("src/cho9/batchi4/objects.xml");

$apptmaker = $assembler->getComponent("\\popp\\cho9\\batch14\\AppointmentMaker2");
$out = $apptmaker->makeAppointment();

print $out;

Once we have an ObjectAssembler, object acquisition takes up a single statement. The
AppointmentMaker2 class is free of its previous hard-coded dependency on an ApptEncoder instance. A
developer can now use the configuration file to control what classes are used at runtime, as well as to test
AppointmentMaker2 in isolation from the wider system.

Consequences

So, now we’ve seen two options for object creation. The AppConfig class was an instance of Service Locator
(i.e., a class with the ability to find components or services on behalf of its client). Using dependency
injection certainly makes for more elegant client code. The AppointmentMaker2 class is blissfully unaware of
strategies for object creation. It simply does its job. This is the ideal for a class, of course. We want to design
classes that can focus on their responsibilities, isolated as far as possible from the wider system. However,
this purity does come at a price. The object assembler component hides a lot of magic. We must treat it as a
black box and trust it to conjure up objects on our behalf. This is fine, so long as the magic works. Unexpected
behavior can be hard to debug.

The Service Locator pattern, on the other hand, is simpler, though it embeds your components into
a wider system. It is not the case that, used well, a Service Locator makes testing harder. Nor does it make
a system inflexible. A Service Locator can be configured to serve up arbitrary components for testing or
according to configuration. But a hard-coded call to a service locator makes a component dependent upon
it. Because the call is made from within the body of a method, the relationship between the client and the
target component (which is provided by the Service Locator) is also somewhat obscured. This relationship
is made explicit in the Dependency Injection example because it is declared in the constructor method’s
signature.

208

http://pimple.sensiolabs.org/
http://symfony.com/doc/current/components/dependency_injection/introduction.html
http://symfony.com/doc/current/components/dependency_injection/introduction.html

CHAPTER 9 ' GENERATING OBJECTS

So, which approach should we choose? To some extent it’s a matter of preference. For my own part, I
tend to prefer to start with the simplest solution, and then to refactor to greater complexity, if needed. For
that reason, I usually opt for Service Locator. I can create a Registry class in a few lines of code, and increase
its flexibility according to the requirements. My components are a little more knowing than I would like, but
since I rarely move classes from one system to another, I have not suffered too much from the embedding
effect. When I have moved a system-based class into a standalone library, I have not found it particularly
hard to refactor the Service Locator dependency away.

Dependency Injection offers purity, but it requires another kind of embedding. You must buy in to the
magic of the assemb]er. If you are already working within a framework which offers this functionality, there is
no reason not to avail yourself of it. The Symfony DependencyInjection component, for example, provides a
hybrid solution of Service Locator (known as the “service container”) and Dependency Injection. The service
container manages the instantiation of objects according to the configuration (or code, if you prefer) and
provides a simple interface for clients to obtain those objects. The service container even allows the use of
factories for object creation. On the other hand, if you are rolling your own, or using components from various
frameworks, you may wish to keep things simple at the cost of some elegance.

Summary

This chapter covered some of the tricks that you can use to generate objects. I began by examining the
Singleton pattern, which provides global access to a single instance. Next, I looked at the Factory Method
pattern, which applies the principle of polymorphism to object generation. And I combined Factory
Method with the Abstract Factory pattern to generate creator classes that instantiate sets of related objects.
I also looked at the Prototype pattern and saw how object cloning can allow composition to be used in
object generation. Finally, I examined two strategies for object creation: Service Locator and Dependency
Injection.

209

CHAPTER 10

Patterns for Flexible Object
Programming

With strategies for generating objects covered, we're free now to look at some strategies for structuring

classes and objects. I will focus in particular on the principle that composition provides greater flexibility

than inheritance. The patterns I examine in this chapter are once again drawn from the Gang of Four catalog.
This chapter will cover a trio of patterns:

e The Composite pattern: Composing structures in which groups of objects can be used
as if they were individual objects

e The Decorator pattern: A flexible mechanism for combining objects at runtime to
extend functionality

e The Facade pattern: Creating a simple interface to complex or variable systems

Structuring Classes to Allow Flexible Objects

Way back in Chapter 4, I said that beginners often confuse objects and classes. This was only half true. In
fact, most of the rest of us occasionally scratch our heads over UML class diagrams, attempting to reconcile
the static inheritance structures they show with the dynamic object relationships their objects will enter into
off the page.

Remember the pattern principle, “Favor composition over inheritance”? This principle distills this
tension between the organization of classes and objects. In order to build flexibility into our projects, we
structure our classes so that their objects can be composed into useful structures at runtime.

This is a common theme running through the first two patterns of this chapter. Inheritance is an
important feature in both, but part of its importance lies in providing the mechanism by which composition
can be used to represent structures and extend functionality.

The Composite Pattern

The Composite pattern is perhaps the most extreme example of inheritance deployed in the service of
composition. It is a simple and yet breathtakingly elegant design. It is also fantastically useful. Be warned,
though; it is so neat, you might be tempted to overuse this strategy.

© Matt Zandstra 2016 211
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_10

http://dx.doi.org/10.1007/978-1-4842-1996-6_4

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

The Composite pattern is a simple way of aggregating and then managing groups of similar objects so
that an individual object is indistinguishable to a client from a collection of objects. The pattern is, in fact,
very simple, but it is also often confusing. One reason for this is the similarity in structure of the classes in
the pattern to the organization of its objects. Inheritance hierarchies are trees, beginning with the super class
at the root, and branching out into specialized subclasses. The inheritance tree of classes laid down by the
Composite pattern is designed to allow the easy generation and traversal of a tree of objects.

If you are not already familiar with this pattern, you have every right to feel confused at this point. Let’s
try an analogy to illustrate the way that single entities can be treated in the same way as collections of things.
Given broadly irreducible ingredients such as cereals and meat (or soya if you prefer), we can make a food
product—a sausage, for example. We then act on the result as a single entity. Just as we eat, cook, buy, or sell
meat, we can eat, cook, buy, or sell the sausage that the meat in part composes. We might take the sausage
and combine it with the other composite ingredients to make a pie, thereby rolling a composite into a larger
composite. We behave in the same way to the collection as we do to the parts. The Composite pattern helps
us to model this relationship between collections and components in our code.

The Problem

Managing groups of objects can be quite a complex task, especially if the objects in question might also
contain objects of their own. This kind of problem is very common in coding. Think of invoices, with line
items that summarize additional products or services, or things-to-do lists with items that themselves
contain multiple subtasks. In content management, we can’t move for trees of sections, pages, articles, or
media components. Managing these structures from the outside can quickly become daunting.

Let’s return to a previous scenario. I am designing a system based on a game called Civilization. A player
can move units around hundreds of tiles that make up a map. Individual counters can be grouped together
to move, fight, and defend themselves as a unit. Here I define a couple of unit types:

// listing 10.01

abstract class Unit

{

abstract public function bombardStrength(): int;
}
class Archer extends Unit
{

public function bombardStrength(): int

{

return 4;

}

}

class LaserCannonUnit extends Unit

public function bombardStrength(): int
{

}

return 44;

212

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

The Unit class defines an abstract bombardStrength() method, which sets the attack strength of a
unit bombarding an adjacent tile. I implement this in both the Archer and LaserCannonUnit classes. These
classes would also contain information about movement and defensive capabilities, but I'll keep things
simple. I could define a separate class to group units together, like this:

// listing 10.02
class Army
{ private $units = [];
?ublic function addUnit(Unit $unit)

array_push($this->units, $unit);

public function bombardStrength(): int

{
$ret = 0;
foreach ($this->units as $unit) {
$ret += $unit->bombardStrength();
}
return $ret;
}

}

// listing 10.03

$unit1 = new Archer();

$unit2 = new LaserCannonUnit();
$army = new Army();
$army->addUnit($unit1);
$army->addUnit($unit2);

print $army->bombardStrength();

The Army class has an addUnit () method that accepts a Unit object. Unit objects are stored in an array
property called $units. I calculate the combined strength of my army in the bombardStrength() method.
This simply iterates through the aggregated Unit objects, calling the bombardStrength() method of
each one.

This model is perfectly acceptable, as long as the problem remains as simple as this. What happens,
though, if I were to add some new requirements? Let’s say that an army should be able to combine with
other armies. Each army should retain its own identity so that it can disentangle itself from the whole at a
later date. The Arch Duke’s brave forces might share common cause today with General Soames’s assault
upon the exposed flank of the enemy, but a domestic rebellion may send his army scurrying home at any
time. For this reason, I can’t just decant the units from each army into a new force.

213

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

I could amend the Army class to accept Army objects as well as Unit objects:
// listing 10.04

public function addArmy(Army $army)
{

array push($this->armies, $army);

Then I'd need to amend the bombardStrength() method to iterate through all armies as well as units:

// listing 10.05
public function bombardStrength(): int
{
$ret = 0;
foreach ($this->units as $unit) {
$ret += $unit->bombardStrength();
}

foreach ($this->armies as $army) {
$ret += $army->bombardStrength();
}

return $ret;

}

This additional complexity is not too problematic at the moment. Remember, though, I would need to
do something similar in methods like defensiveStrength(), movementRange(), and so on. My game is going
to be richly featured. Already the business group is calling for troop carriers that can hold up to ten units
to improve their movement range on certain terrains. Clearly, a troop carrier is similar to an army in that it
groups units. It also has its own characteristics. I could further amend the Army class to handle TroopCarrier
objects, but I know that there will be a need for still more unit groupings. It is clear that I need a more flexible
model.

Let’s look again at the model I have been building. All the classes I created shared the need for a
bombardStrength() method. In effect, a client does not need to distinguish between an army, a unit, or a
troop carrier. They are functionally identical. They need to move, attack, and defend. Those objects that
contain others need to provide methods for adding and removing them. These similarities lead us to an
inevitable conclusion. Because container objects share an interface with the objects that they contain, they
are naturally suited to share a type family.

Implementation

The Composite pattern defines a single inheritance hierarchy that lays down two distinct sets of
responsibilities. We have already seen both of these in our example. Classes in the pattern must support
a common set of operations as their primary responsibility. For us, that means the bombardStrength()
method. Classes must also support methods for adding and removing child objects.

Figure 10-1 shows a class diagram that illustrates the Composite pattern as applied to our problem.

214

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

Unit

+addUnit(unit:Unit)
+removeUnit(unit:Unit)
+bombardStrength(): int

7

Archer| |[LaserCanon Army <>—

TroopCarrier <>——

Figure 10-1. The Composite pattern

Asyou can see, all the units in this model extend the Unit class. A client can be sure, then, that any Unit
object will support the bombardStrength() method. So, an Army can be treated in exactly the same way as an
Archer.

The Army and TroopCarrier classes are composites: they are designed to hold Unit objects. The Archer
and LaserCannon classes are leaves, designed to support unit operations, but not to hold other Unit objects.
There is actually an issue as to whether leaves should honor the same interface as composites, as they do in
Figure 10-1. The diagram shows TroopCarrier and Army aggregating other units, even though the leaf classes
are also bound to implement addUnit (). Iwill return to this question shortly. Here is the abstract Unit class:

// listing 10.06
abstract class Unit

{
abstract public function addUnit(Unit $unit);
abstract public function removeUnit(Unit $unit);
abstract public function bombardStrength(): int;
}

Asyou can see, I lay down the basic functionality for all Unit objects here. Now, let’s see how a
composite object might implement these abstract methods:

// listing 10.07

class Army extends Unit

{

private $units = [];

public function addUnit(Unit $unit)
{

if (in_array($unit, $this->units, true)) {
return;
}

215

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

$this->units[] = $unit;

}
public function removeUnit(Unit $unit)
{
$idx = array search($unit, $this->units, true);
if (is_int($idx)) {
array splice($this->units, $idx, 1, []);
}
}
public function bombardStrength(): int
{
$ret = 0;
foreach ($this->units as $unit) {
$ret += $unit->bombardStrength();
}
return $ret;
}

The addUnit () method checks whether I have already added the same Unit object before storing it in
the private $units array property. removeUnit() uses a similar check to remove a given Unit object from the
property.

Army objects, then, can store Units of any kind, including other Army objects, or leaves such as
Archer or LaserCannonUnit. Because all units are guaranteed to support bombardStrength(), our
Army: :bombardStrength() method simply iterates through all the child Unit objects stored in the $units
property, calling the same method on each.

