
PHP Objects, 
Patterns, and 
Practice

Build powerful code by mastering PHP’s 
object-oriented enhancements, design 
patterns, and essential development tools
—
Fifth Edition
—
Matt Zandstra





PHP Objects, Patterns, and Practice

Matt Zandstra				  
Liverpool, Merseyside			 
United Kingdom		

ISBN-13 (pbk): 978-1-4842-1995-9			   ISBN-13 (electronic): 978-1-4842-1996-6
DOI 10.1007/978-1-4842-1996-6

Library of Congress Control Number: 2016961297

Copyright © 2016 by Matt Zandstra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with 
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an 
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the 
material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Technical Reviewer: Paul Tregoing
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,  

Jonathan Gennick, Todd Green, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,  
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Nancy Chen
Copy Editor: Patrick Meador
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global, image courtesy of Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,  
e-mail orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California  
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). 
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com. 

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. 
eBook versions and licenses are also available for most titles. For more information, reference our Special 
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to 
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to 
www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary 
Material section for each chapter.

Printed on acid-free paper

orders-ny@springer-sbm.com
www.springer.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/


For Louise, who is the whole point.



v

Contents at a Glance

About the Author�����������������������������������������������������������������������������������������������������xxi

About the Tecnical Reviewer���������������������������������������������������������������������������������xxiii

Acknowledgments��������������������������������������������������������������������������������������������������xxv

Introduction����������������������������������������������������������������������������������������������������������xxvii

■■Part I: Objects�������������������������������������������������������������������������������������� 1

■■Chapter 1: PHP: Design and Management�������������������������������������������������������������� 3

■■Chapter 2: PHP and Objects������������������������������������������������������������������������������������ 9

■■Chapter 3: Object Basics�������������������������������������������������������������������������������������� 15

■■Chapter 4: Advanced Features����������������������������������������������������������������������������� 47

■■Chapter 5: Object Tools����������������������������������������������������������������������������������������� 99

■■Chapter 6: Objects and Design��������������������������������������������������������������������������� 133

■■Part II: Patterns������������������������������������������������������������������������������� 155

■■Chapter 7: What Are Design Patterns? Why Use Them?������������������������������������� 157

■■Chapter 8: Some Pattern Principles������������������������������������������������������������������� 165

■■Chapter 9: Generating Objects���������������������������������������������������������������������������� 179

■■Chapter 10: Patterns for Flexible Object Programming�������������������������������������� 211

■■Chapter 11: Performing and Representing Tasks����������������������������������������������� 235

■■Chapter 12: Enterprise Patterns������������������������������������������������������������������������� 277

■■Chapter 13: Database Patterns��������������������������������������������������������������������������� 327



■ Contents at a Glance

vi

■■Part III: Practice������������������������������������������������������������������������������ 375

■■Chapter 14: Good (and Bad) Practice����������������������������������������������������������������� 377

■■Chapter 15: PHP Standards�������������������������������������������������������������������������������� 385

■■Chapter 16: PHP Using and Creating Components with Composer�������������������� 399

■■Chapter 17: Version Control with Git������������������������������������������������������������������ 411

■■Chapter 18: Testing with PHPUnit����������������������������������������������������������������������� 435

■■Chapter 19: Automated Build with Phing����������������������������������������������������������� 465

■■Chapter 20: Vagrant�������������������������������������������������������������������������������������������� 487

■■Chapter 21: Continuous Integration�������������������������������������������������������������������� 497

■■Chapter 22: Objects, Patterns, Practice�������������������������������������������������������������� 525

■■Chapter 23: Appendix A: Bibliography���������������������������������������������������������������� 535

■■Chapter 24: Appendix B: A Simple Parser���������������������������������������������������������� 539

Index���������������������������������������������������������������������������������������������������������������������� 565



vii

Contents

About the Author�����������������������������������������������������������������������������������������������������xxi

About the Tecnical Reviewer���������������������������������������������������������������������������������xxiii

Acknowledgments��������������������������������������������������������������������������������������������������xxv

Introduction����������������������������������������������������������������������������������������������������������xxvii

■■Part I: Objects�������������������������������������������������������������������������������������� 1

■■Chapter 1: PHP: Design and Management�������������������������������������������������������������� 3

The Problem���������������������������������������������������������������������������������������������������������������������� 3

PHP and Other Languages������������������������������������������������������������������������������������������������� 4

About This Book���������������������������������������������������������������������������������������������������������������� 6

Objects����������������������������������������������������������������������������������������������������������������������������������������������������� 6

Patterns��������������������������������������������������������������������������������������������������������������������������������������������������� 6

Practice��������������������������������������������������������������������������������������������������������������������������������������������������� 6

What’s New in the Fifth Edition��������������������������������������������������������������������������������������������������������������� 7

Summary��������������������������������������������������������������������������������������������������������������������������� 8

■■Chapter 2: PHP and Objects������������������������������������������������������������������������������������ 9

The Accidental Success of PHP Objects���������������������������������������������������������������������������� 9

In the Beginning: PHP/FI�������������������������������������������������������������������������������������������������������������������������� 9

Syntactic Sugar: PHP 3���������������������������������������������������������������������������������������������������������������������������� 9

PHP 4 and the Quiet Revolution������������������������������������������������������������������������������������������������������������� 10

Change Embraced: PHP 5���������������������������������������������������������������������������������������������������������������������� 11

PHP 7: Closing the Gap�������������������������������������������������������������������������������������������������������������������������� 12

Advocacy and Agnosticism: The Object Debate��������������������������������������������������������������� 12

Summary������������������������������������������������������������������������������������������������������������������������� 13



■ Contents

viii

■■Chapter 3: Object Basics�������������������������������������������������������������������������������������� 15

Classes and Objects�������������������������������������������������������������������������������������������������������� 15

A First Class������������������������������������������������������������������������������������������������������������������������������������������� 15

A First Object (or Two)��������������������������������������������������������������������������������������������������������������������������� 16

Setting Properties in a Class������������������������������������������������������������������������������������������� 17

Working with Methods���������������������������������������������������������������������������������������������������� 19

Creating a Constructor Method�������������������������������������������������������������������������������������������������������������� 21

Arguments and Types������������������������������������������������������������������������������������������������������ 22

Primitive Types�������������������������������������������������������������������������������������������������������������������������������������� 22

Taking the Hint: Object Types����������������������������������������������������������������������������������������������������������������� 26

Inheritance���������������������������������������������������������������������������������������������������������������������� 30

The Inheritance Problem����������������������������������������������������������������������������������������������������������������������� 30

Working with Inheritance���������������������������������������������������������������������������������������������������������������������� 35

Public, Private, and Protected: Managing Access to Your Classes��������������������������������������������������������� 41

Summary������������������������������������������������������������������������������������������������������������������������� 46

■■Chapter 4: Advanced Features����������������������������������������������������������������������������� 47

Static Methods and Properties���������������������������������������������������������������������������������������� 47

Constant Properties��������������������������������������������������������������������������������������������������������� 51

Abstract Classes�������������������������������������������������������������������������������������������������������������� 51

Interfaces������������������������������������������������������������������������������������������������������������������������ 53

Traits�������������������������������������������������������������������������������������������������������������������������������� 55

A Problem for Traits to Solve����������������������������������������������������������������������������������������������������������������� 56

Defining and Using a Trait���������������������������������������������������������������������������������������������������������������������� 57

Using More than One Trait��������������������������������������������������������������������������������������������������������������������� 58

Combining Traits and Interfaces������������������������������������������������������������������������������������������������������������ 58

Managing Method Name Conflicts with insteadof��������������������������������������������������������������������������������� 59

Aliasing overridden trait methods��������������������������������������������������������������������������������������������������������� 61

Using static methods in traits���������������������������������������������������������������������������������������������������������������� 61



■ Contents

ix

Accessing Host Class Properties����������������������������������������������������������������������������������������������������������� 62

Defining Abstract Methods in Traits������������������������������������������������������������������������������������������������������� 63

Changing Access Rights to Trait Methods���������������������������������������������������������������������������������������������� 64

Late Static Bindings: The static Keyword������������������������������������������������������������������������ 65

Handling Errors��������������������������������������������������������������������������������������������������������������� 68

Exceptions��������������������������������������������������������������������������������������������������������������������������������������������� 70

Final Classes and Methods��������������������������������������������������������������������������������������������� 77