One problematic aspect of the Composite pattern is the implementation of add and remove
functionality. The classic pattern places add() and remove () methods in the abstract super class. This
ensures that all classes in the pattern share a common interface. As you can see here, though, it also means
that leaf classes must provide an implementation:

// listing 10.08
class UnitException extends \Exception

{
}

// listing 10.09

class Archer extends Unit

{ public function addUnit(Unit $unit)
{ throw new UnitException(get class($this) . " is a leaf");
}
public function removeUnit(Unit $unit)
i throw new UnitException(get class($this) . " is a leaf");

216

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

public function bombardStrength(): int
{

}

return 4;

I do not want to make it possible to add a Unit object to an Archer object, so I throw exceptions
ifaddUnit() or removeUnit() are called. I will need to do this for all leaf objects, so I could perhaps
improve my design by replacing the abstract addUnit()/removeUnit() methods in Unit with default
implementations like the one in the preceding example:

// listing 10.10

abstract class Unit

{
public function addUnit(Unit $unit)
{
throw new UnitException(get_class($this) . " is a leaf");
}
public function removeUnit(Unit $unit)
{
throw new UnitException(get class($this) . " is a leaf");
}
abstract public function bombardStrength(): int;
}

// listing 10.11

class Archer extends Unit

{
public function bombardStrength(): int
{
return 4;
}
}

This removes duplication in leaf classes, but has the drawback that a composite is not forced at compile time
to provide an implementation of addUnit () and removeUnit (), which could cause problems down the line.

I'will look in more detail at some of the problems presented by the Composite pattern in the next
section. Let’s end this section by examining some of its benefits:

e Flexibility: Because everything in the Composite pattern shares a common
supertype, it is very easy to add new composite or leaf objects to the design without
changing a program’s wider context.

e Simplicity: A client using a Composite structure has a straightforward interface.
There is no need for a client to distinguish between an object that is composed
of others and a leaf object (except when adding new components). A call to
Army: :bombardStrength() may cause a cascade of delegated calls behind the
scenes; but to the client, the process and result are exactly equivalent to those
associated with calling Archer: :bombardStrength().

217

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

e Implicit reach: Objects in the Composite pattern are organized in a tree. Each
composite holds references to its children. An operation on a particular part of the
tree, therefore, can have a wide effect. We might remove a single Army object from its
Army parent and add it to another. This simple act is wrought on one object, but it has
the effect of changing the status of the Army object’s referenced Unit objects and of
their own children.

e Explicit reach: Tree structures are easy to traverse. They can be iterated in order
to gain information or to perform transformations. We will look at a particularly
powerful technique for this in the next chapter when we deal with the Visitor pattern.

Often, you really see the benefit of a pattern only from the client’s perspective, so here are a couple of
armies:

// listing 10.12

// create an army
$main_army = new Army();

// add some units
$main_army->addUnit(new Archer());
$main_army->addUnit(new LaserCannonUnit());

// create a new army
$sub_army = new Army();

// add some units

$sub_army->addUnit(new Archer());
$sub_army->addUnit(new Archer());
$sub_army->addUnit(new Archer());

// add the second army to the first
$main_army->addUnit($sub_army);

// all the calculations handled behind the scenes
print "attacking with strength: {$main_army->bombardStrength()}\n";

I create a new Army object and add some primitive Unit objects. I repeat the process for a second Army
object that I then add to the first. When I call Unit: :bombardStrength() on the first Army object, all the
complexity of the structure that I have built up is entirely hidden.

Consequences

If you're anything like me, you would have heard alarm bells ringing when you saw the code extract for the
Archer class. Why do we put up with these redundant addUnit () and removeUnit () methods in leaf classes
that do not need to support them? An answer of sorts lies in the transparency of the Unit type.

If a client is passed a Unit object, it knows that the addUnit () method will be present. The Composite
pattern principle that primitive (leaf) classes have the same interface as composites is upheld. This does not
actually help you much because you still do not know how safe you might be calling addUnit() on any Unit
object you might come across.

218

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

IfI move these add/remove methods down so that they are available only to composite classes, then
passing a Unit object to a method leaves me with the problem that I do not know by default whether or not
it supports addUnit (). Nevertheless, leaving booby-trapped methods lying around in leaf classes makes me
uncomfortable. It adds no value and confuses a system’s design because the interface effectively lies about
its own functionality.

You can split composite classes off into their own CompositeUnit subtype quite easily. First of all, I
excise the add/remove behavior from Unit:

// listing 10.13

abstract class Unit

{
public function getComposite()
{
return null;
}
abstract public function bombardStrength(): int;
}

Notice the new getComposite() method. I will return to this in a little while. Now, I need a new abstract
class to hold addUnit() and removeUnit().I can even provide default implementations:

// listing 10.14
abstract class CompositeUnit extends Unit
{

private $units = [];

public function getComposite(): CompositeUnit

{
return $this;
}
public function addUnit(Unit $unit)
{
if (in_array($unit, $this->units, true)) {
return;
}
$this->units[] = $unit;
}
public function removeUnit(Unit $unit)
{
$idx = array_search($unit, $this->units, true);
if (is_int($idx)) {
array splice($this->units, $idx, 1, []);
}

219

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

public function getUnits(): array
{

}

return $this->units;

The CompositeUnit class is declared abstract, even though it does not itself declare an abstract method.
It does, however, extend Unit, and it does not implement the abstract bombardStrength() method. Army
(and any other composite classes) can now extend CompositeUnit. The classes in my example are now
organized as in Figure 10-2.

Unit

+bombardStrength(): int
+getComposite(): CompositeUnit

T

Archer||LaserCanon CompositeUnit (@—

+addUnit (unit:Unit)
+removeUnit (unit:Unit)

TroopCarrier| |Army

Figure 10-2. Moving add/remove methods out of the base class

The annoying, useless implementations of add/remove methods in the leaf classes are gone, but the
client must still check to see whether it has a CompositeUnit before it can use addUnit().

This is where the getComposite() method comes into its own. By default, this method returns a null
value. Only in a CompositeUnit class does it return CompositeUnit. So if a call to this method returns an
object, we should be able to call addUnit() on it. Here’s a client that uses this technique:

// listing 10.15

class UnitScript
{
public static function joinExisting(
Unit $newUnit,
Unit $occupyingUnit
): CompositeUnit {
$comp = $occupyingUnit->getComposite();
if (! is_null($comp)) {
$comp->addUnit($newlnit);
} else {
$comp = new Army();

220

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

$comp->addUnit($occupyingUnit);
$comp->addUnit($newlnit);
}

return $comp;

The joinExisting() method accepts two Unit objects. The first is a newcomer to a tile, and the second
is a prior occupier. If the second Unit is a CompositeUnit, then the first will attempt to join it. If not, then a
new Army will be created to cover both units. I have no way of knowing at first whether the $occupyingUnit
argument contains a CompositeUnit. A call to getComposite() settles the matter, though. If getComposite()
returns an object, I can add the new Unit object to it directly. If not, I create the new Army object and add
both.

I could simplify this model further by having the Unit: : getComposite() method return an Army object
prepopulated with the current Unit. Or I could return to the previous model (which did not distinguish
structurally between composite and leaf objects) and have Unit: :addUnit() do the same thing: create an
Army object and add both Unit objects to it. This is neat, but it presupposes that you know in advance the
type of composite you would like to use to aggregate your units. Your business logic will determine the kinds
of assumptions you can make when you design methods like getComposite() and addUnit().

These contortions are symptomatic of a drawback to the Composite pattern. Simplicity is achieved by
ensuring that all classes are derived from a common base. The benefit of simplicity is sometimes bought at a
cost to type safety. The more complex your model becomes, the more manual type checking you are likely to
have to do. Let’s say that I have a Cavalry object. If the rules of the game state that you cannot put a horse on
a troop carrier, I have no automatic way of enforcing this with the Composite pattern:

// listing 10.16

class TroopCarrier extends CompositeUnit

{
public function addUnit(Unit $unit)
{
if ($unit instanceof Cavalry) {
throw new UnitException("Can't get a horse on the vehicle");
parent::addUnit($unit);
}
public function bombardStrength(): int
{
return 0;
}
}

I am forced to use the instanceof operator to test the type of the object passed to addUnit(). If you
have too many special cases of this kind, the drawbacks of the pattern begin to outweigh its benefits.
Composite works best when most of the components are interchangeable.

Another issue to bear in mind is the cost of some Composite operations. The Army : :bombardStrength()
method is typical in that it sets off a cascade of calls to the same method down the tree. For a large tree with
lots of subarmies, a single call can cause an avalanche behind the scenes. bombardStrength() is not itself
very expensive, but what would happen if some leaves performed a complex calculation to arrive at their
return values? One way around this problem is to cache the result of a method call of this sort in the parent

221

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

object, so that subsequent invocations are less expensive. You need to be careful, though, to ensure that the
cached value does not grow stale. You should devise strategies to wipe any caches whenever any operations
take place on the tree. This may require that you give child objects references to their parents.

Finally, a note about persistence. The Composite pattern is elegant, but it doesn’t lend itself neatly to
storage in a relational database. This is because, by default, you access the entire structure only through a
cascade of references. To construct a Composite structure from a database in the natural way, you would
have to make multiple expensive queries. You can get around this problem by assigning an ID to the whole
tree, so that all components can be drawn from the database in one go. Having acquired all the objects,
however, you would still have the task of recreating the parent/child references, which themselves would
have to be stored in the database. This is not difficult, but it is somewhat messy.

Although Composites sit uneasily with relational databases, they lend themselves very well indeed to
storage in XML. This is because XML elements are often themselves composed of trees of subelements.

Composite in Summary

So the Composite pattern is useful when you need to treat a collection of things in the same way as you
would an individual, either because the collection is intrinsically like a component (armies and archers),

or because the context gives the collection the same characteristics as the component (line items in an
invoice). Composites are arranged in trees, so an operation on the whole can affect the parts, and data from
the parts is transparently available via the whole. The Composite pattern makes such operations and queries
transparent to the client. Trees are easy to traverse (as we shall see in the next chapter). It is easy to add new
component types to Composite structures.

On the downside, Composites rely on the similarity of their parts. As soon as we introduce complex
rules as to which composite object can hold which set of components, our code can become hard to
manage. Composites do not lend themselves well to storage in relational databases, but are well suited to
XML persistence.

The Decorator Pattern

While the Composite pattern helps us to create a flexible representation of aggregated components, the
Decorator pattern uses a similar structure to help us to modify the functionality of concrete components.
Once again, the key to this pattern lies in the importance of composition at runtime. Inheritance is a neat
way of building on characteristics laid down by a parent class. This neatness can lead you to hard-code
variation into your inheritance hierarchies, often causing inflexibility.

The Problem

Building all your functionality into an inheritance structure can result in an explosion of classes in a system.
Even worse, as you try to apply similar modifications to different branches of your inheritance tree, you are
likely to see duplication emerge.

Let’s return to our game. Here, [define a Tile class and a derived type:

// listing 10.17

abstract class Tile

{
}

abstract public function getWealthFactor(): int;

222

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

// listing 10.18
class Plains extends Tile

{
private $wealthfactor = 2;
public function getWealthFactor(): int
{
return $this->wealthfactor;
}
}

A tile represents a square on which my units might be found. Each tile has certain characteristics. In
this example, I have defined a getWealthFactor () method that affects the revenue a particular square
might generate if owned by a player. As you can see, Plains objects have a wealth factor of 2. Obviously, tiles
manage other data. They might also hold a reference to image information, so that the board can be drawn.
Once again, I'll keep things simple here.

I need to modify the behavior of the Plains object to handle the effects of natural resources and human
abuse. I wish to model the occurrence of diamonds on the landscape, and the damage caused by pollution.
One approach might be to inherit from the Plains object:

// listing 10.19
class DiamondPlains extends Plains

public function getWealthFactor(): int
{

}

return parent::getWealthFactor() + 2;
}
// listing 10.20
class PollutedPlains extends Plains

public function getWealthFactor(): int
{

}

return parent::getWealthFactor() - 4;

I can now acquire a polluted tile very easily:
// listing 10.21

$tile = new PollutedPlains();
print $tile->getWealthFactor();

You can see the class diagram for this example in Figure 10-3.

223

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

Tile

+getWealthFactor(): int

1

Plains

+getWealthFactor(): int

7

DiamondPlains

PollutedPlains

+getWealthFactor(): int

+getWealthFactor(): int

Figure 10-3. Building variation into an inheritance tree

This structure is obviously inflexible. I can get plains with diamonds. I can get polluted plains. But can
I get them both? Clearly not, unless I am willing to perpetrate the horror that is PollutedDiamondPlains.
This situation can only get worse when I introduce the Forest class, which can also have diamonds and

pollution.

This is an extreme example, of course, but the point is made. Relying entirely on inheritance to define
your functionality can lead to a multiplicity of classes and a tendency toward duplication.

Let’s take a more commonplace example at this point. Serious web applications often have to perform a
range of actions on a request before a task is initiated to form a response. You might need to authenticate the
user, for example, and to log the request. Perhaps you should process the request to build a data structure
from raw input. Finally, you must perform your core processing. You are presented with the same problem.

You can extend the functionality of a base ProcessRequest class with additional processing in a derived
LogRequest class, in a StructureRequest class, and in an AuthenticateRequest class. You can see this class

hierarchy in Figure 10-4.

AuthenticatelLogRequest?
AuthenticateStructureRequest?
StructureLogRequest?

etc etc

ProcessRequest

+process(req:RequestHelper)

LogRequest

AuthenticateRequest

StructureRequest

+process(req:RequestHelper)

+process(req:RequestHelper)

+process(req:RequestHelper)

// authenticate, then
parent::process($req);

function process(RequestHelper $req) {

Figure 10-4. More hard-coded variations

224

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

What happens, though, when you need to perform logging and authentication, but not data
preparation? Do you create a LogAndAuthenticateProcessor class? Clearly, it is time to find a more flexible
solution.

Implementation

Rather than use only inheritance to solve the problem of varying functionality, the Decorator pattern uses
composition and delegation. In essence, Decorator classes hold an instance of another class of their own
type. A Decorator will implement an operation so that it calls the same operation on the object to which it
has a reference before (or after) performing its own actions. In this way, it is possible to build a pipeline of
Decorator objects at runtime.

Let’s rewrite our game example to illustrate this:

abstract class Tile

{
abstract public function getWealthFactor(): int;
}
class Plains extends Tile
{
private $wealthfactor = 2;
public function getWealthFactor(): int
{
return $this->wealthfactor;
}
}

// listing 10.22

abstract class TileDecorator extends Tile

{
protected $tile;
public function _ construct(Tile $tile)
{
$this->tile = $tile;
}
}

Here, I have declared Tile and Plains classes as before, but I have also introduced a new class:
TileDecorator. This does not implement getWealthFactor (), so it must be declared abstract. I define
a constructor that requires a Tile object, which it stores in a property called $tile. I make this property
protected so that child classes can gain access to it. Now I'll redefine the Pollution and Diamond classes:

// listing 10.23
class DiamondDecorator extends TileDecorator

{

public function getWealthFactor(): int
{

225

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

return $this->tile->getWealthFactor() + 2;

}
// listing 10.24

class PollutionDecorator extends TileDecorator

{
public function getWealthFactor(): int
{
return $this->tile->getWealthFactor() - 4;
}
}

Each of these classes extends TileDecorator. This means that they have a reference to a Tile object.
When getWealthFactor() is invoked, each of these classes invokes the same method on its Tile reference
before making its own adjustment.

By using composition and delegation like this, you make it easy to combine objects at runtime.
Because all the objects in the pattern extend Tile, the client does not need to know which combination it is
working with. It can be sure that a getWealthFactor() method is available for any Tile object, whether it is
decorating another behind the scenes or not:

// listing 10.25
$tile = new Plains();
print $tile->getWealthFactor(); // 2
Plains is a component. It simply returns 2:
// listing 10.26
$tile = new DiamondDecorator(new Plains());
print $tile->getWealthFactor(); // 4

DiamondDecorator has a reference to a Plains object. It invokes getWealthFactor () before adding its
own weighting of 2:

// listing 10.27
$tile = new PollutionDecorator(new DiamondDecorator(new Plains()));
print $tile->getWealthFactor(); // 0

PollutionDecorator has a reference to a DiamondDecorator object, which has its own Tile reference.
You can see the class diagram for this example in Figure 10-5.

226

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

Tile

+getWealthFactor(): int

Plains TileDecorator -
+getWealthFactor(): int + construct(tile:Tile)
DiamondDecorator PollutedDecorator
+getWealthFactor(): int +getWealthFactor(): int

Figure 10-5. The Decorator pattern

This model is very extensible. You can add new decorators and components very easily. With lots of
decorators, you can build very flexible structures at runtime. The component class, Plains in this case,
can be significantly modified in many ways without the need to build the totality of the modifications into
the class hierarchy. In plain English, this means you can have a polluted P1ains object that has diamonds,
without having to create a PollutedDiamondPlains object.

The Decorator pattern builds up pipelines that are very useful for creating filters. The java.io package
makes great use of decorator classes. The client coder can combine decorator objects with core components to
add filtering, buffering, compression, and so on to core methods like read (). My web request example can also be
developed into a configurable pipeline. Here’s a simple implementation that uses the Decorator pattern:

// listing 10.28
class RequestHelper

{
}

// listing 10.29

abstract class ProcessRequest

{
}

// listing 10.30

abstract public function process(RequestHelper $req);

class MainProcess extends ProcessRequest

public function process(RequestHelper $req)

{
}

print _ CLASS__ . ": doing something useful with request\n";

227

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

// listing 10.31

abstract class DecorateProcess extends ProcessRequest

{
protected $processrequest;
public function _ construct(ProcessRequest $pr)
{
$this->processrequest = $pr;
}
}

As before, we define an abstract superclass (ProcessRequest), a concrete component (MainProcess),
and an abstract decorator (DecorateProcess). MainProcess: :process() does nothing but report that it
has been called. DecorateProcess stores a ProcessRequest object on behalf of its children. Here are some
simple concrete decorator classes:

// listing 10.32

class LogRequest extends DecorateProcess

{
public function process(RequestHelper $req)
{
print _ CLASS__ . ": logging request\n";
$this->processrequest->process($req);
}
}

// listing 10.33

class AuthenticateRequest extends DecorateProcess

{
public function process(RequestHelper $req)
{
print _ CLASS__ . ": authenticating request\n";
$this->processrequest->process($req);
}
}

// listing 10.34

class StructureRequest extends DecorateProcess

{
public function process(RequestHelper $req)
{
print _ CLASS__ . ": structuring request data\n";
$this->processrequest->process($req);
}
}

Each process() method outputs a message before calling the referenced ProcessRequest object’s own
process () method. You can now combine objects instantiated from these classes at runtime to build filters

228

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

that perform different actions on a request, and in different orders. Here’s some code to combine objects
from all these concrete classes into a single filter:

// listing 10.35

$process = new AuthenticateRequest(new StructureRequest(
new LogRequest(
new MainProcess()
)

))s

$process->process(new RequestHelper());

This code gives the following output:

popp\ch10\batcho7\AuthenticateRequest: authenticating request
popp\ch10\batcho7\StructureRequest: structuring request data
popp\ch10\batcho7\LogRequest: logging request
popp\ch10\batcho7\MainProcess: doing something useful with request

Note This example is, in fact, also an instance of an enterprise pattern called Intercepting Filter.
Intercepting Filter is described in Core J2EE Patterns: Best Practices and Design Strategies (Prentice Hall, 2001)
by Alur et al.

Consequences

Like the Composite pattern, Decorator can be confusing. It is important to remember that both composition
and inheritance are coming into play at the same time. So LogRequest inherits its interface from
ProcessRequest, but it is acting as a wrapper around another ProcessRequest object.

Because a decorator object forms a wrapper around a child object, it helps to keep the interface as
sparse as possible. If you build a heavily featured base class, then decorators are forced to delegate to
all public methods in their contained object. This can be done in the abstract decorator class, but it still
introduces the kind of coupling that can lead to bugs.

Some programmers create decorators that do not share a common type with the objects they modify.
As long as they fulfill the same interface as these objects, this strategy can work well. You get the benefit of
being able to use the built-in interceptor methods to automate delegation (implementing _ call() to catch
calls to nonexistent methods and invoking the same method on the child object automatically). However,
by doing this, you also lose the safety afforded by class type checking. In our examples so far, client code can
demand a Tile or a ProcessRequest object in its argument list and be certain of its interface, whether or not
the object in question is heavily decorated.

The Facade Pattern

You may have had occasion to stitch third-party systems into your own projects in the past. Whether or not
the code is object oriented, it will often be daunting, large, and complex. Your own code, too, may become a
challenge to the client programmer who needs only to access a few features. The Facade pattern is a way of
providing a simple, clear interface to complex systems.

229

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

The Problem

Systems tend to evolve large amounts of code that is really only useful within the system itself. Just as classes
define clear public interfaces and hide their guts away from the rest of the world, so should well-designed
systems. However, it is not always clear which parts of a system are designed to be used by client code and
which are best hidden.

As you work with subsystems (like web forums or gallery applications), you may find yourself making
calls deep into the logic of the code. If the subsystem code is subject to change over time, and your code
interacts with it at many different points, you may find yourself with a serious maintenance problem as the
subsystem evolves.

Similarly, when you build your own systems, it is a good idea to organize distinct parts into separate
tiers. Typically, you may have a tier responsible for application logic, another for database interaction,
another for presentation, and so on. You should aspire to keep these tiers as independent of one another as
you can, so that a change in one area of your project will have minimal repercussions elsewhere. If code from
one tier is tightly integrated into code from another, then this objective is hard to meet.

Here is some deliberately confusing procedural code that makes a song-and-dance routine of the
simple process of getting log information from a file and turning it into object data:

// listing 10.36

function getProductFileLines($file)

{
return file($file);
}
function getProductObjectFromId($id, $productname)
{
// some kind of database lookup
return new Product($id, $productname);
}
function getNameFromLine($line)
{
if (preg_match("/.*-(.*)\s\d+/", $line, $array)) {
return str replace(' ', ' ', $array[1]);
}
return '';
}
function getIDFromLine($line)
{
if (preg match("/~(\d{1,3})-/", $line, $array)) {
return $array[1];
}
return -1;
}

class Product

public $id;
public $name;

230

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

public function _ construct($id, $name)

{
$this->id = $id;
$this->name = $name;

Let’s imagine that the internals of this code are more complicated than they actually are, and that I
am stuck with using it rather than rewriting it from scratch. For example, assume I have to turn a file that
contains lines like these into an array of objects:

234-ladies_jumper 55
532-gents_hat 44

To do so, I must call all of these functions (note that, for the sake of brevity, I don’t extract the final
number, which represents a price):

// listing 10.37

$lines = getProductFilelLines(_DIR__ . '/test2.txt');
$objects = [];
foreach ($lines as $line) {

$id = getIDFromLine($line);

$name = getNameFromLine($line);

$objects[$id] = getProductObjectFromID($id, $name);

IfI call these functions directly like this throughout my project, my code will become tightly wound into
the subsystem it is using. This could cause problems if the subsystem changes, or if I decide to switch it out
entirely. I really need to introduce a gateway between the system and the rest of our code.

Implementation

Here is a simple class that provides an interface to the procedural code you encountered in the previous
section:

// listing 10.38

class ProductFacade

{
private $products = [];

public function _ construct(string $file)

{
$this->file = $file;
$this->compile();

}

private function compile()

{
$lines = getProductFilelines($this->file);

231

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

foreach ($lines as $line) {
$id = getIDFromLine($line);
$name = getNameFromLine($line);
$this->products[$id] = getProductObjectFromID($id, $name);

}
}
public function getProducts(): array
{
return $this->products;
}
public function getProduct(string $id): \Product
{
if (isset($this->products[$id])) {
return $this->products[$id];
}
return null;
}

From the point of view of the client code, access to Product objects from a log file is much simplified:

// listing 10.39

$facade = new ProductFacade(_ DIR__ . '/test2.txt');
$object = $facade->getProduct("234");

Consequences

A Facade is really a very simple concept. It is just a matter of creating a single point of entry for a tier or
subsystem. This has a number of benefits. It helps to decouple distinct areas in a project from one another.
It is useful and convenient for client coders to have access to simple methods that achieve clear ends. It
reduces errors by focusing the use of a subsystem in one place; changes to the subsystem should cause
failure in a predictable location. Errors are also minimized by Facade classes in complex subsystems where
client code might otherwise use internal functions incorrectly.

Despite the simplicity of the Facade pattern, it is all too easy to forget to use it, especially if you are
familiar with the subsystem you are working with. There is a balance to be struck, of course. On the one
hand, the benefit of creating simple interfaces to complex systems should be clear. On the other hand,
one could abstract systems with reckless abandon, and then abstract the abstractions. If you are making
significant simplifications for the clear benefit of client code, and/or shielding it from systems that might
change, then you are probably right to implement the Facade pattern.

232

CHAPTER 10 PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

Summary

In this chapter, I looked at a few of the ways that classes and objects can be organized in a system. In
particular, I focused on the principle that composition can be used to engender flexibility where inheritance
fails. In both the Composite and Decorator patterns, inheritance is used to promote composition and to
define a common interface that provides guarantees for client code.