The Internal Error Class��������������������������������������������������������������������������������������������������� 78

Working with Interceptors����������������������������������������������������������������������������������������������� 79

Defining Destructor Methods������������������������������������������������������������������������������������������ 85

Copying Objects with __clone()��������������������������������������������������������������������������������������� 87

Defining String Values for Your Objects��������������������������������������������������������������������������� 90

Callbacks, Anonymous Functions, and Closures������������������������������������������������������������� 91

Anonymous Classes�������������������������������������������������������������������������������������������������������� 95

Summary������������������������������������������������������������������������������������������������������������������������� 97

■■Chapter 5: Object Tools����������������������������������������������������������������������������������������� 99

PHP and Packages���������������������������������������������������������������������������������������������������������� 99

PHP Packages and Namespaces����������������������������������������������������������������������������������������������������������� 99

Autoload���������������������������������������������������������������������������������������������������������������������������������������������� 108

The Class and Object Functions������������������������������������������������������������������������������������ 112

Looking for Classes����������������������������������������������������������������������������������������������������������������������������� 113

Learning About an Object or Class������������������������������������������������������������������������������������������������������ 113

Getting a Fully Qualified String Reference to a Class�������������������������������������������������������������������������� 115

Learning About Methods���������������������������������������������������������������������������������������������������������������������� 115

Learning About Properties������������������������������������������������������������������������������������������������������������������� 117

Learning About Inheritance����������������������������������������������������������������������������������������������������������������� 117

Method Invocation������������������������������������������������������������������������������������������������������������������������������� 118



■ Contents

x

The Reflection API��������������������������������������������������������������������������������������������������������� 119

Getting Started������������������������������������������������������������������������������������������������������������������������������������ 120

Time to Roll up Your Sleeves��������������������������������������������������������������������������������������������������������������� 120

Examining a Class������������������������������������������������������������������������������������������������������������������������������� 122

Examining Methods����������������������������������������������������������������������������������������������������������������������������� 124

Examining Method Arguments������������������������������������������������������������������������������������������������������������� 126

Using the Reflection API���������������������������������������������������������������������������������������������������������������������� 127

Summary����������������������������������������������������������������������������������������������������������������������� 131

■■Chapter 6: Objects and Design��������������������������������������������������������������������������� 133

Defining Code Design���������������������������������������������������������������������������������������������������� 133

Object-Oriented and Procedural Programming������������������������������������������������������������� 134

Responsibility�������������������������������������������������������������������������������������������������������������������������������������� 138

Cohesion���������������������������������������������������������������������������������������������������������������������������������������������� 138

Coupling����������������������������������������������������������������������������������������������������������������������������������������������� 139

Orthogonality��������������������������������������������������������������������������������������������������������������������������������������� 139

Choosing Your Classes�������������������������������������������������������������������������������������������������� 139

Polymorphism��������������������������������������������������������������������������������������������������������������� 140

Encapsulation���������������������������������������������������������������������������������������������������������������� 142

Forget How to Do It������������������������������������������������������������������������������������������������������� 142

Four Signposts�������������������������������������������������������������������������������������������������������������� 143

Code Duplication���������������������������������������������������������������������������������������������������������������������������������� 143

The Class Who Knew Too Much����������������������������������������������������������������������������������������������������������� 143

The Jack of All Trades�������������������������������������������������������������������������������������������������������������������������� 144

Conditional Statements����������������������������������������������������������������������������������������������������������������������� 144

The UML������������������������������������������������������������������������������������������������������������������������ 144

Class Diagrams������������������������������������������������������������������������������������������������������������������������������������ 144

Sequence Diagrams���������������������������������������������������������������������������������������������������������������������������� 151

Summary����������������������������������������������������������������������������������������������������������������������� 153



■ Contents

xi

■■Part II: Patterns������������������������������������������������������������������������������� 155

■■Chapter 7: What Are Design Patterns? Why Use Them?������������������������������������� 157

What Are Design Patterns?�������������������������������������������������������������������������������������������� 157

A Design Pattern Overview�������������������������������������������������������������������������������������������� 159

Name��������������������������������������������������������������������������������������������������������������������������������������������������� 159

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 159

The Solution����������������������������������������������������������������������������������������������������������������������������������������� 159

Consequences������������������������������������������������������������������������������������������������������������������������������������� 160

The Gang of Four Format����������������������������������������������������������������������������������������������� 160

Why Use Design Patterns?�������������������������������������������������������������������������������������������� 161

A Design Pattern Defines a Problem���������������������������������������������������������������������������������������������������� 161

A Design Pattern Defines a Solution���������������������������������������������������������������������������������������������������� 161

Design Patterns Are Language Independent��������������������������������������������������������������������������������������� 161

Patterns Define a Vocabulary�������������������������������������������������������������������������������������������������������������� 161

Patterns Are Tried and Tested�������������������������������������������������������������������������������������������������������������� 162

Patterns Are Designed for Collaboration���������������������������������������������������������������������������������������������� 162

Design Patterns Promote Good Design������������������������������������������������������������������������������������������������ 162

Design Patterns are Used By Popular Frameworks����������������������������������������������������������������������������� 162

PHP and Design Patterns���������������������������������������������������������������������������������������������� 162

Summary����������������������������������������������������������������������������������������������������������������������� 163

■■Chapter 8: Some Pattern Principles������������������������������������������������������������������� 165

The Pattern Revelation�������������������������������������������������������������������������������������������������� 165

Composition and Inheritance���������������������������������������������������������������������������������������� 166

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 166

Using Composition������������������������������������������������������������������������������������������������������������������������������� 169

Decoupling�������������������������������������������������������������������������������������������������������������������� 172

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 172

Loosening Your Coupling��������������������������������������������������������������������������������������������������������������������� 173



■ Contents

xii

Code to an Interface, Not to an Implementation������������������������������������������������������������ 175

The Concept that Varies������������������������������������������������������������������������������������������������ 176

Patternitis���������������������������������������������������������������������������������������������������������������������� 177

The Patterns������������������������������������������������������������������������������������������������������������������ 177

Patterns for Generating Objects���������������������������������������������������������������������������������������������������������� 177

Patterns for Organizing Objects and Classes�������������������������������������������������������������������������������������� 177

Task-Oriented Patterns������������������������������������������������������������������������������������������������������������������������ 177

Enterprise Patterns������������������������������������������������������������������������������������������������������������������������������ 178

Database Patterns������������������������������������������������������������������������������������������������������������������������������� 178

Summary����������������������������������������������������������������������������������������������������������������������� 178

■■Chapter 9: Generating Objects���������������������������������������������������������������������������� 179

Problems and Solutions in Generating Objects������������������������������������������������������������� 179

The Singleton Pattern���������������������������������������������������������������������������������������������������� 184

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 184

Implementation������������������������������������������������������������������������������������������������������������������������������������ 185

Consequences������������������������������������������������������������������������������������������������������������������������������������� 187

Factory Method Pattern������������������������������������������������������������������������������������������������� 187

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 188

Implementation������������������������������������������������������������������������������������������������������������������������������������ 191

Consequences������������������������������������������������������������������������������������������������������������������������������������� 193

Abstract Factory Pattern����������������������������������������������������������������������������������������������� 193

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 194

Implementation������������������������������������������������������������������������������������������������������������������������������������ 195

Consequences������������������������������������������������������������������������������������������������������������������������������������� 197

Prototype����������������������������������������������������������������������������������������������������������������������� 199

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 199

Implementation������������������������������������������������������������������������������������������������������������������������������������ 200

Pushing to the Edge: Service Locator���������������������������������������������������������������������������� 203



■ Contents

xiii

Splendid Isolation: Dependency Injection���������������������������������������������������������������������� 205

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 205

Implementation������������������������������������������������������������������������������������������������������������������������������������ 206

Consequences������������������������������������������������������������������������������������������������������������������������������������� 208

Summary����������������������������������������������������������������������������������������������������������������������� 209

■■Chapter 10: Patterns for Flexible Object Programming�������������������������������������� 211

Structuring Classes to Allow Flexible Objects��������������������������������������������������������������� 211

The Composite Pattern�������������������������������������������������������������������������������������������������� 211

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 212

Implementation������������������������������������������������������������������������������������������������������������������������������������ 214

Consequences������������������������������������������������������������������������������������������������������������������������������������� 218

Composite in Summary����������������������������������������������������������������������������������������������������������������������� 222