You also saw delegation used effectively in these patterns. Finally, I looked at the simple but powerful
Facade pattern. Facade is one of those patterns that many people have been using for years without having
aname to give it. Facade lets you provide a clean point of entry to a tier or subsystem. In PHP, the Facade
pattern is also used to create object wrappers that encapsulate blocks of procedural code.

233

CHAPTER 11

Performing and Representing
Tasks

In this chapter, we get active. I look at patterns that help you to get things done, whether interpreting a mini-
language or encapsulating an algorithm.
This chapter will walk you through several patterns:

e The Interpreter pattern: Building a mini-language interpreter that can be used to
create scriptable applications

e The Strategy pattern: Identifying algorithms in a system and encapsulating them into
their own types

e The Observer pattern: Creating hooks for alerting disparate objects about system
events

e The Visitor pattern: Applying an operation to all the nodes in a tree of objects

e The Command pattern: Creating command objects that can be saved and passed
around

e The Null Object pattern: Using non-operational objects in place of null values.

The Interpreter Pattern

Languages are written in other languages (at least at first). PHP itself, for example, is written in C.

By the same token, odd as it may sound, you can define and run your own languages using PHP. Of course,
any language you might create will be slow and somewhat limited. Nonetheless, mini-languages can be
very useful, as you will see in this chapter.

The Problem

When you create web (or command-line) interfaces in PHP, you give the user access to functionality. The
trade-off in interface design is between power and ease-of-use. As a rule, the more power you give your
user, the more cluttered and confusing your interface becomes. Good interface design can help a lot here,
of course. But if 90 percent of users are using the same 30 percent of your features, the costs of piling on the
functionality may outweigh the benefits. You may wish to consider simplifying your system for most users.
But what of the power users, that ten percent who use your system'’s advanced features? Perhaps you can
accommodate them in a different way. By offering such users a domain language (often called a
DSL—Domain Specific Language), you might actually extend the power of your application.

© Matt Zandstra 2016 235
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_11

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

Of course, you have a programming language at hand right away. It’s called PHP. Here’s how you could
allow your users to script your system:

$form_input = $ REQUEST['form input'];
// contains: "print file get contents('/etc/passwd');"
eval($form_input);

This approach to making an application scriptable is clearly insane. Just in case the reasons are not
blatantly obvious, they boil down to two issues: security and complexity. The security issue is well addressed
in the example. By allowing users to execute PHP via your script, you are effectively giving them access to the
server the script runs on. The complexity issue is just as big a drawback. No matter how clear your code is,
the average user is unlikely to extend it easily and certainly not from the browser window.

A mini-language, though, can address both these problems. You can design flexibility into the language,
reduce the possibility that the user can do damage, and keep things focused.

Imagine an application for authoring quizzes. Producers design questions and establish rules for
marking the answers submitted by contestants. It is a requirement that quizzes must be marked without
human intervention, even though some answers can be typed into a text field by users.

Here’s a Question:

How many members in the Design Patterns gang?

You can accept “four” or “4” as correct answers. You might create a web interface that allows a producer
to use a regular Expression for marking responses:

~4 | four$

Most producers are not hired for their knowledge of regular expressions, however. To make everyone’s
life easier, you might implement a more user-friendly mechanism for marking responses:

$input equals "4" or $input equals "four"

You propose a language that supports variables, an operator called equals, and Boolean logic (or and
and). Programmers love naming things, so let’s call it MarkLogic. It should be easy to extend, as you envisage
lots of requests for richer features. Let’s leave aside the issue of parsing input for now and concentrate on
a mechanism for plugging these elements together at runtime to produce an answer. This, as you might
expect, is where the Interpreter pattern comes in.

Implementation

A language is made up of expressions (that is, things that resolve to a value). As you can see in Table 11-1,
even a tiny language like MarkLogic needs to keep track of a lot of elements.

236

CHAPTER 11 © PERFORMING AND REPRESENTING TASKS

Table 11-1. Elements of the MarkLogic Grammar

Description EBNF Name Class Name Example

Variable variable VariableExpression $input

String literal <stringliteral> LiteralExpression "four"

Boolean and andExpr BooleanAndExpression $input equals '4' and $other
equals '6'

Boolean or oTExpr BooleanOrExpression $input equals '4' or $other
equals '6'

Equality test eqExpr EqualsExpression $input equals '4'

Table 11-1 lists EBNF names. So what is EBNF all about? It’s a notation that you can use to describe
alanguage grammar. EBNF stands for Extended Backus-Naur Form. It consists of a series of lines (called
productions), each one consisting of a name and a description that takes the form of references to other
productions and to terminals (that is, elements that are not themselves made up of references to other
productions). Here is one way of describing my grammar using EBNF:

expr = operand { orExpr | andExpr }

operand = ('(' expr ')' | ? string literal ? | variable) { eqExpr }
orExpr = 'or' operand

andExpr = 'and' operand

eqExpr = 'equals' operand

variable = '$' , ? word ?

Some symbols have special meanings (that should be familiar from regular Expression notation): |
means or, for example. You can group elements using brackets. So in the example, an Expression (expr)
consists of an operand followed by zero or more of either orExpr or andExpr. An operand can be a bracketed
Expression, a quoted string (I have omitted the production for this), or a variable followed by zero or more
instances of eqExpr. Once you get the hang of referring from one production to another, EBNF becomes
quite easy to read.

In Figure 11-1, I represent the elements of my grammar as classes.

237

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

InterpreterContext

A

LSH2S2 Expression

+interpret(context:InterpreterContext)
+getKey(): string

LiteralExpression OperatorExpression

A

— BooleanOrExpression

VariableExpression

— BooleanAndExpression

— EqualsExpression

Figure 11-1. The Interpreter classes that make up the MarkLogic language

As you can see, BooleanAndExpression and its siblings inherit from OperatorExpression. This is
because these classes all perform their operations upon other Expression objects. VariableExpression and
LiteralExpression work directly with values.

All Expression objects implement an interpret() method that is defined in the abstract base class,
Expression. The interpret() method expects an InterpreterContext object that is used as a shared data
store. Each Expression object can store data in the InterpreterContext object. The InterpreterContext
will then be passed along to other Expression objects. So that data can be retrieved easily from the
InterpreterContext, the Expression base class implements a getKey() method that returns a unique
handle. Let’s see how this works in practice with an implementation of Expression:

// listing 11.01

abstract class Expression

{
private static $keycount = 0;
private $key;

abstract public function interpret(InterpreterContext $context);

public function getKey()

{
if (! isset($this->key)) {
self::$keycount++;
$this->key = self::$keycount;

238

CHAPTER 11

return $this->key;

}
// listing 11.02

class LiteralExpression extends Expression

{
private $value;
public function _ construct($value)
{
$this->value = $value;
}
public function interpret(InterpreterContext $context)
{
$context->replace($this, $this->value);
}
}

// listing 11.03

class InterpreterContext

{
private $expressionstore = [];
public function replace(Expression $exp, $value)
{
$this->expressionstore[$exp->getKey()] = $value;
}
public function lookup(Expression $exp)
{
return $this->expressionstore[$exp->getKey()];
}
}

// listing 11.04

$context = new InterpreterContext();
$literal = new LiteralExpression('four');
$literal->interpret($context);

print $context->lookup($literal) . "\n";

Here’s the output:

four

PERFORMING AND REPRESENTING TASKS

239

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

I'll begin with the InterpreterContext class. As you can see, it is really only a front end for an
associative array, $expressionstore, which I use to hold data. The replace() method accepts an
Expression object as key and a value of any type, and then adds the pair to $expressionstore. It also
provides a lookup () method for retrieving data.

The Expression class defines the abstract interpret() method and a concrete getKey () method that
uses a static counter value to generate, store, and return an identifier.

This method is used by InterpreterContext: : lookup() and InterpreterContext: :replace() to
index data.

The LiteralExpression class defines a constructor that accepts a value argument. The interpret()
method requires a InterpreterContext object. I simply call replace(), using getKey() to define the key for
retrieval and the $value property. This will become a familiar pattern as you examine the other Expression
classes. The interpret() method always inscribes its results upon the InterpreterContext object.

Iinclude some client code as well, instantiating both an InterpreterContext object and a
LiteralExpression object (with a value of "four"). I pass the InterpreterContext object to
LiteralExpression::interpret(). The interpret() method stores the key/value pair in
InterpreterContext, from where I retrieve the value by calling Lookup().

Here’s the remaining terminal class. VariableExpression is alittle more complicated:

// listing 11.05

class VariableExpression extends Expression

{
private $name;
private $val;
public function _ construct($name, $val = null)
{
$this->name = $name;
$this->val = $val;
}
public function interpret(InterpreterContext $context)
{
if (! is_null($this->val)) {
$context->replace($this, $this->val);
$this->val = null;
}
}
public function setValue($value)
{
$this->val = $value;
}
public function getKey()
{
return $this->name;
}
}

240

CHAPTER 11 © PERFORMING AND REPRESENTING TASKS

// listing 11.06

$context = new InterpreterContext();

$myvar = new VariableExpression('input', 'four');
$myvar->interpret($context);

print $context->lookup($myvar) . "\n";

// output: four

$newvar = new VariableExpression('input');
$newvar->interpret($context);

print $context->lookup($newvar) . "\n";
// output: four

$myvar->setValue("five");
$myvar->interpret($context);

print $context->lookup($myvar) . "\n";
// output: five

print $context->lookup($newvar) . "\n";
// output: five

The VariableExpression class accepts both name and value arguments for storage in property
variables. I provide the setValue() method, so that client code can change the value at any time.

The interpret() method checks whether or not the $val property has a nonnull value. If the $val
property has a value, it sets it on the InterpreterContext. I then set the $val property to null. This isin
case interpret() is called again after another identically named instance of VariableExpression has
changed the value in the InterpreterContext object. This is quite a limited variable, accepting only string
values. If you intend to extend your language, you should consider having it work with other Expression
objects, so that it can contain the results of tests and operations. For now, though, VariableExpression
will do the work I need of it. Notice that I have overridden the getKey() method, so that variable values are
linked to the variable name and not to an arbitrary static ID.

Operator expressions in the language all work with two other Expression objects in order to
get their job done. It makes sense, therefore, to have them extend a common superclass. Here is the
OperatorExpression class:

// listing 11.07

abstract class OperatorExpression extends Expression

{
protected $1_op;
protected $r op;

public function _ construct(Expression $1 op, Expression $r_op)

{
$this->1 op
$this->r _op

$1 op;
$r_op;

}

public function interpret(InterpreterContext $context)

{
$this->1_op->interpret($context);
$this->r op->interpret($context);
$result 1 = $context->lookup($this->1 op);

241

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

$result_r = $context->lookup($this->r op);
$this->doInterpret($context, $result 1, $result r);
}

abstract protected function doInterpret(
InterpreterContext $context,
$result 1,
$result r

)5

OperatorExpression is an abstract class. It implements interpret(), butit also defines the abstract
dointerpret() method.

The constructor demands two Expression objects, $1_op and $r_op, which it stores in properties.

The interpret() method begins by invoking interpret() on both its operand properties (if you have
read the previous chapter, you might notice that I am creating an instance of the Composite pattern here).
Once the operands have been run, interpret() still needs to acquire the values that this yields. It does this
by calling InterpreterContext: : lookup() for each property. It then calls dointerpret(), leaving it up to
child classes to decide what to do with the results of these operations.

Note dointerpret() is an instance of the Template Method pattern. In this pattern, a parent class both
defines and calls an abstract method, leaving it up to child classes to provide an implementation. This can
streamline the development of concrete classes, as shared functionality is handled by the superclass, leaving
the children to concentrate on clean, narrow objectives.

Here’s the EqualsExpression class, which tests two Expression objects for equality:
// listing 11.08

class EqualsExpression extends OperatorExpression

{
protected function doInterpret(
InterpreterContext $context,
$result 1,
$result r
) {
$context->replace($this, $result 1 == $result r);
}
}

EqualsExpression only implements the dointerpret() method, which tests the equality
of the operand results it has been passed by the interpret() method, placing the result in the
InterpreterContext object.

To wrap up the Expression classes, here are BooleanOrExpression and BooleanAndExpression:

// listing 11.09

class BooleanOrExpression extends OperatorExpression

{

242

CHAPTER 11 © PERFORMING AND REPRESENTING TASKS

protected function doInterpret(
InterpreterContext $context,
$result 1,
$result r

) 4

$context->replace($this, $result 1 || $result r);
}

}

// listing 11.10
class BooleanAndExpression extends OperatorExpression

{
protected function doInterpret(
InterpreterContext $context,
$result 1,
$result r
) 4
$context->replace($this, $result 1 88 $result r);
}
}

Instead of testing for equality, the BooleanOrExpression class applies a logical or operation and stores
the result of that via the InterpreterContext: :replace() method. BooleanAndExpression, of course,
applies a logical and operation.