The Decorator Pattern��������������������������������������������������������������������������������������������������� 222

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 222

Implementation������������������������������������������������������������������������������������������������������������������������������������ 225

Consequences������������������������������������������������������������������������������������������������������������������������������������� 229

The Facade Pattern������������������������������������������������������������������������������������������������������� 229

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 230

Implementation������������������������������������������������������������������������������������������������������������������������������������ 231

Consequences������������������������������������������������������������������������������������������������������������������������������������� 232

Summary����������������������������������������������������������������������������������������������������������������������� 233

■■Chapter 11: Performing and Representing Tasks����������������������������������������������� 235

The Interpreter Pattern�������������������������������������������������������������������������������������������������� 235

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 235

Implementation������������������������������������������������������������������������������������������������������������������������������������ 236

Interpreter Issues�������������������������������������������������������������������������������������������������������������������������������� 245

The Strategy Pattern����������������������������������������������������������������������������������������������������� 245

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 246

Implementation������������������������������������������������������������������������������������������������������������������������������������ 247



■ Contents

xiv

The Observer Pattern���������������������������������������������������������������������������������������������������� 250

Implementation������������������������������������������������������������������������������������������������������������������������������������ 253

The Visitor Pattern��������������������������������������������������������������������������������������������������������� 259

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 259

Implementation������������������������������������������������������������������������������������������������������������������������������������ 261

Visitor Issues��������������������������������������������������������������������������������������������������������������������������������������� 266

The Command Pattern��������������������������������������������������������������������������������������������������� 267

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 267

Implementation������������������������������������������������������������������������������������������������������������������������������������ 267

The Null Object Pattern������������������������������������������������������������������������������������������������� 272

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 272

Implementation������������������������������������������������������������������������������������������������������������������������������������ 275

Summary����������������������������������������������������������������������������������������������������������������������� 276

■■Chapter 12: Enterprise Patterns������������������������������������������������������������������������� 277

Architecture Overview��������������������������������������������������������������������������������������������������� 277

The Patterns���������������������������������������������������������������������������������������������������������������������������������������� 277

Applications and Layers���������������������������������������������������������������������������������������������������������������������� 278

Cheating Before We Start���������������������������������������������������������������������������������������������� 280

Registry����������������������������������������������������������������������������������������������������������������������������������������������� 280

Implementation������������������������������������������������������������������������������������������������������������������������������������ 282

The Presentation Layer������������������������������������������������������������������������������������������������� 286

Front Controller������������������������������������������������������������������������������������������������������������������������������������ 286

Application Controller�������������������������������������������������������������������������������������������������������������������������� 297

Page Controller������������������������������������������������������������������������������������������������������������������������������������ 310

Template View and View Helper���������������������������������������������������������������������������������������������������������� 315

The Business Logic Layer���������������������������������������������������������������������������������������������� 317

Transaction Script�������������������������������������������������������������������������������������������������������������������������������� 318

Domain Model�������������������������������������������������������������������������������������������������������������������������������������� 322

Summary����������������������������������������������������������������������������������������������������������������������� 326



■ Contents

xv

■■Chapter 13: Database Patterns��������������������������������������������������������������������������� 327

The Data Layer�������������������������������������������������������������������������������������������������������������� 327

Data Mapper������������������������������������������������������������������������������������������������������������������ 327

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 328

Implementation������������������������������������������������������������������������������������������������������������������������������������ 328

Consequences������������������������������������������������������������������������������������������������������������������������������������� 342

Identity Map������������������������������������������������������������������������������������������������������������������ 343

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 343

Implementation������������������������������������������������������������������������������������������������������������������������������������ 344

Consequences������������������������������������������������������������������������������������������������������������������������������������� 347

Unit of Work������������������������������������������������������������������������������������������������������������������� 347

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 348

Implementation������������������������������������������������������������������������������������������������������������������������������������ 348

Consequences������������������������������������������������������������������������������������������������������������������������������������� 352

Lazy Load��������������������������������������������������������������������������������������������������������������������������������������������� 352

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 352

Implementation������������������������������������������������������������������������������������������������������������������������������������ 353

Consequences������������������������������������������������������������������������������������������������������������������������������������� 355

Domain Object Factory�������������������������������������������������������������������������������������������������� 355

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 355

Implementation������������������������������������������������������������������������������������������������������������������������������������ 356

Consequences������������������������������������������������������������������������������������������������������������������������������������� 357

The Identity Object�������������������������������������������������������������������������������������������������������� 359

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 359

Implementation������������������������������������������������������������������������������������������������������������������������������������ 359

Consequences������������������������������������������������������������������������������������������������������������������������������������� 365

The Selection Factory and Update Factory Patterns����������������������������������������������������� 365

The Problem���������������������������������������������������������������������������������������������������������������������������������������� 366

Implementation������������������������������������������������������������������������������������������������������������������������������������ 366

Consequences������������������������������������������������������������������������������������������������������������������������������������� 370



■ Contents

xvi

What’s Left of Data Mapper Now?��������������������������������������������������������������������������������� 370

Summary����������������������������������������������������������������������������������������������������������������������� 373

■■Part III: Practice������������������������������������������������������������������������������ 375

■■Chapter 14: Good (and Bad) Practice����������������������������������������������������������������� 377

Beyond Code����������������������������������������������������������������������������������������������������������������� 377

Borrowing a Wheel�������������������������������������������������������������������������������������������������������� 378

Playing Nice������������������������������������������������������������������������������������������������������������������ 379

Giving Your Code Wings������������������������������������������������������������������������������������������������� 380

Standards���������������������������������������������������������������������������������������������������������������������� 380

Vagrant�������������������������������������������������������������������������������������������������������������������������� 381

Testing��������������������������������������������������������������������������������������������������������������������������� 381

Continuous Integration�������������������������������������������������������������������������������������������������� 382

Summary����������������������������������������������������������������������������������������������������������������������� 383

■■Chapter 15: PHP Standards�������������������������������������������������������������������������������� 385

Why Standards?������������������������������������������������������������������������������������������������������������ 385

What Are PHP Standards Recommendations?�������������������������������������������������������������� 386

Why PSR in Particular?������������������������������������������������������������������������������������������������������������������������ 386

Who Are PSRs for?������������������������������������������������������������������������������������������������������������������������������� 387

Coding with Style���������������������������������������������������������������������������������������������������������� 387

PSR-1 Basic Coding Standard������������������������������������������������������������������������������������������������������������� 388

PSR-2 Coding Style Guide������������������������������������������������������������������������������������������������������������������� 390

Checking and Fixing your Code����������������������������������������������������������������������������������������������������������� 393

PSR-4 Autoloading�������������������������������������������������������������������������������������������������������� 395

The Rules that Matter to Us����������������������������������������������������������������������������������������������������������������� 395

Summary����������������������������������������������������������������������������������������������������������������������� 398

■■Chapter 16: PHP Using and Creating Components with Composer�������������������� 399

What Is Composer?������������������������������������������������������������������������������������������������������� 399

Installing Composer������������������������������������������������������������������������������������������������������� 400



■ Contents

xvii

Installing a (Set of) Package(s)�������������������������������������������������������������������������������������� 400

Installing a Package from the Command Line������������������������������������������������������������������������������������� 401

Versions����������������������������������������������������������������������������������������������������������������������������������������������� 401

require-dev������������������������������������������������������������������������������������������������������������������������������������������ 402

Composer and Autoload������������������������������������������������������������������������������������������������ 403

Creating Your Own Package������������������������������������������������������������������������������������������ 404

Adding Package Information��������������������������������������������������������������������������������������������������������������� 404

Platform Packages������������������������������������������������������������������������������������������������������������������������������ 405

Distribution Through Packagist������������������������������������������������������������������������������������� 406

Keeping it private���������������������������������������������������������������������������������������������������������� 409

Summary����������������������������������������������������������������������������������������������������������������������� 410

■■Chapter 17: Version Control with Git������������������������������������������������������������������ 411

Why Use Version Control?��������������������������������������������������������������������������������������������� 411

Getting Git��������������������������������������������������������������������������������������������������������������������� 412

Using an Online Git Repository�������������������������������������������������������������������������������������� 413

Configuring a Git Server������������������������������������������������������������������������������������������������ 415

Creating the Remote Repository���������������������������������������������������������������������������������������������������������� 415

Beginning a Project������������������������������������������������������������������������������������������������������� 417

Cloning the Repository������������������������������������������������������������������������������������������������������������������������ 420

Updating and Committing���������������������������������������������������������������������������������������������� 420

Adding and Removing Files and Directories������������������������������������������������������������������ 424

Adding a File���������������������������������������������������������������������������������������������������������������������������������������� 424

Removing a File����������������������������������������������������������������������������������������������������������������������������������� 424

Adding a Directory������������������������������������������������������������������������������������������������������������������������������� 425

Removing Directories�������������������������������������������������������������������������������������������������������������������������� 425

Tagging a Release��������������������������������������������������������������������������������������������������������� 426

Branching a Project������������������������������������������������������������������������������������������������������� 427

Summary����������������������������������������������������������������������������������������������������������������������� 433



■ Contents

xviii

■■Chapter 18: Testing with PHPUnit����������������������������������������������������������������������� 435

Functional Tests and Unit Tests������������������������������������������������������������������������������������� 435

Testing by Hand������������������������������������������������������������������������������������������������������������� 436

Introducing PHPUnit������������������������������������������������������������������������������������������������������ 438

Creating a Test Case���������������������������������������������������������������������������������������������������������������������������� 439

Assertion Methods������������������������������������������������������������������������������������������������������������������������������� 441

Testing Exceptions������������������������������������������������������������������������������������������������������������������������������� 442

Running Test Suites����������������������������������������������������������������������������������������������������������������������������� 443

Constraints������������������������������������������������������������������������������������������������������������������������������������������ 444

Mocks and Stubs��������������������������������������������������������������������������������������������������������������������������������� 446

Tests Succeed When They Fail������������������������������������������������������������������������������������������������������������ 449

Writing Web Tests���������������������������������������������������������������������������������������������������������� 452

Refactoring a Web Application for Testing������������������������������������������������������������������������������������������� 452

Simple Web Testing����������������������������������������������������������������������������������������������������������������������������� 454

Introducing Selenium�������������������������������������������������������������������������������������������������������������������������� 456

A Note of Caution���������������������������������������������������������������������������������������������������������� 463

Summary����������������������������������������������������������������������������������������������������������������������� 464

■■Chapter 19: Automated Build with Phing����������������������������������������������������������� 465

What Is Phing?�������������������������������������������������������������������������������������������������������������� 465

Getting and Installing Phing������������������������������������������������������������������������������������������ 466

Composing the Build Document������������������������������������������������������������������������������������ 466

Targets������������������������������������������������������������������������������������������������������������������������������������������������� 468

Properties�������������������������������������������������������������������������������������������������������������������������������������������� 470

Types��������������������������������������������������������������������������������������������������������������������������������������������������� 477

Tasks��������������������������������������������������������������������������������������������������������������������������������������������������� 482

Summary����������������������������������������������������������������������������������������������������������������������� 485

■■Chapter 20: Vagrant�������������������������������������������������������������������������������������������� 487

The Problem������������������������������������������������������������������������������������������������������������������ 487

A Little Setup����������������������������������������������������������������������������������������������������������������� 488

Choosing and Installing a Vagrant Box������������������������������������������������������������������������������������������������ 488



■ Contents

xix

Mounting Local Directories on the Vagrant Box������������������������������������������������������������ 490

Provisioning������������������������������������������������������������������������������������������������������������������� 491

Setting Up the Web Server������������������������������������������������������������������������������������������������������������������� 492

Setting Up MySQL�������������������������������������������������������������������������������������������������������������������������������� 493

Configuring a Host Name��������������������������������������������������������������������������������������������������������������������� 494

Wrapping It Up��������������������������������������������������������������������������������������������������������������� 495

Summary����������������������������������������������������������������������������������������������������������������������� 496

■■Chapter 21: Continuous Integration�������������������������������������������������������������������� 497

What Is Continuous Integration?����������������������������������������������������������������������������������� 497

Preparing a Project for CI�������������������������������������������������������������������������������������������������������������������� 498

Installing Jenkins Plug-ins������������������������������������������������������������������������������������������������������������������ 509

Setting up the Git Public Key��������������������������������������������������������������������������������������������������������������� 511

Installing a Project������������������������������������������������������������������������������������������������������������������������������� 511

Running the First Build������������������������������������������������������������������������������������������������������������������������ 516

Configuring the Reports����������������������������������������������������������������������������������������������������������������������� 517

Triggering Builds���������������������������������������������������������������������������������������������������������������������������������� 520

Summary����������������������������������������������������������������������������������������������������������������������� 523

■■Chapter 22: Objects, Patterns, Practice�������������������������������������������������������������� 525

Objects�������������������������������������������������������������������������������������������������������������������������� 525

Choice�������������������������������������������������������������������������������������������������������������������������������������������������� 526

Encapsulation and Delegation������������������������������������������������������������������������������������������������������������� 526

Decoupling������������������������������������������������������������������������������������������������������������������������������������������� 526

Reusability������������������������������������������������������������������������������������������������������������������������������������������� 527

Aesthetics�������������������������������������������������������������������������������������������������������������������������������������������� 527

Patterns������������������������������������������������������������������������������������������������������������������������� 527

What Patterns Buy Us�������������������������������������������������������������������������������������������������������������������������� 528

Patterns and Principles of Design������������������������������������������������������������������������������������������������������� 529

Practice������������������������������������������������������������������������������������������������������������������������� 530

Testing������������������������������������������������������������������������������������������������������������������������������������������������� 530

Standards�������������������������������������������������������������������������������������������������������������������������������������������� 531



■ Contents

xx

Version Control������������������������������������������������������������������������������������������������������������������������������������ 531

Automated Build���������������������������������������������������������������������������������������������������������������������������������� 531

Continuous Integration������������������������������������������������������������������������������������������������������������������������ 532

What I Missed�������������������������������������������������������������������������������������������������������������������������������������� 532

Summary����������������������������������������������������������������������������������������������������������������������� 533

■■Chapter 23: Appendix A: Bibliography���������������������������������������������������������������� 535

Books���������������������������������������������������������������������������������������������������������������������������� 535

Articles�������������������������������������������������������������������������������������������������������������������������� 535

Sites������������������������������������������������������������������������������������������������������������������������������ 536

■■Chapter 24: Appendix B: A Simple Parser���������������������������������������������������������� 539

The Scanner������������������������������������������������������������������������������������������������������������������ 539

The Parser��������������������������������������������������������������������������������������������������������������������� 548

Index���������������������������������������������������������������������������������������������������������������������� 565



xxi

About the Author

Matt Zandstra has worked as a web programmer, consultant, and writer for over two decades. He was a 
senior developer at Yahoo! working both in London and Silicon Valley. He now earns his living as a freelance 
consultant and writer. Before writing PHP Objects, Patterns, and Practice, he was the author of three editions 
of SAMS Teach Yourself PHP in 24 Hours (Sams Publishing, 1999) and a contributor to DHTML Unleashed 
(Sams.net Publishing, 1997). He has written articles for Linux Magazine, Zend.com, IBM DeveloperWorks, 
and php|architect Magazine, among others. Matt also studies literature and writes fiction. He holds MA 
degrees in Creative Writing from both Manchester University and the University of East Anglia. When he’s 
not studying or freelancing at various locations around the UK, Matt lives in Brighton with his wife, Louise, 
and two children, Holly and Jake. 



xxiii

About the Technical Reviewer

Paul Tregoing has worked in ops and development in a variety of 
environments for nearly twenty years. He worked at Yahoo! for five years 
as a senior developer on the frontpage team, there he generated his first 
PHP using Perl. Other employers include Bloomberg, Schlumberger and 
the British Antarctic Survey, where he became intimate with thousands of 
penguins.

He now works as a freelance engineer for various clients, small and 
large, building multi-tiered web apps using PHP, Javascript, and many 
other technologies. Paul is a voracious consumer of science fiction and 
fantasy, and harbours not-so-secret ambitions to try his hand at writing in 
the near future. He lives in Cambridge, UK with this wife and children.



xxv

Acknowledgments

As always, I have benefited from the support of many people while working on this edition. But as always, 
I must also look back to the book’s origins. I tried out some of this book’s underlying concepts in a talk in 
Brighton, back when we were all first marveling at the shiny possibilities of PHP 5. Thanks to Andy Budd, 
who hosted the talk, and to the vibrant Brighton developer community. Thanks also to Jessey White-Cinis, 
who was at that meeting and who put me in touch with Martin Streicher at Apress.