I now have enough code to execute the mini-language fragment I quoted earlier. Here it is again:

$input equals "4" or $input equals "four"
Here’s how I can build this statement up with my Expression classes:
// listing 11.11

$context = new InterpreterContext();

$input = new VariableExpression('input');

$statement = new BooleanOrExpression(
new EqualsExpression($input, new LiteralExpression('four')),
new EqualsExpression($input, new LiteralExpression('4'))

)5

Iinstantiate a variable called "input" but hold off on providing a value for it. I then create a
BooleanOrExpression object that will compare the results from two EqualsExpression objects. The first
of these objects compares the VariableExpression object stored in $input with a LiteralExpression
containing the string "four"; the second compares $input with a LiteralExpression object containing the
string "4".

Now, with my statement prepared, I am ready to provide a value for the input variable and run the code:

// listing 11.12
foreach (["four", "4", "52"] as $val) {

$input->setValue($val);
print "$val:\n";

243

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

$statement->interpret($context);

if ($context->lookup($statement)) {
print "top marks\n\n";

} else {
print "dunce hat on\n\n";

}

In fact, I run the code three times, with three different values. The first time through, I set the temporary
variable $val to "four", assigning it to the input VariableExpression object using its setValue() method.
I then call interpret() on the topmost Expression object (the BooleanOrExpression object that contains
references to all other expressions in the statement). Here are the internals of this invocation, step-by-step:

e $statement calls interpret() onits $1_op property (the first EqualsExpression
object).

e The first EqualsExpression object calls interpret() on its $1_op property (a
reference to the input VariableExpression object, which is currently set to "four™).

e TheinputVariableExpression object writes its current value to the provided
InterpreterContext object by calling InterpreterContext: :replace().

e The first EqualsExpression object calls interpret() onits $r_op property (a
LiteralExpression object charged with the value "four").

e The LiteralExpression object registers its key and its value with
InterpreterContext.

e The first EqualsExpression object retrieves the values for $1_op ("four") and $r_op
("four") from the InterpreterContext object.

e The first EqualsExpression object compares these two values for equality, and then
registers the result (true) and its key with the InterpreterContext object.

e Backatthe top of the tree, the $statement object (BooleanOrExpression) calls
interpret() onits $r_op property. This resolves to a value (false, in this case) in
the same way the $1_op property did.

e The $statement object retrieves values for each of its operands from the
InterpreterContext object and compares them using | |. It is comparing true and
false, so the result is true. This final result is stored in the InterpreterContext
object.

And all that is only for the first iteration through the loop. Here is the final output:

four:
top marks

4:
top marks

52:
dunce hat on

244

CHAPTER 11 © PERFORMING AND REPRESENTING TASKS

You may need to read through this section a few times before the process clicks. The old issue of object
versus class trees might confuse you, here. Expression classes are arranged in an inheritance hierarchy, just
as Expression objects are composed into a tree at runtime. As you read back through the code, keep this
distinction in mind.

Figure 11-2 shows the complete class diagram for the example.

InterpreterContext

+lookup(key:string): mixed
+replace(key:string,val:mixed)

H Expression

, uses

e 2 P e +interpret(context:InterpreterContext)

+getKey(): string
LiteralExpression % OperatorExpression
+interpret(context:InterpreterContext) +interpret(context:InterpreterContext)
#doInterpret(context:InterpreterContext,result_1,result_r)

VariableExpression JaN
+interpret(context:InterpreterContext)
*getkey(): string — BooleanOrExpression

#doInterpret(context:InterpreterContext,result_1,result_r)

— BooleanAndExpression

#doInterpret(context:InterpreterContext,result_1,result_r)

—— EqualsExpression

#doInterpret(context:InterpreterContext,result_1,result r)

Figure 11-2. The Interpreter pattern deployed

Interpreter Issues

Once you set up the core classes for an Interpreter pattern implementation, it becomes easy to extend. The
price you pay is in the sheer number of classes you could end up creating. For this reason, Interpreter is
best applied to relatively small languages. If you have a need for a full programming language, you would do
better to look for a third-party tool to use.

Because Interpreter classes often perform very similar tasks, it is worth keeping an eye on the classes
you create with a view to factoring out duplication.

Many people approaching the Interpreter pattern for the first time are disappointed, after some initial
excitement, to discover that it does not address parsing. This means that you are not yet in a position to
offer your users a nice, friendly language. Chapter 24 contains some rough code to illustrate one strategy for
parsing a mini-language.

The Strategy Pattern

Classes often try to do too much. It’s understandable: you create a class that performs a few related actions;
and, as you code, some of these actions need to be varied according to the circumstances. At the same

time, your class needs to be split into subclasses. Before you know it, your design is being pulled apart by
competing forces.

245

http://dx.doi.org/10.1007/978-1-4842-1996-6_24

CHAPTER 11

The Problem

PERFORMING AND REPRESENTING TASKS

Since I have recently built a marking language, I'm sticking with the quiz example. Quizzes need questions,
so you build a Question class, giving it a mark () method. All is well until you need to support different

marking mechanisms.

Imagine that you are asked to support the simple MarkLogic language, marking by straight match and
regular Expression. Your first thought might be to subclass for these differences, as in Figure 11-3.

Question

+mark()
MarkLogicQuestion| [MatchQuestion| |RegexpQuestion
+mark() +mark() +mark()

Figure 11-3. Defining subclasses according to marking strategies

This would serve you well, as long as marking remains the only aspect of the class that varies. Imagine,
though, that you are called on to support different kinds of questions: those that are text-based and those
that support rich media. This presents you with a problem when it comes to incorporating these forces in
one inheritance tree, as you can see in Figure 11-4.

Question

+mark()

TextQuestion

AVQuestion

+doTextyThings()

+doCleverAVThings ()

JaN A

TextMarkLogicQuestion — AVMarkLogicQuestion
+mark () +mark()
TextMatchQuestion — — AVMatchQuestion
+mark () +mark()
TextRegexpQuestion — — AVRegexpQuestion
+mark () +mark()

Figure 11-4. Defining subclasses according to two forces

246

CHAPTER 11 © PERFORMING AND REPRESENTING TASKS

Not only have the number of classes in the hierarchy ballooned, but you also necessarily introduce
repetition. Your marking logic is reproduced across each branch of the inheritance hierarchy.

Whenever you find yourself repeating an algorithm across siblings in an inheritance tree (whether
through subclassing or repeated conditional statements), consider abstracting these behaviors into their
own type.

Implementation

As with all the best patterns, Strategy is simple and powerful. When classes must support multiple
implementations of an interface (e.g., multiple marking mechanisms), the best approach is often to extract
these implementations and place them in their own type, rather than to extend the original class to handle
them.

So, in the example, your approach to marking might be placed in a Marker type. Figure 11-5 shows the
new structure.

Question<> Marker
+mark() +mark()
A A
[| — MarkLogicMarker
TextQuestion AVQuestion Tmark()
+doTextyThings () +doCleverAVThings ()
— MatchMarker
+mark()
— RegexpMarker
+mark()

Figure 11-5. Extracting algorithms into their own type

Remember the Gang of Four principle, “Favor composition over inheritance”? This is an excellent
example. By defining and encapsulating the marking algorithms, you reduce subclassing and increase
flexibility. You can add new marking strategies at any time without the need to change the Question
classes at all. All Question classes know is that they have an instance of a Marker at their disposal, and that
it is guaranteed by its interface to support a mark () method. The details of implementation are entirely
somebody else’s problem.

Here are the Question classes rendered as code:

// listing 11.13
abstract class Question
{
protected $prompt;
protected $marker;

public function _ construct(string $prompt, Marker $marker)

247

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

{
$this->prompt = $prompt;
$this->marker = $marker;
}
public function mark(string $response): bool
{
return $this->marker->mark($response);
}

}

// listing 11.14

class TextQuestion extends Question

{
}

// listing 11.15

// do text question specific things

class AVQuestion extends Question

{
}

// do audiovisual question specific things

Asyou can see, I have left the exact nature of the difference between TextQuestion and AVQuestion to
the imagination. The Question base class provides all the real functionality, storing a prompt property and
aMarker object. When Question: :mark() is called with a response from the end user, the method simply
delegates the problem solving to its Marker object.

Now it’s time to define some simple Marker objects:

// listing 11.16

abstract class Marker

{ protected $test;
public function _ construct(string $test)
{ $this->test = $test;
}
\ abstract public function mark(string $response): bool;

// listing 11.17
class MarkLogicMarker extends Marker

{

private $engine;

248

CHAPTER 11
public function _ construct(string $test)
{
parent:: construct($test);
$this->engine = new MarkParse($test);
}
public function mark(string $response): bool
{
return $this->engine->evaluate($response);
}
}
// listing 11.18
class MatchMarker extends Marker
public function mark(string $response): bool
{
return ($this->test == $response);
}
}
// listing 11.19
class RegexpMarker extends Marker
public function mark(string $response): bool
{
return (preg match("$this->test", $response) === 1);

}

PERFORMING AND REPRESENTING TASKS

There should be little, if anything, that is particularly surprising about the Marker classes themselves.
Note that the MarkParse object is designed to work with the simple parser developed in Chapter 24. The key
here is in the structure that I have defined, rather than in the detail of the strategies themselves. I can swap

RegexpMarker for MatchMarker, with no impact on the Question class.

Of course, you must still decide what method to use to choose between concrete Marker objects. I have
seen two real-world approaches to this problem. In the first, producers used radio buttons to select the
preferred marking strategy. In the second, the structure of the marking condition itself was used; that is, a

match statement was left plain:
five

A MarkLogic statement was preceded by a colon:
:$input equals 'five'

And a regular Expression used forward slashes:

/f.ve/

249

http://dx.doi.org/10.1007/978-1-4842-1996-6_24

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

Here is some code to run the classes through their paces:
// listing 11.20

$markers = [
new RegexpMarker("/f.ve/"),
new MatchMarker("five"),
new MarkLogicMarker('$input equals "five"')

I;

foreach ($markers as $marker) {
print get_class($marker)."\n";
$question = new TextQuestion("how many beans make five", $marker);

foreach (["five", "four"] as $response) {
print " response: $response: ";
if ($question->mark($response)) {
print "well done\n";
} else {

print "never mind\n";
}

I construct three strategy objects, using each in turn to help construct a TextQuestion object. The
TextQuestion object is then tried against two sample responses.
Here is the output (including namespaces):

popp\ch11\batch02\RegexpMarker
response: five: well done
response: four: never mind

popp\ch11\batcho2\MatchMarker
response: five: well done
response: four: never mind

popp\ch11\batcho2\MarkLogicMarker
response: five: well done
response: five: never mind

In the example, I passed specific data (the $response variable) from the client to the strategy object
via the mark () method. Sometimes, you may encounter circumstances in which you don’t always know
in advance how much information the strategy object will require when its operation is invoked. You can
delegate the decision as to what data to acquire by passing the strategy an instance of the client itself. The
strategy can then query the client in order to build the data it needs.

The Observer Pattern

Orthogonality is a virtue I have described before. One of our objectives as programmers should be to build
components that can be altered or moved with minimal impact on other components. If every change we
make to one component necessitates a ripple of changes elsewhere in the codebase, the task of development
can quickly become a spiral of bug creation and elimination.

250

CHAPTER 11 © PERFORMING AND REPRESENTING TASKS

Of course, orthogonality is often just a dream. Elements in a system must have embedded references
to other elements. You can, however, deploy various strategies to minimize this. You have seen various
examples of polymorphism in which the client understands a component’s interface, but the actual
component may vary at runtime.
In some circumstances, you may wish to drive an even greater wedge between components than this.
Consider a class responsible for handling a user’s access to a system:

// listing 11.21

class Login

{

const LOGIN_USER_UNKNOWN = 1;
const LOGIN WRONG_PASS =

const LOGIN_ ACCESS = 3;

25

private $status = [];

public function handleLogin(string $user, string $pass, string $ip)
{
$isvalid=false;
switch (rand(1, 3)) {
case 1:
$this->setStatus(self::LOGIN ACCESS, $user, $ip);
$isvalid = true;
break;
case 2:
$this->setStatus(self::LOGIN_WRONG_PASS, $user, $ip);
$isvalid = false;
break;
case 3:
$this->setStatus(self::LOGIN USER_UNKNOWN, $user, $ip);
$isvalid = false;
break;

}
print "returning ".(($isvalid)?"true":"false")."\n";

return $isvalid;

}

private function setStatus(int $status, string $user, string $ip)

{

$this->status = [$status, $user, $ip];

}
public function getStatus(): array
{
return $this->status;
}

: bool

251

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

In a real-world example, of course, the handleLogin() method would validate the user against a storage
mechanism. As it is, this class fakes the login process using the rand() function. There are three potential
outcomes of a call to handleLogin(). The status flag may be set to LOGIN_ACCESS, LOGIN_WRONG_PASS, or
LOGIN_USER_UNKNOWN.