Once again, this time around the Apress team has provided enormous support, feedback, and 
encouragement. I am lucky to have benefited from such professionalism.

When I proposed this edition, I blithely promised I would update all the code to comply with the latest 
style guidelines. I’m very lucky to have had my friend and colleague, Paul Tregoing, working on this edition 
as Technical Reviewer. Not only has he kept me to my commitment, he has waded into the code itself to zap 
many, many standards violations, showing commitment above and beyond the call of duty! Furthermore, 
this edition has greatly benefited from Paul’s knowledge, insight, and attention to detail—many thanks Paul!

Thanks and love to my wife, Louise, and to our children, Holly and Jake, for many much needed 
distractions. Thanks to Steven Metsker for his kind permission to reimplement in PHP a simplified version of 
the parser API he presented in his book, Building Parsers in Java (Addison-Wesley Professional, 2001).

I write to music and, in previous editions of this book, I remembered the great DJ, John Peel, champion 
of the underground and the eclectic. The soundtrack for this edition was largely provided by BBC Radio 3’s 
contemporary music show, Late Junction, played on a loop. Thanks to them for keeping things weird.



xxvii

Introduction

When I first conceived of this book, object-oriented design in PHP was an esoteric topic. The intervening 
years have not only seen the inexorable rise of PHP as an object-oriented language, but also the march of 
the framework. Frameworks are incredibly useful, of course. They manage the guts and the glue of many 
(perhaps, these days, most) web applications. What’s more, they often exemplify precisely the principles of 
design that this book explores.

There is, though, a danger for developers here, as there is in all useful APIs. This is the fear that one 
might find oneself relegated to userland, forced to wait for remote gurus to fix bugs or add features at their 
whim. It’s a short step from this standpoint to a kind of exile in which one is left regarding the innards of a 
framework as advanced magic, and one’s own work as not much more than a minor adornment stuck up on 
top of a mighty unknowable infrastructure.

Although I’m an inveterate reinventor of wheels, the thrust of my argument is not that we should all 
throw away our frameworks and build MVC applications from scratch (at least not always). It is rather that, 
as developers, we should understand the problems that frameworks solve, and the strategies they use to 
solve them. We should be able to evaluate frameworks not only functionally but in terms of the design 
decisions their creators have made, and to judge the quality of their implementations. And yes, when the 
conditions are right, we should go ahead and build our own spare and focused applications, and, over time, 
compile our own libraries of reusable code.

I hope this book goes some way toward helping PHP developers apply design-oriented insights to their 
platforms and libraries, and provides some the conceptual tools needed when it’s time to go it alone.



PART I

Objects



3© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_1

CHAPTER 1

PHP: Design and Management

In July 2004 PHP 5.0 was released. This version introduced a suite of radical enhancements. Perhaps first 
among these was radically improved support for object-oriented programming. This stimulated much 
interest in objects and design within the PHP community. In fact, this was an intensification of a process that 
began when version 4 first made object-oriented programming with PHP a serious reality.

In this chapter, I look at some of the needs that coding with objects can address. I very briefly 
summarize some aspects of the evolution of patterns and related practices.

I also outline the topics covered by this book.
I will look at the following:

•	 The evolution of disaster: A project goes bad.

•	 Design and PHP: How object-oriented design techniques took root in the PHP 
community.

•	 This book: Objects. Patterns. Practice.

The Problem
The problem is that PHP is just too easy. It tempts you to try out your ideas, and flatters you with good 
results. You write much of your code straight into your web pages, because PHP is designed to support that. 
You add utility functions (such as database access code) to files that can be included from page to page, and 
before you know it you have a working web application.

You are well on the road to ruin. You don’t realize this, of course, because your site looks fantastic. It 
performs well, your clients are happy, and your users are spending money.

Trouble strikes when you go back to the code to begin a new phase. Now you have a larger team, some 
more users, a bigger budget. Yet, without warning, things begin to go wrong. It’s as if your project has been 
poisoned.

Your new programmer is struggling to understand code that is second nature to you, although perhaps 
a little byzantine in its twists and turns. She is taking longer than you expected to reach full strength as a 
team member.

A simple change, estimated at a day, takes three days when you discover that you must update 20 or 
more web pages as a result.

One of your coders saves his version of a file over major changes you made to the same code some time 
earlier. The loss is not discovered for three days, by which time you have amended your own local copy. It 
takes a day to sort out the mess, holding up a third developer who was also working on the file.

Electronic supplementary material  The online version of this chapter (doi: 10.1007/978-1-4842-1996-6_1) 
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-1996-6_1


Chapter 1 ■ PHP: Design and Management

4

Because of the application’s popularity, you need to shift the code to a new server. The project has to 
be installed by hand, and you discover that file paths, database names, and passwords are hard-coded into 
many source files. You halt work during the move because you don’t want to overwrite the configuration 
changes the migration requires. The estimated two hours becomes eight as it is revealed that someone 
did something clever involving the Apache module ModRewrite, and the application now requires this to 
operate properly.

You finally launch phase 2. All is well for a day and a half. The first bug report comes in as you are about 
to leave the office. The client phones minutes later to complain. Her report is similar to the first, but a little 
more scrutiny reveals that it is a different bug causing similar behavior. You remember the simple change 
back at the start of the phase that necessitated extensive modifications throughout the rest of the project.

You realize that not all of the required modifications are in place. This is either because they were 
omitted to start with or because the files in question were overwritten in merge collisions. You hurriedly 
make the modifications needed to fix the bugs. You’re in too much of a hurry to test the changes, but they are 
a simple matter of copy-and-paste, so what can go wrong?

The next morning you arrive at the office to find that a shopping basket module has been down all 
night. The last-minute changes you made omitted a leading quotation mark, rendering the code unusable. 
Of course, while you were asleep, potential customers in other time zones were wide awake and ready to 
spend money at your store. You fix the problem, mollify the client, and gather the team for another day’s 
firefighting.

This everyday tale of coding folk may seem a little over the top, but I have seen all these things happen 
over and over again. Many PHP projects start their life small and evolve into monsters.

Because the presentation layer also contains application logic, duplication creeps in early as database 
queries, authentication checks, form processing, and more are copied from page to page. Every time a 
change is required to one of these blocks of code, it must be made everywhere that the code is found, or bugs 
will surely follow.

Lack of documentation makes the code hard to read, and lack of testing allows obscure bugs to go 
undiscovered until deployment. The changing nature of a client’s business often means that code evolves 
away from its original purpose until it is performing tasks for which it is fundamentally unsuited. Because 
such code has often evolved as a seething, intermingled lump, it is hard, if not impossible, to switch out and 
rewrite parts of it to suit the new purpose.

Now, none of this is bad news if you are a freelance PHP consultant. Assessing and fixing a system like 
this can fund expensive espresso drinks and DVD box sets for six months or more. More seriously, though, 
problems of this sort can mean the difference between a business’s success or failure.

PHP and Other Languages
PHP’s phenomenal popularity meant that its boundaries were tested early and hard. As you will see in the 
next chapter, PHP started life as a set of macros for managing personal home pages. With the advent of PHP 
3 and, to a greater extent, PHP 4, the language rapidly became the successful power behind large enterprise 
websites. In many ways, however, the legacy of PHP’s beginnings carried through into script design and 
project management. In some quarters, PHP retained an unfair reputation as a hobbyist language, best 
suited for presentation tasks.

About this time (around the turn of the millennium), new ideas were gaining currency in other coding 
communities. An interest in object-oriented design galvanized the Java community. Since Java is an object-
oriented language, you may think that this is a redundancy. Java provides a grain that is easier to work 
with than against, of course, but using classes and objects does not in itself determine a particular design 
approach.

The concept of the design pattern as a way of describing a problem, together with the essence of its 
solution, was first discussed in the 1970s. Perhaps aptly, the idea originated in the field of architecture, not 
computer science. By the early 1990s, object-oriented programmers were using the same technique to name 
and describe problems of software design. The seminal book on design patterns, Design Patterns: Elements 



Chapter 1 ■ PHP: Design and Management

5

of Reusable Object-Oriented Software (Addison-Wesley Professional, 1995) by Erich Gamma, Richard Helm, 
Ralph Johnson, and John Vlissides (henceforth referred to in this book by their affectionate nickname, 
the Gang of Four), is still indispensable today. The patterns it contains are a required first step for anyone 
starting out in this field, which is why most of the patterns in this book are drawn from it.

The Java language itself deployed many core patterns in its API but it wasn’t until the late 1990s that 
design patterns seeped into the consciousness of the coding community at large. Patterns quickly infected the 
computer sections of Main Street bookstores, and the first flame wars began on mailing lists and in forums.

Whether you think that patterns are a powerful way of communicating craft knowledge or largely hot air 
(and, given the title of this book, you can probably guess where I stand on that issue), it is hard to deny that 
the emphasis on software design they have encouraged is beneficial in itself.

Related topics also grew in prominence. Among them was eXtreme Programming (XP), championed by 
Kent Beck. XP is an approach to projects that encourages flexible, design-oriented, highly focused planning 
and execution.

Prominent among XP’s principles is an insistence that testing is crucial to a project’s success. Tests 
should be automated, run often, and preferably designed before their target code is written.

XP also dictates that projects should be broken down into small (very small) iterations. Both code and 
requirements should be scrutinized at all times. Architecture and design should be a shared and constant 
issue, leading to the frequent revision of code.

If XP was the militant wing of the design movement, then the moderate tendency is well represented 
by one of the best books about programming that I have ever read: The Pragmatic Programmer: From 
Journeyman to Master by Andrew Hunt and David Thomas (Addison-Wesley Professional, 1999).

XP was deemed a tad cultish by some, but it grew out of two decades of object-oriented practice at the 
highest level, and its principles were widely cannibalized. In particular, code revision, known as refactoring, 
was taken up as a powerful adjunct to patterns. Refactoring has evolved since the 1980s, but it was codified 
in Martin Fowler’s catalog of refactorings, Refactoring: Improving the Design of Existing Code (Addison-
Wesley Professional), which was published in 1999 and defined the field.

Testing, too, became a hot issue with the rise to prominence of XP and patterns. The importance 
of automated tests was further underlined by the release of the powerful JUnit test platform, which 
became a key weapon in the Java programmer’s armory. A landmark article on the subject, “Test Infected: 
Programmers Love Writing Tests” by Kent Beck and Erich Gamma (http://junit.sourceforge.net/doc/
testinfected/testing.htm), gives an excellent introduction to the topic and remains hugely influential.

PHP 4 was released at about this time, bringing with it improvements in efficiency and, crucially, 
enhanced support for objects. These enhancements made fully object-oriented projects a possibility. 
Programmers embraced this feature, somewhat to the surprise of Zend founders Zeev Suraski and Andi 
Gutmans, who had joined Rasmus Lerdorf to manage PHP development. As you shall see in the next chapter, 
PHP’s object support was by no means perfect. But with discipline and careful use of syntax, one could really 
begin to think in objects and PHP at the same time.

Nevertheless, design disasters such as the one depicted at the start of this chapter remained common. 
Design culture was some way off, and almost nonexistent in books about PHP. Online, however, the interest 
was clear. Leon Atkinson wrote a piece about PHP and patterns for Zend in 2001, and Harry Fuecks launched 
his journal at www.phppatterns.com (now defunct) in 2002. Pattern-based framework projects such as 
BinaryCloud began to emerge, as well as tools for automated testing and documentation.

The release of the first PHP 5 beta in 2003 ensured the future of PHP as a language for object-oriented 
programming. The Zend 2 Engine provided greatly improved object support. Equally important, it sent a 
signal that objects and object-oriented design were now central to the PHP project.

Over the years, PHP 5 has continued to evolve and improve, incorporating important new features such 
as namespaces and closures. During this time, it has secured its reputation as the best choice for server-side 
web programming.

PHP 7, released in December 2015, represents a continuation of this trend. In particular it provides 
support for scalar and return type declarations—two features that many developers (together with previous 
editions of this book) have been clamoring for over the years. If you don’t know what that means or why it's 
important, read on!

http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/doc/testinfected/testing.htm
http://www.phppatterns.com/


Chapter 1 ■ PHP: Design and Management

6

About This Book
This book does not attempt to break new ground in the field of object-oriented design; in that respect, 
it perches precariously on the shoulders of giants. Instead, I examine, in the context of PHP, some well-
established design principles and some key patterns (particularly those inscribed in Design Patterns, the 
classic Gang of Four book). Finally, I move beyond the strict limits of code to look at tools and techniques 
that can help to ensure the success of a project. Aside from this introduction and a brief conclusion, the book 
is divided into three main parts: objects, patterns, and practice.

Objects
I begin Part 2 with a quick look at the history of PHP and objects, charting their shift from afterthought in 
PHP 3 to core feature in PHP 5.

You can still be an experienced and successful PHP programmer with little or no knowledge of objects. 
For this reason, I start from first principles to explain objects, classes, and inheritance. Even at this early 
stage, I look at some of the object enhancements that PHP 5 and PHP 7 introduced.

The basics established, I delve deeper into our topic, examining PHP’s more advanced object-oriented 
features. I also devote a chapter to the tools that PHP provides to help you work with objects and classes.

It is not enough, however, to know how to declare a class, and to use it to instantiate an object. You 
must first choose the right participants for your system and decide the best ways for them to interact. These 
choices are much harder to describe and to learn than the bald facts about object tools and syntax. I finish 
Part 2 with an introduction to object-oriented design with PHP.

Patterns
A pattern describes a problem in software design and provides the kernel of a solution. “Solution” here does 
not mean the kind of cut-and-paste code that you might find in a cookbook (excellent though cookbooks are 
as resources for the programmer). Instead, a design pattern describes an approach that can be taken to solve 
a problem. A sample implementation may be given, but it is less important than the concept that it serves to 
illustrate.

Part 3 begins by defining design patterns and describing their structure. I also look at some of the 
reasons behind their popularity.

Patterns tend to promote and follow certain core design principles. An understanding of these can help 
in analyzing a pattern’s motivation, and can usefully be applied to all programming. I discuss some of these 
principles. I also examine the Unified Modeling Language (UML), a platform-independent way of describing 
classes and their interactions.

Although this book is not a pattern catalog, I examine some of the most famous and useful patterns. 
I describe the problem that each pattern addresses, analyze the solution, and present an implementation 
example in PHP.

Practice
Even a beautifully balanced architecture will fail if it is not managed correctly. In Part 4, I look at the tools 
available to help you create a framework that ensures the success of your project. If the rest of the book is 
about the practice of design and programming, Part 4 is about the practice of managing your code. The tools 
that I examine can form a support structure for a project, helping to track bugs as they occur, promoting 
collaboration among programmers, and providing ease of installation and clarity of code.

I have already discussed the power of the automated test. I kick off Part 4 with an introductory chapter 
that gives an overview of problems and solutions in this area.



Chapter 1 ■ PHP: Design and Management

7

Many programmers are guilty of giving in to the impulse to do everything themselves. Composer, 
together with Packagist, its main repository, offers access to thousands of dependency managed packages 
that can be stitched into projects with ease. I look at the tradeoffs between implementing a feature yourself 
and deploying a Composer package.

While I’m on the topic of Composer, I look at the installation mechanism that makes the deployment of 
a package as simple as a single command.

Code is about collaboration. This fact can be rewarding. It can also be a complete nightmare. Git is a 
version control system that enables many programmers to work together on the same codebase without 
overwriting one another’s work. It lets you grab snapshots of your project at any stage in development, see 
who has made which changes, and split the project into mergeable branches. Git will save your project one 
day.

When people and libraries collaborate, they often bring different conventions and styles to the party. 
While this is healthy, it can also undermine interoperability. Words like conform and comply give me the 
shivers, but it is undeniable that the creativity of the Internet is underpinned by standards. By obeying 
certain conventions, we are freed to play in an unimaginably vast sandbox. So, in a new chapter, I explore 
PHP standards, how they can help us, and how and why we should, yes, comply.

Two facts seem inevitable. First, bugs often recur in the same region of code, making some work days an 
exercise in déjà vu. Second, often improvements break as much as, or more than, they fix. Automated testing 
can address both of these issues, providing an early warning system for problems in your code. I introduce 
PHPUnit, a powerful implementation of the so-called xUnit test platform designed first for Smalltalk but 
ported now to many languages, notably Java. I look in particular at PHPUnit’s features and more generally at 
the benefits, and some of the costs, of testing.