Because the Login class is a gateway guarding the treasures of your business team, it may excite much
interest during development and in the months beyond. Marketing might call you up and ask that you keep
alog of IP addresses. You can add a call to your system’s Logger class:

// listing 11.22

public function handlelogin(string $user, string $pass, string $ip): bool
{
switch (rand(1, 3)) {
case 1:
$this->setStatus(self::LOGIN ACCESS, $user, $ip);
$isvalid = true;
break;
case 2:
$this->setStatus(self::LOGIN _WRONG PASS, $user, $ip);
$isvalid = false;
break;
case 3:
$this->setStatus(self::LOGIN USER_UNKNOWN, $user, $ip);
$isvalid = false;
break;

}
Logger: :1logIP($user, $ip, $this->getStatus());

return $isvalid;

}

Worried about security, the system administrators might ask for notification of failed logins. Once again,
you can return to the login method and add a new call:

// listing 11.23

if (! $isvalid) {
Notifier::mailWarning(
$user,
$ip,
$this->getStatus()
)
}

The business development team might announce a tie-in with a particular ISP, asking that a cookie be
set when particular users log in. And so on, and so on.

These are all easy enough requests to fulfill, but addressing them comes at a cost to your design. The
Login class soon becomes very tightly embedded into this particular system. You cannot pull it out and drop
it into another product without going through the code line-by-line and removing everything that is specific
to the old system. This isn’t too hard, of course, but then you are off down the road of cut-and-paste coding.

252

CHAPTER 11 © PERFORMING AND REPRESENTING TASKS

Now that you have two similar but distinct Login classes in your systems, you find that an improvement
to one will necessitate the same changes in the other—until, inevitably and gracelessly, they fall out of
alignment with one another.

So what can you do to save the Login class? The Observer pattern is a great fit here.

Implementation

At the core of the Observer pattern is the unhooking of client elements (the observers) from a central class
(the subject). Observers need to be informed when events occur that the subject knows about. At the same
time, you do not want the subject to have a hardcoded relationship with its observer classes.

To achieve this, you can allow observers to register themselves with the subject. You give the Login
class three new methods, attach(), detach(), and notify(), and enforce this using an interface called
Observable:

// listing 11.24
interface Observable

public function attach(Observer $observer);
public function detach(Observer $observer);
public function notify();

}

// listing 11.25

class Login implements Observable

{

private $observers = [];
private $storage;

const LOGIN_USER_UNKNOWN = 1;
const LOGIN_WRONG_PASS = 2;
const LOGIN_ACCESS = 3;

public function attach(Observer $observer)

{
$this->observers[] = $observer;
}
public function detach(Observer $observer)
{
$this->observers = array_filter(
$this->observers,
function ($a) use ($observer) {
return (! ($a === $observer));
}
);
}

253

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

public function notify()

foreach ($this->observers as $obs) {
$obs->update($this);

So the Login class manages a list of observer objects. These can be added by a third party using
the attach() method and removed via detach(). The notify() method is called to tell the observers
that something of interest has happened. The method simply loops through the list of observers, calling
update() on each one.

The Login class itself calls notify() from its handleLogin() method:

// listing 11.26

public function handleLogin(string $user, string $pass, string $ip)
{
switch (rand(1, 3)) {
case 1:
$this->setStatus(self::LOGIN_ ACCESS, $user, $ip);
$isvalid = true;
break;
case 2:
$this->setStatus(self::LOGIN _WRONG PASS, $user, $ip);
$isvalid = false;
break;
case 3:
$this->setStatus(self::LOGIN USER_UNKNOWN, $user, $ip);
$isvalid = false;
break;

}
$this->notify();

return $isvalid;

}

Here’s the interface for the Observer class:
// listing 11.27
interface Observer
public function update(Observable $observable);

Any object that uses this interface can be added to the Login class via the attach() method. Here’s a
concrete instance:

254

CHAPTER 11 © PERFORMING AND REPRESENTING TASKS

// listing 11.28

class LoginAnalytics implements Observer

{
public function update(Observable $observable)
{
// not type safe!
$status = $observable->getStatus();
print _ CLASS . ": doing something with status info\n";
}
}

Notice how the observer object uses the instance of Observable to get more information about the
event. It is up to the subject class to provide methods that observers can query to learn about state. In this
case, I have defined a method called getStatus () that observers can call to get a snapshot of the current
state of play.

This addition also highlights a problem, though. By calling Login: :getStatus(), the LoginAnalytics
class assumes more knowledge than it safely can. It is making this call on an Observable object, but
there’s no guarantee that this will also be a Login object. I have a couple of options here. I could extend
the Observable interface to include a getStatus() declaration and perhaps rename it to something like
Observablelogin to signal that it is specific to the Login type.

Alternatively, I could keep the Observable interface generic and make the Observer classes responsible
for ensuring that their subjects are of the correct type. They could even handle the chore of attaching
themselves to their subject. Since there will be more than one type of Observer, and since I'm planning
to perform some housekeeping that is common to all of them, here’s an abstract superclass to handle the
donkey work:

// listing 11.29

abstract class LoginObserver implements Observer

{

private $login;

public function _ construct(Login $login)

{
$this->login = $login;
$login->attach($this);
}

public function update(Observable $observable)

{
if ($observable === $this->login) {
$this->doUpdate($observable);
}

}

abstract public function doUpdate(Login $login);

The LoginObserver class requires a Login object in its constructor. It stores a reference and calls
Login::attach(). When update() is called, it checks that the provided Observable object is the correct

255

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

reference. It then calls a Template Method: doUpdate(). I can now create a suite of LoginObserver objects,
all of which can be secure they are working with a Login object and not just any old Observable:

// listing 11.30

class SecurityMonitor extends LoginObserver

{
public function doUpdate(Login $login)
{
$status = $login->getStatus();
if ($status[0] == Login::LOGIN_WRONG_ PASS) {
// send mail to sysadmin
print _ CLASS . ": sending mail to sysadmin\n";
}
}
}

// listing 11.31

class Generallogger extends LoginObserver

{
public function doUpdate(Login $login)
{
$status = $login->getStatus();
// add login data to log
print _ CLASS . ": add login data to log\n";
}
}

// listing 11.32

class PartnershipTool extends LoginObserver

{
public function doUpdate(Login $login)
{
$status = $login->getStatus();
// check $ip address
// set cookie if it matches a list
print _ CLASS__ . ": set cookie if it matches a list\n";
}
}

Creating and attaching LoginObserver classes is now achieved in one go at the time of instantiation:

$login = new Login();

new SecurityMonitor($login);
new Generallogger($login);
new PartnershipTool($login);

So now I have created a flexible association between the subject classes and the observers. You can see
the class diagram for the example in Figure 11-6.

256

CHAPTER

11 PERFORMING AND REPRESENTING TASKS

<<interface>>
Observable

<<interface>>
Observer

+attach(observable:0bservable)

+update(observable:0bservable)

+detach(observable:0bservable)

+notify()

A

Login 1 -

LoginObserver

+attach(observable:0bservable)

+login: Login

+detach(observable:0bservable)
+notify()
+getStatus()

+update(observable:0bservable)
+doUpdate(login:Login)
+__construct(login:Login)

SecurityMonitor

+doUpdate(login:Login)

GeneralLogger

+doUpdate(login:Login)

PartnershipTool

+doUpdate(login:Login)

Figure 11-6. The Observer pattern

PHP provides built-in support for the Observer pattern through the
Library) extension. The SPL is a set of tools that help with common, larg
Observer aspect of this OO Swiss Army knife consists of three elements:

bundled SPL (Standard PHP
ely object-oriented problems. The
SplObserver, SplSubject, and

SplObjectStorage. SplObserver and SplSubject are interfaces and exactly parallel the Observer and
Observable interfaces shown in this section’s example. SplObjectStorage is a utility class designed to
provide improved storage and removal of objects. Here’s an edited version of the Observer implementation:

// listing 11.33

class Login implements \SplSubject

{
private $storage;
/...
public function _ construct()
{
$this->storage = new \SplObjectStorage();
}

257

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

public function attach(\SplObserver $observer)

{
$this->storage->attach($observer);
}
public function detach(\SplObserver $observer)
{
$this->storage->detach($observer);
}

public function notify()

foreach ($this->storage as $obs) {
$obs->update($this);
}

/...
}

// listing 11.34
abstract class LoginObserver implements \SplObserver

{

private $login;

public function _ construct(Login $login)
{
$this->login = $login;
$login->attach($this);
}

public function update(\SplSubject $subject)
{
if ($subject === $this->login) {
$this->doUpdate($subject);
}

}

abstract public function doUpdate(Login $login);

There are no real differences, as far as SplObserver (which was Observer) and SplSubject (which was
Observable) are concerned—except, of course, I no longer need to declare the interfaces, and I must alter
my type hinting according to the new names. Spl0bjectStorage provides you with a really useful service,
however. You may have noticed that, in my initial example, my implementation of Login: :detach() applied
array_filter (together with an anonymous function) to the $observers array, in order to find and remove
the argument object. The SplObjectStorage class does this work for you under the hood. It implements
attach() and detach() methods, and can be passed to foreach and iterated like an array.

258

CHAPTER 11 © PERFORMING AND REPRESENTING TASKS

Note You can read more about SPL in the PHP documentation at http://www.php.net/spl. In particular,
you will find many iterator tools there. | cover PHP’s built-in Iterator interface in Chapter 13, “Database
Patterns.”

Another approach to the problem of communicating between an Observable class and its Observer
could be to pass specific state information via the update() method, rather than an instance of the subject
class. For a quick-and-dirty solution, this is often the approach I would take initially. So in the example,
update() would expect a status flag, the username, and IP address (probably in an array for portability),
rather than an instance of Login. This saves you from having to write a state method in the Login class. On
the other hand, where the subject class stores a lot of state, passing an instance of it to update() allows
observers much more flexibility.

You could also lock down type completely, by making the Login class refuse to work with anything
other than a specific type of observer class (LoginObserver, perhaps). If you want to do that, then you may
consider some kind of runtime check on objects passed to the attach() method; otherwise, you may need
to reconsider the Observable interface altogether.

Once again, I have used composition at runtime to build a flexible and extensible model. The Login
class can be extracted from its context and dropped into an entirely different project without qualification.
There, it might work with a different set of observers.

The Visitor Pattern

Asyou have seen, many patterns aim to build structures at runtime, following the principle that composition
is more flexible than inheritance. The ubiquitous Composite pattern is an excellent example of this. When
you work with collections of objects, you may need to apply various operations to the structure that involve
working with each individual component. Such operations can be built into the components themselves.
After all, components are often best placed to invoke one another.

This approach is not without issues. You do not always know about all the operations you may need to
perform on a structure. If you add support for new operations to your classes on a case-by-case basis, you
can bloat your interface with responsibilities that don’t really fit. As you might guess, the Visitor pattern
addresses these issues.

The Problem

Think back to the Composite example from the previous chapter. For a game, I created an army of
components such that the whole and its parts can be treated interchangeably. You saw that operations can
be built into components. Typically, leaf objects perform an operation and composite objects call on their
children to perform the operation:

// listing 11.35

class Army extends CompositeUnit

{

public function bombardStrength(): int

{
$strength = 0;

259

http://www.php.net/spl
http://dx.doi.org/10.1007/978-1-4842-1996-6_13

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

foreach ($this-s>units() as $unit) {
$strength += $unit->bombardStrength();
}
return $strength;
}
// listing 11.36
class LaserCanonUnit extends Unit

public function bombardStrength(): int
{

}

return 44;

Where this operation is integral to the responsibility of the composite class, there is no problem. There
are more peripheral tasks, however, that may not sit so happily on the interface.

Here’s an operation that dumps textual information about leaf nodes. It could be added to the abstract
Unit class:

// listing 11.37

abstract class Unit

{
/...
public function textDump($num = 0): string
{
$txtout = "";
$pad = 4*$num;
$txtout .= sprintf("%{$pad}s", "");
$txtout .= get class($this).": ";
$txtout .= "bombard: ".$this->bombardStrength()."\n";
return $txtout;
}
/1.
}

This method can then be overridden in the CompositeUnit class:
// listing 11.38
abstract class CompositeUnit extends Unit

{
7

public function textDump($num = 0): string

260

CHAPTER 11 © PERFORMING AND REPRESENTING TASKS

{
$txtout = parent::textDump($num);
foreach ($this->units as $unit) {
$txtout .= $unit->textDump($num + 1);
}
return $txtout;
}

I could go on to create methods for counting the number of units in the tree, for saving components to a
database, and for calculating the food units consumed by an army.

Why would I want to include these methods in the composite’s interface? There is only one really
compelling answer. I include these disparate operations here because this is where an operation can gain
easy access to related nodes in the composite structure.

Although it is true that ease of traversal is part of the Composite pattern, it does not follow that every
operation that needs to traverse the tree should therefore claim a place in the Composite’s interface.

So these are the forces at work: I want to take full advantage of the easy traversal afforded by my object
structure, but I want to do this without bloating the interface.

Implementation

I'll begin with the interfaces. In the abstract Unit class, I define an accept () method:
// listing 11.39

abstract class Unit

{
/] ...
public function accept(ArmyVisitor $visitor)
{
$refthis = new \ReflectionClass(get class($this));
$method = "visit".$refthis->getShortName();
$visitor->$method($this);
}
protected function setDepth($depth)
{
$this->depth=$depth;
}
public function getDepth()
{
return $this->depth;
}
}

Asyou can see, the accept () method expects an ArmyVisitor object to be passed to it. PHP allows
you dynamically to define the method on the ArmyVisitor you wish to call, so I construct a method name
based on the name of the current class and invoke that method on the provided ArmyVisitor object. If the
current class is Army, then I invoke ArmyVisitor: :visitArmy(). If the current class is TroopCarrier, then

261

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

Linvoke ArmyVisitor: :visitTroopCarrier(). And so on. This saves me from implementing accept () on
every leaf node in my class hierarchy. While I was in the area, I also added two methods of convenience:
getDepth() and setDepth(). These can be used to store and retrieve the depth of a unit in a tree.
setDepth() is invoked by the unit’s parent when it adds it to the tree from CompositeUnit: :addunit():

// listing 11.40

abstract class CompositeUnit extends Unit

{
/] ...
public function addUnit(Unit $unit)
{
foreach ($this->units as $thisunit) {
if ($unit === $thisunit) {
return;
}
}
$unit->setDepth($this->depth+1);
$this->units[] = $unit;
}
public function accept(ArmyVisitor $visitor)
{
parent::accept($visitor);
foreach ($this->units as $thisunit) {
$thisunit->accept($visitor);
}
}
}

Iincluded an accept () method in this fragment. This calls Unit: :accept() to invoke the relevant vist()
method on the provided ArmyVisitor object. Then it loops through any child objects calling accept (). In
fact, because accept () overrides its parent operation, the accept () method allows me to do two things:

e Invoke the correct visitor method for the current component

e Pass the visitor object to all the current element children via the accept () method
(assuming the current component is composite)

I have yet to define the interface for ArmyVisitor. The accept() methods should give you some clue.
The visitor class will define accept () methods for each of the concrete classes in the class hierarchy. This
allows me to provide different functionality for different objects. In my version of this class, I also define a
default visit() method that is automatically called if implementing classes choose not to provide specific
handling for particular Unit classes:

// listing 11.41
abstract class ArmyVisitor
{

abstract public function visit(Unit $node);

262

CHAPTER 11 © PERFORMING AND REPRESENTING TASKS

public function visitArcher(Archer $node)

{
$this->visit($node);
}
public function visitCavalry(Cavalry $node)
{
$this->visit($node);
}
public function visitlaserCanonUnit(LaserCanonUnit $node)
{
$this->visit($node);
}
public function visitTroopCarrierUnit(TroopCarrierUnit $node)
{
$this->visit($node);
}
public function visitArmy(Army $node)
{
$this->visit($node);
}

So now it’s just a matter of providing implementations of ArmyVisitor, and I am ready to go. Here is the

simple text dump code reimplemented as an ArmyVisitor object:

// listing 11.42

class TextDumpArmyVisitor extends ArmyVisitor

{

private $text = "";

public function visit(Unit $node)

{
$txt = "";
$pad = 4*$node->getDepth();
$txt .= sprintf("%{$pad}s", "");
$txt .= get class($node).": ";
$txt .= "bombard: ".$node->bombardStrength()."\n";
$this->text .= $txt;

}

public function getText()

{
return $this->text;

}

263

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

Let’s look at some client code, and then walk through the whole process:

// listing 11.43

$main_army = new Army();
$main_army->addUnit(new Archer());
$main_army->addUnit(new LaserCanonUnit());
$main_army->addUnit(new Cavalry());

$textdump = new TextDumpArmyVisitor();
$main_army->accept($textdump);
print $textdump->getText();

This code yields the following output:

Tax levied for popp\chii\batcho8\Army: 1

Tax levied for popp\chii\batcho8\Archer: 2

Tax levied for popp\chii\batcho8\LaserCanonUnit: 1
Tax levied for popp\chii\batcho8\Cavalry: 3

TOTAL: 7

I create an Army object. Because Army is composite, it has an addUnit () method, and I use this to add some
more Unit objects. I then create the TextDumpArmyVisitor object, which I pass to Army: :accept(). The accept()
method constructs a method call and invokes TextDumpArmyVisitor: :visitArmy(). In this case, I have provided
no special handling for Army objects, so the call is passed on to the generic visit() method. visit() hasbeen
passed a reference to the Army object. It invokes its methods (including the newly added getDepth(), which tells
anyone who needs to know how far down the object hierarchy the unit is) in order to generate summary data.
The call to visitArmy() is complete, so the Army: :accept () operation now calls accept() onits children in turn,
passing the visitor along. In this way, the ArmyVisitor class visits every object in the tree.

With the addition of just a couple of methods, I have created a mechanism by which new functionality
can be plugged into my composite classes without compromising their interface and without lots of
duplicated traversal code.

On certain squares in the game, armies are subject to a tax. The tax collector visits the army and levies a
fee for each unit it finds. Different units are taxable at different rates. Here’s where I can take advantage of the
specialized methods in the visitor class:

// listing 11.44
class TaxCollectionVisitor extends ArmyVisitor

{

private $due = 0;

private $report = "";
public function visit(Unit $node)

$this->levy($node, 1);

}
public function visitArcher(Archer $node)
{
$this->levy($node, 2);
}

264

CHAPTER 11 © PERFORMING AND REPRESENTING TASKS

public function visitCavalry(Cavalry $node)

$this->levy($node, 3);

}
public function visitTroopCarrierUnit(TroopCarrierUnit $node)
{
$this->levy($node, 5);
}
private function levy(Unit $unit, int $amount)
{
$this->report .= "Tax levied for " . get_class($unit);
$this->report .= ": $amount\n";
$this->due += $amount;
}
public function getReport()
{
return $this->report;
}
public function getTax()
{
return $this->due;
}

In this simple example, I make no direct use of the Unit objects passed to the various visit methods. I
do, however, use the specialized nature of these methods, levying different fees according to the specific type
of the invoking Unit object.

Here’s some client code:

// listing 11.45

$main_army = new Army();
$main_army->addUnit(new Archer());
$main_army->addUnit(new LaserCanonUnit());
$main_army->addUnit(new Cavalry());

$taxcollector = new TaxCollectionVisitor();
$main_army->accept($taxcollector);

print $taxcollector->getReport();

print "TOTAL: ";

print $taxcollector->getTax() . "\n";

The TaxCollectionVisitor objectis passed to the Army object’s accept() method, as before. Once
again, Army passes a reference to itself to the visitArmy () method, before calling accept () on its children.
The components are blissfully unaware of the operations performed by their visitor. They simply collaborate
with its public interface, each one passing itself dutifully to the correct method for its type.

265

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

In addition to the methods defined in the ArmyVisitor class, TaxCollectionVisitor provides two
summary methods, getReport () and getTax(). Invoking these provides the data you might expect:

Tax levied for popp\chii\batcho8\Army: 1

Tax levied for popp\chii\batcho8\Archer: 2

Tax levied for popp\chii\batcho8\LaserCanonUnit: 1
Tax levied for popp\chii\batcho8\Cavalry: 3

TOTAL: 7

Figure 11-7 shows the participants in this example.

ArmyVisitor L E T Unit

+visit(node:Unit) +accept(visitor:ArmyVisitor)
+visitLaserCanon(node:LaserCanon)
+visitArmy(node:Army)

A

TextDumpArmyVisitor LaserCanon CompositeUnit >
+visit(node:Unit) +accept(visitor:ArmyVisitor)
TaxCollectionVisitor ﬁl

Tvisit(node:Unit) Army

Figure 11-7. The Visitor pattern

Visitor Issues

The Visitor pattern, then, is another pattern that combines simplicity and power. There are a few things to
bear in mind when deploying this pattern, however.

First, although it is perfectly suited to the Composite pattern, Visitor can, in fact, be used with any
collection of objects. So, you might use it with a list of objects where each object stores a reference to its
siblings, for example.

By externalizing operations, you may risk compromising encapsulation. That is, you may need to expose
the guts of your visited objects in order to let visitors do anything useful with them. You saw, for example,
that for the first Visitor example, I was forced to provide an additional method in the Unit interface in order
to provide information for TextDumpArmyVisitor objects. You also saw this dilemma previously in the
Observer pattern.

Because iteration is separated from the operations that visitor objects perform, you must relinquish a
degree of control. For example, you cannot easily create a visit() method that does something both before
and after child nodes are iterated. One way around this would be to move responsibility for iteration into
the visitor objects. The trouble with this is that you may end up duplicating the traversal code from visitor to
visitor.

By default, I prefer to keep traversal internal to the visited classes, but externalizing it provides you with
one distinct advantage. You can vary the way that you work through the visited classes on a visitor-by-visitor
basis.

266

CHAPTER 11 © PERFORMING AND REPRESENTING TASKS

The Command Pattern

In recent years, I have rarely completed a web project without deploying this pattern. Originally conceived
in the context of graphical user interface design, command objects make for good enterprise application
design, encouraging a separation between the controller (request and dispatch handling) and domain
model (application logic) tiers. Put more simply, the Command pattern makes for systems that are well
organized and easy to extend.

The Problem

All systems must make decisions about what to do in response to a user’s request. In PHP, that decision-
making process is often handled by a spread of point-of-contact pages. In selecting a page (feedback.php),
the user clearly signals the functionality and interface she requires. Increasingly, PHP developers are
opting for a single-point-of-contact approach (as I will discuss in the next chapter). In either case, however,
the receiver of a request must delegate to a tier more concerned with application logic. This delegation is
particularly important in cases where the user can make requests to different pages. Without it, duplication
inevitably creeps into the project.

So, imagine you have a project with a range of tasks that need performing. In particular, the system
must allow some users to log in and others to submit feedback. You could create login.php and feedback.
php pages that handle these tasks, instantiating specialist classes to get the job done. Unfortunately, user
interface in a system rarely maps neatly to the tasks that the system is designed to complete. You may require
login and feedback capabilities on every page, for example. If pages must handle many different tasks, then
perhaps you should think of tasks as things that can be encapsulated. In doing this, you make it easy to
add new tasks to your system, and you build a boundary between your system’s tiers. This brings us to the
Command pattern.

Implementation

The interface for a command object could not get much simpler. It requires a single method: execute().

In Figure 11-8, I have represented Command as an abstract class. At this level of simplicity, it could be
defined instead as an interface. I tend to use abstracts for this purpose because I often find that the base
class can also provide useful common functionality for its derived objects.

Command

+execute(context:CommandContext)

Figure 11-8. The Command class

There are up to three other participants in the Command pattern: the client, which instantiates the
command object; the invoker, which deploys the object; and the receiver on which the command operates.

The receiver can be given to the command in its constructor by the client, or it can be acquired from a
factory object of some kind. I like the latter approach, keeping the constructor method clear of arguments.
All Command objects can then be instantiated in exactly the same way.