Applications are messy. They may need files to be installed in nonstandard locations, or want to set 
up databases, or need to patch server configuration. In short, applications need stuff to be done during 
installation. Phing is a faithful port of a Java tool called Ant. Phing and Ant interpret a build file and process 
your source files in any way you tell them to. This usually means copying them from a source directory to 
various target locations around your system, but, as your needs get more complex, Phing scales effortlessly 
to meet them.

Some companies enforce development platforms—but in many cases teams end up running an array 
of different operating systems. Contractors arrive wielding PC laptops (hello Paul Tregoing, fifth edition tech 
editor), some team members evangelize endlessly for their favorite Linux distro (that’s me and my Fedora), 
and many hold out for yet another sexy-looking PowerBook (the coffee bar and meeting room use of which 
doesn’t at all make you look like just another node in a hipster Borg army). All of these will run a LAMP stack 
with varying degrees of ease. Ideally, though, developers should run their code in environments that closely 
resemble the ultimate production system. I examine Vagrant, an application which uses virtualization 
so that team members can keep their idiosyncratic development platforms but run project code on a 
production-like system.

Testing and build are all very well, but you have to install and run your tests, and keep on doing so in 
order to reap the benefits. It’s easy to become complacent and let things slide if you don’t automate your 
builds and tests. I look at some tools and techniques that are lumped together in the category “continuous 
integration” that will help you do just that.

What’s New in the Fifth Edition
PHP is a living language, and as such it’s under constant review and development. This new edition, too, 
has been reviewed and thoroughly updated to take account of changes and new opportunities. I cover 
new features such as anonymous classes, and the long-awaited scalar argument hints and return types. 
Examples use PHP 7 features where appropriate, so be aware that you will need to run code against the PHP 
7 interpreter—or be ready to do some work to downgrade.

In previous editions, I included a chapter on the PEAR package repository. Composer and the Packagist 
repository are plainly now the standard for PHP development, and I have rewritten the chapter accordingly.



Chapter 1 ■ PHP: Design and Management

8

It seems that I’ve switched my version control coverage for every other edition or so of this book. I’m 
glad to say that I’m sticking with Git this time round. I have, however, spent some more time looking at Git 
repositories like GitHub since these are increasingly used by developers.

I include a new chapter on the previously mentioned Vagrant.
In another new chapter, I examine PHP Standards. Since I endorse the value of complying with a style 

guide, I have reworked every code example in the book to meet the PSR-1 and PSR-2 standards. This was a 
much bigger commitment than I realized, and tech editor Paul Tregoing has worked valiantly to keep me 
honest.

Summary
This is a book about object-oriented design and programming. It is also about tools for managing a PHP 
codebase from collaboration through to deployment.

These two themes address the same problem from different but complementary angles. The primary 
aim is to build systems that achieve their objectives and lend themselves well to collaborative development.

A secondary goal lies in the aesthetics of software systems. As programmers, we build machines that 
have shape and action. We invest many hours of our working day, and many days of our lives, writing these 
shapes into being. We want the tools we build, whether individual classes and objects, software components, 
or end products, to form an elegant whole. The process of version control, testing, documentation, and 
build does more than support this objective: it is part of the shape we want to achieve. Just as we want clean 
and clever code, we want a codebase that is designed well for developers and users alike. The mechanics of 
sharing, reading, and deploying the project should be as important as the code itself.



9© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_2

CHAPTER 2

PHP and Objects

Objects were not always a key part of the PHP project. In fact, they were once described as an afterthought 
by PHP’s designers.

As afterthoughts go, this one has proved remarkably resilient. In this chapter, I introduce this book’s 
coverage of objects by summarizing the development of PHP’s object-oriented features.

We will look at the following:

•	 PHP/FI 2.0: PHP, but not as we know it

•	 PHP 3: Objects make their first appearance

•	 PHP 4: Object-oriented programming grows up

•	 PHP 5: Objects at the heart of the language

•	 PHP 7: Closing the gap

The Accidental Success of PHP Objects
With PHP’s extensive object support and so many object-oriented PHP libraries and applications in 
circulation, the rise of the object in PHP may seem like the culmination of a natural and inevitable process. 
In fact, nothing could be further from the truth.

In the Beginning: PHP/FI
The genesis of PHP as we know it today lies with two tools developed by Rasmus Lerdorf using Perl. PHP 
stood for Personal Homepage Tools. FI stood for Form Interpreter. Together, they comprised macros for 
sending SQL statements to databases, processing forms, and flow control.

These tools were rewritten in C and combined under the name PHP/FI 2.0. The language at this stage 
looked different from the syntax we recognize today, but not that different. There was support for variables, 
associative arrays, and functions. Objects, however, were not even on the horizon.

Syntactic Sugar: PHP 3
In fact, even as PHP 3 was in the planning stage, objects were off the agenda. The principal architects of PHP 
3 were Zeev Suraski and Andi Gutmans. PHP 3 was a complete rewrite of PHP/FI 2.0, but objects were not 
deemed a necessary part of the new syntax.



Chapter 2 ■ PHP and Objects

10

According to Zeev Suraski, support for classes was added almost as an afterthought (on 27 August 1997, 
to be precise). Classes and objects were actually just another way to define and access associative arrays.

Of course, the addition of methods and inheritance made classes much more than glorified associative 
arrays, but there were still severe limitations on what you might do with your classes. In particular, you could 
not access a parent class’s overridden methods (don’t worry if you don’t know what this means yet; I will 
explain later). Another disadvantage that I will examine in the next section was the less than optimal way 
that objects were passed around in PHP scripts.

That objects were a marginal issue at this time is underlined by their lack of prominence in official 
documentation. The manual devoted one sentence and a code example to objects. The example did not 
illustrate inheritance or properties.

PHP 4 and the Quiet Revolution
If PHP 4 was yet another groundbreaking step for the language, most of the core changes took place beneath 
the surface. The Zend Engine (its name derived from Zeev and Andi) was written from scratch to power the 
language. The Zend Engine is one of the main components that drive PHP. Any PHP function you might 
care to call is in fact part of the high-level extensions layer. These do the busy work they were named for, 
like talking to database APIs or juggling strings for you. Beneath that, the Zend Engine manages memory, 
delegates control to other components, and translates the familiar PHP syntax you work with every day into 
runnable bytecode. It is the Zend Engine that we have to thank for core language features like classes.

From our objective perspective, the fact that PHP 4 made it possible to override parent methods and 
access them from child classes was a major benefit.

A major drawback remained, however. Assigning an object to a variable, passing it to a function, or 
returning it from a method resulted in a copy being made. Consider an assignment like this:

$my_obj = new User('bob');
$other = $my_obj;

This resulted in the existence of two User objects rather than two references to the same User object. In 
most object-oriented languages, you would expect assignment by reference rather than by value. This means 
that you would pass and assign handles that point to objects rather than copy the objects themselves. The 
default pass-by-value behavior resulted in many obscure bugs as programmers unwittingly modified objects 
in one part of a script, expecting the changes to be seen via references elsewhere. Throughout this book, you 
will see many examples in which I maintain multiple references to the same object.

Luckily, there was a way of enforcing pass-by-reference, but it meant remembering to use a clumsy 
construction.

Here’s how you would assign by reference:

$other =& $my_obj;
// $other and $my_obj point to same object

This enforces pass by reference:

    function setSchool(& $school)
    {
        // $school is now a reference to not a copy of passed object
    }



Chapter 2 ■ PHP and Objects

11

And here is return by reference:

    function & getSchool()
    {
        // returning a reference not a copy
        return $this->school;
    }

Although this worked fine, it was easy to forget to add the ampersand, and that meant it was all too easy 
for bugs to creep into object-oriented code. These were particularly hard to track down, because they rarely 
caused any reported errors, just plausible but broken behavior.

Coverage of syntax in general, and objects in particular, was extended in the PHP manual, and object-
oriented coding began to bubble up to the mainstream. Objects in PHP were not uncontroversial (then, as 
now, no doubt), and threads like “Do I need objects?” were common flame-bait in mailing lists. Indeed, the 
Zend site played host to articles that encouraged object-oriented programming side-by-side with others that 
sounded a warning note. Pass-by-reference issues and controversy notwithstanding, many coders just got on 
and peppered their code with ampersand characters. Object-oriented PHP grew in popularity. Zeev Suraski 
wrote this in an article for DevX.com (http://www.devx.com/webdev/Article/10007/0/page/1):

One of the biggest twists in PHP’s history was that despite the very limited functionality, 
and despite a host of problems and limitations, object-oriented programming in PHP 
thrived and became the most popular paradigm for the growing numbers of off-the-shelf 
PHP applications. This trend, which was mostly unexpected, caught PHP in a suboptimal 
situation. It became apparent that objects were not behaving like objects in other OO 
languages, and were instead behaving like [associative] arrays.