Here’s the abstract base class:

// listing 11.46

abstract class Command

267

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

abstract public function execute(CommandContext $context): bool;

And here’s a concrete Command class:
// listing 11.47

class LoginCommand extends Command

{

public function execute(CommandContext $context): bool
{

$manager = Registry::getAccessManager();

$user = $context->get('username');

$pass = $context->get('pass');

$user obj = $manager->login($user, $pass);

if (is_null($user_obj)) {
$context->setError($manager->getError());
return false;

}

$context->addParam("user", $user obj);

return true;

The LoginCommand is designed to work with an AccessManager object. AccessManager is an imaginary
class that handles the nuts-and-bolts of logging users into the system. Notice that the Command: : execute()
method demands a CommandContext object—this is known as RequestHelper in Core J2EE Patterns: Best
Practices and Design Strategies (Prentice Hall, 2001) by Alur et al. This is a mechanism by which request
data can be passed to Command objects, and by which responses can be channeled back to the view layer.
Using an object in this way is useful because I can pass different parameters to commands without breaking
the interface. The CommandContext is essentially an object wrapper around an associative array variable,
though it is frequently extended to perform additional helpful tasks. Here is a simple CommandContext
implementation:

// listing 11.48

class CommandContext

{

private $params = [];

private $error = "";

public function _ construct()

{
}

$this->params = $ REQUEST;

268

CHAPTER 11 © PERFORMING AND REPRESENTING TASKS

public function addParam(string $key, $val)

{
$this->params[$key] = $val;
}
public function get(string $key): string
{
if (isset($this->params[$key])) {
return $this->params[$key];
}
return null;
}
public function setError($error): string
{
$this->error = $error;
}
public function getError(): string
{
return $this->error;
}

So, armed with a CommandContext object, the LoginCommand can access request data: the submitted
username and password. I use Registry, a simple class with static methods for generating common objects,
to return the AccessManager object with which LoginCommand needs to work. If AccessManager reports an
error, the command lodges the error message with the CommandContext object for use by the presentation
layer, and returns false. If all is well, LoginCommand simply returns true. Note that Command objects do not
themselves perform much logic. They check input, handle error conditions, and cache data, as well as
calling on other objects to perform operations. If you find that application logic creeps into your command
classes, it is often a sign that you should consider refactoring. Such code invites duplication, as it is inevitably
copied and pasted between commands. You should at least look at where such functionality belongs. It may
be best moved down into your business objects, or possibly into a Facade layer. In my example, I am still
missing the client, the class that generates command objects, and the invoker, the class that works with the
generated command. The easiest way of selecting which command to instantiate in a web project is by using
a parameter in the request itself. Here is a simplified client:

// listing 11.49
class CommandFactory
{ private static $dir = 'commands';
E{)ublic static function getCommand(string $action = 'Default'): Command

if (preg match('/\W/', $action)) {
throw new Exception("illegal characters in action");
}

$class = NAMESPACE__ . "\\commands\\" . UCFirst(strtolower($action)) . "Command";

269

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

if (! class_exists($class)) {
throw new CommandNotFoundException("no '$class' class located");
}

$cmd = new $class();

return $cmd;

The CommandFactory class simply looks for a particular class. A fully qualified class name is constructed
using the CommandFactory class’s own namespace, the string '\commands\', and the CommandContext
object’s $action parameter. The last item should have been passed to the system from the request. Thanks
to Composer’s autoload magic, we don’t need to worry about explicitly requiring a class. If the class exists,
then an object is instantiated and returned to the caller. I could add more error checking here, ensuring that
the found class belongs to the Command family, and that the constructor expects no arguments; however,
this version will do fine for my purposes. The strength of this approach is that you can create a discoverable
Command object with the correct namespace at any time, and the system will immediately support it.

The invoker is now simplicity itself:

// listing 11.50

class Controller

{
private $context;
public function _ construct()
{
$this->context = new CommandContext();
}
public function getContext(): CommandContext
{
return $this->context;
}
public function process()
{
$action = $this->context->get('action');
$action = (is_null($action)) ? "default" : $action;
$cmd = CommandFactory: :getCommand($action);
if (! $cmd->execute($this->context)) {
// handle failure
} else {
// success
// dispatch view
}
}
}

270

CHAPTER 11 © PERFORMING AND REPRESENTING TASKS

Here is some code to invoke the class:

// listing 11.51

$controller = new Controller();
$context = $controller->getContext();

$context->addParam('action’, 'login');
$context->addParam('username', 'bob');
$context->addParam('pass', 'tiddles');
$controller->process();

print $context->getError();

Before I call Controller: :process(), I fake a web request by setting parameters on the CommandContext
object instantiated in the controller’s constructor. The process () method acquires the "action" parameter
(falling back to the string "default" if no action parameter is present). The method then delegates object
instantiation to the CommandFactory object. It invokes execute() on the returned command. Notice how the
controller has no idea about the command’s internals. It is this independence from the details of command
execution that makes it possible for you to add new Command classes with a relatively small impact on this
framework.

Here’s one more Command class:

// listing 11.52

class FeedbackCommand extends Command

{
public function execute(CommandContext $context): bool
{
$msgSystem = Registry::getMessageSystem();
$email = $context->get('email');
$msg = $context->get('msg');
$topic = $context->get('topic');
$result = $msgSystem->send($email, $msg, $topic);
if (! $result) {
$context->setError($msgSystem->getError());
return false;
}
return true;
}
}
Note | will return to the Command pattern in Chapter 12, with a fuller implementation of a Command factory

class. The framework for running commands presented here is a simplified version of another pattern that you
will encounter: the Front Controller.

271

http://dx.doi.org/10.1007/978-1-4842-1996-6_12

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

This class will be run in response to a "feedback" action string, without the need for any changes in the
controller or CommandFactory classes.
Figure 11-9 shows the participants of the Command pattern.

Command

+execute(context:CommandContext): boolean

A

LoginCommand

+execute(context:CommandContext): boolean

FeedbackCommand

+execute(context:CommandContext): boolean

CommandFactory "client” |

+getCommand(action:String): Command

Controller --invoker--lj

+process()
\\\\\\ $cmd = $commandFactory->getCommand('login');

$cmd->execute($context);

Figure 11-9. Command pattern participants

The Null Object Pattern

Half the problems that programmers face seem to be related to type. That’s one reason PHP has increasingly
supported type checks for method declarations and returns. If dealing with a variable that contains the wrong
type is a problem, dealing with one that contains no type at all is at least as bad. This happens all the time,
since so many functions return null when they fail to generate a useful value. You can avoid inflicting this
issue on yourself and others by using the Null Object pattern in your projects. As you will see, while the other
patterns in this chapter try to get stuff done, Null Object is designed to do nothing as gracefully as possible.

The Problem

If your method has been charged with the task of finding an object, sometimes there is little to be done but to
admit defeat. The information provided by the calling code may be stale or a resource may be unavailable. If

272

CHAPTER 11 © PERFORMING AND REPRESENTING TASKS

the failure is catastrophic, you might choose to throw an exception. Often, though, you’ll want to be a little more
forgiving. In such a case, returning a null value might seem like a good way of signaling failure to the client.

The problem here is that your method is breaking its contract. If it has committed to return an object
with a certain method, then returning null forces the client code to adjust to unexpected circumstances.

Let’s return once again to our game. And let’s say that a class named TileForces keeps track of
information about units on a particular tile. Our game maintains local saved information about the units in
the system, and a component named UnitAcquisition is responsible for turning this metadata into an array
of objects.

Here is the TileForces constructor:

// listing 11.53

class TileForces

{
private $units = [];
private $x;
private $y;
function _ construct(int $x, int $y, UnitAcquisition $acq)
{
$this->x = $x;
$this->y = $x;
$this->units = $acq->getUnits($this->x, $this->y);
}
/1.
}

The TileForces object does little but delegate to the provided UnitAcquisition object to get an array of
Unit objects. Let’s build a fake UnitAcquisition object:

// listing 11.54

class UnitAcquisition
{
function getUnits(int $x, int $y): array
{
// 1. looks up x and y in local data and gets a list of unit ids
// 2. goes off to a data source and gets full unit data
// here's some fake data
$army = new Army();
$army->addUnit(new Archer());
$found = [
new Cavalry(),
null,
new LaserCanonUnit(),
$army
I

return $found;

273

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

In this class, I hide the process of getting Unit data. Of course, in a real system, some actual look up
would be performed here. I have contented myself with a few direct instantiations. Notice, though, that I
embedded a sneaky null value in the $found array. This might happen, for example, if our network game
client holds metadata that has fallen out of alignment with the state of data on a server.

Armed with its array of Unit objects, TileForces can provide some functionality:

// listing 11.55

// TileForces
public function firepower(): int

{
$power = 0;
foreach($this->units as $unit) {
$power += $unit->bombardStrength();
}
return $power;
}

Let’s put the code through its paces:
// listing 11.56

$acquirer = new UnitAcquisition();
$tileforces = new TileForces(4, 2, $acquirer);
$power = $tileforces->firepower();

print "power is {$power}\n";

Thanks to that lurking null, this code causes an error:
Error: Call to a member function bombardStrength() on null

TileForces::firepower() cycles through its $units array, calling bombardStrength() on each Unit.
The attempt to invoke a method on a null value, of course, causes an error.
The most obvious solution is to check each element of the array before working with it:

// listing 11.57

// TileForces
public function firepower(): int

{
$power = 0;
foreach ($this->units as $unit) {
if (! is_null($unit)) {
$power += $unit->bombardStrength();
}
}
return $power;
}

274

CHAPTER 11 © PERFORMING AND REPRESENTING TASKS

On its own, this isn’t too much of a problem. But imagine a version of TileForces that performs all sorts
of operations on the elements in its $units property. As soon as we begin to replicate the is_null() check
in multiple places, we are presented once again with a particular code smell. Often, the answer to parallel
chunks of client code is to replace multiple conditionals with polymorphism. We can do that here, too.

Implementation

The Null Object pattern allows us to delegate the doing of nothing to a class of an expected type. In this case,
I will create a NullUnit class.

// listing 11.58

class NullUnit extends Unit

{
public function bombardStrength(): int
{
return 0;
}
public function getHealth(): int
{
return 0;
}
public function getDepth(): int {
return 0;
}
}

This implementation of Unit respects the interface, but does precisely nothing. Now, I can amend
UnitAcquisition to create a NullUnit rather than use a null:

// listing 11.59

public function getUnits(int $x, int $y): array
{

$army = new Army();
$army->addUnit(new Archer());

$found = [
new Cavalry(),
new NullUnit(),
new LaserCanonUnit(),
$army
1;

return $found;

}

275

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

The client code in TileForces can call any methods it likes on a NullUnit object without problem or
error:

// listing 11.60

// TileForces
public function firepower(): int {
$power = 0;

foreach($this->units as $unit) {
$power += $unit->bombardStrength();
}

return $power;

}

Take a look at any substantial project and count up the number of inelegant checks that have been
forced on its coders by methods that return null values. How many of those checks could be dispensed with
if more of us used Null Object?

Of course, sometimes you will need to know that you are dealing with a null object. The most obvious
way of doing this would be to test an object with the instanceof operator. That is even less elegant than the
original is_null() call, however.

Perhaps the neatest solution is to add an isNull() method to both a base class (returning false) and to
the Null Object (returning true):

// listing 11.61

if (! $unit->isNull()) {

// do something
} else {

print "null - no action\n";
}

That gives us the best of both worlds. Any method of a NullUnit object can be safely called. And any
Unit object can be queried for null status.

Summary

In this chapter, I wrapped up my examination of the Gang of Four patterns, placing a strong emphasis on
how to get things done. I began by showing you how to design a mini-language and build its engine with the
Interpreter pattern.

In the Strategy pattern, you encountered another way of using composition to increase flexibility
and reduce the need for repetitive subclassing. And with the Observer pattern, you learned how to solve
the problem of notifying disparate and varying components about system events. You also revisited the
Composite example; and with the Visitor pattern, learned how to pay a call on, and apply many operations
to, every component in a tree. You even saw how the Command pattern can help you to build an extensible
tiered system. Finally, you saved yourself a heap of checking for nulls with the Null Object pattern.

In the next chapter, I will step further beyond the Gang of Four to examine some patterns specifically
oriented toward enterprise programming.

276

CHAPTER 12

Enterprise Patterns

PHP is, first and foremost, a language designed for the Web. And, because of its extensive support for
objects, we can take advantage of patterns hatched in the context of other object-oriented languages,
particularly Java.

I develop a single example in this chapter, using it to illustrate the patterns I cover. Remember, though,
that by choosing to use one pattern, you are not committed to using all of the patterns that work well with it.
Nor should you feel that the implementations presented here are the only way you might go about deploying
these patterns. Rather, you should use the examples here to help you understand the thrust of the patterns
described, feeling free to extract what you need for your projects.

Because of the amount of material to cover, this is one this book’s longest and most involved chapters,
and it may be a challenge to traverse it in one sitting. It is divided into an introduction and two main parts.
These dividing lines might make good break points.

I also describe the individual patterns in the “Architecture Overview” section. Although these are
interdependent to some extent, you should be able to jump straight to any particular pattern and work
through it independently, moving on to related patterns at your leisure.

This ch