As noted in the previous chapter, interest in object-oriented design became obvious in sites and articles 
online. PHP’s official software repository, PEAR, itself embraced object-oriented programming. With 
hindsight, it’s easy to think of PHP’s adoption of object-oriented support as a reluctant capitulation to an 
inevitable force. It’s important to remember that, although object-oriented programming has been around 
since the 1960s, it really gained ground in the mid-1990s. Java, the great popularizer, was not released until 
1995. A superset of C, a procedural language, C++ has been around since 1979. After a long evolution, it 
arguably made the leap to the big time during the 1990s. Perl 5 was released in 1994, another revolution 
within a formerly procedural language that made it possible for its users to think in objects (although 
some argue that Perl’s object-oriented support also felt like something of an afterthought). For a small 
procedural language, PHP developed its object support remarkably fast, showing a real responsiveness to 
the requirements of its users.

Change Embraced: PHP 5
PHP 5 represented an explicit endorsement of objects and object-oriented programming. That is not to say 
that objects were the only way to work with PHP (this book does not say that either, by the way). Objects 
were, however, recognized as a powerful and important means for developing enterprise systems, and PHP 
fully supported them in its core design.

Arguably, one significant effect of the enhancements in PHP 5 was the adoption of the language by 
larger Internet companies. Both Yahoo! And Facebook, for example, started using PHP extensively within 
their platforms. With version 5, PHP became one of the standard languages for development and enterprise 
on the internet.

http://www.devx.com/webdev/Article/10007/0/page/1


Chapter 2 ■ PHP and Objects

12

Objects had moved from afterthought to language driver. Perhaps the most important change was 
the default pass-by-reference behavior which replaced the evils of object copying. That was only the 
beginning, however. Throughout this book, and particularly in this part of it, we will encounter many more 
enhancements, including private and protected methods and properties, the static keyword, namespaces, 
type hints (now called type declarations), and exceptions. PHP 5 was around for a long time (about twelve 
years), and important new features were released incrementally.

PHP 5.3, for example, brought namespaces. These let you create a named scope for classes and 
functions, so that you are less likely to run into duplicate names as you include libraries and expand your 
system. They also rescue you from ugly but necessary naming conventions such as this:

class megaquiz_util_Conf
{
}

Class names such as this are one way of preventing clashes between packages, but they can make for 
tortuous code.

We have also seen support for closures, generators, traits, and late static bindings.

PHP 7: Closing the Gap
Programmers are a demanding lot. For many lovers of design patterns, there were two key features that PHP 
still lacked. These were scalar type declarations and enforced return types. With PHP 5 it was possible to 
enforce the type of an argument passed to a function or method, so long as you only needed to require an 
object, an array, or later, callable code. Scalar values (like integers, strings, and floats) could not be enforced 
at all. Furthermore, if you wanted to declare a method or a function’s return type, you were altogether out of 
luck.

As you will see, object-oriented design often uses a method declaration as a kind of contract. The 
method demands certain inputs and, reciprocally, it promises to give you a particular type of data back. 
PHP 5 programmers were forced to rely on comments, convention, and manual type checking to maintain 
contracts of this kind in many cases. Developers and commentators often complained about this. Here is a 
quote from the previous edition of this book:

…there is still no commitment to provide support for hinted return types. This would allow 
you to declare in a method or function’s declaration the object type that it returns. This 
would then be enforced by the PHP engine. Hinted return types would further improve 
PHP’s support for pattern principles (principles such as “code to an interface, not an 
implementation”). I hope one day to revise this book to cover that feature!

I’m pleased to write that the day has come! PHP 7 introduced scalar type declarations (previously 
known as type hints) and return type declarations, and you’ll see them used plenty in this edition.

PHP 7 also provided other nice-to-haves, including anonymous classes and some namespace 
enhancements.

Advocacy and Agnosticism: The Object Debate
Objects and object-oriented design seem to stir passions on both sides of the enthusiasm divide. Many 
excellent programmers have produced excellent code for years without using objects, and PHP continues to 
be a superb platform for procedural web programming.



Chapter 2 ■ PHP and Objects

13

This book naturally displays an object-oriented bias throughout, a bias that reflects my object-infected 
outlook. Because this book is a celebration of objects, and an introduction to object-oriented design, it is 
inevitable that the emphasis is unashamedly object-oriented. Nothing in this book is intended, however, to 
suggest that objects are the one true path to coding success with PHP.

Whether a developer chose to work with PHP as an object-oriented language was once a matter of 
preference. This is still true to the extent that one can create perfectly acceptable working systems using 
functions and global code. Some great tools (e.g., WordPress) are still procedural in their underlying 
architecture (though even these may make extensive use of objects these days). It is, however, becoming 
increasingly hard to work as a PHP programmer without using and understanding PHP’s support for objects, 
not least because the third party libraries you are likely to rely upon in your projects will themselves likely be 
object-oriented.

Still, as you read, it is worth bearing in mind the famous Perl motto, “There’s more than one way to do 
it.” This is especially true of smaller scripts, where quickly getting a working example up and running is more 
important than building a structure that will scale well into a larger system (scratch projects of this sort are 
often known as “spikes”).

Code is a flexible medium. The trick is to know when your quick proof of concept is becoming the root 
of a larger development, and to call a halt before lasting design decisions are made for you by the sheer 
weight of your code. Now that you have decided to take a design-oriented approach to your growing project, 
I hope that this book provides the help that you need to get started building object-oriented architectures.

Summary
This short chapter placed objects in their context in the PHP language. The future for PHP is very much 
bound up with object-oriented design. In the next few chapters, I take a snapshot of PHP’s current support 
for object features, and introduce some design issues.



15© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_3

CHAPTER 3

Object Basics

Objects and classes lie at the heart of this book and, since the introduction of PHP 5 over a decade ago, they 
have lain at the heart of PHP, too. In this chapter, I lay down the groundwork for more in-depth coverage 
of objects and design by examining PHP’s core object-oriented features. If you are new to object-oriented 
programming, you should read this chapter carefully.

This chapter will cover the following topics:

•	 Classes and objects: Declaring classes and instantiating objects

•	 Constructor methods: Automating the setup of your objects

•	 Primitive and class types: Why type matters

•	 Inheritance: Why we need inheritance and how to use it

•	 Visibility: Streamlining your object interfaces and protecting your methods and 
properties from meddling

Classes and Objects
The first barrier to understanding object-oriented programming is the strange and wonderful relationship 
between the class and the object. For many people, it is this relationship that represents the first moment of 
revelation, the first flash of object-oriented excitement. So let’s not skimp on the fundamentals.

A First Class
Classes are often described in terms of objects. This is interesting, because objects are often described 
in terms of classes. This circularity can make the first steps in object-oriented programming hard going. 
Because it’s classes that shape objects, we should begin by defining a class.

In short, a class is a code template used to generate one or more objects. You declare a class with the 
class keyword and an arbitrary class name. Class names can be any combination of numbers and letters, 
although they must not begin with a number. The code associated with a class must be enclosed within 
braces. Here I combine these elements to build a class:

// listing 03.01

class ShopProduct
{
    // class body
}



Chapter 3 ■ Object Basics

16

The ShopProduct class in the example is already a legal class, although it is not terribly useful yet. I have 
done something quite significant, however. I have defined a type; that is, I have created a category of data 
that I can use in my scripts. The power of this should become clearer as you work through the chapter.

A First Object (or Two)
If a class is a template for generating objects, it follows that an object is data that has been structured 
according to the template defined in a class. An object is said to be an instance of its class. It is of the type 
defined by the class.

I use the ShopProduct class as a mold for generating ShopProduct objects. To do this, I need the new 
operator. The new operator is used in conjunction with the name of a class, like this:

// listing 03.02

$product1 = new ShopProduct();
$product2 = new ShopProduct();

The new operator is invoked with a class name as its only operand and returns an instance of that class; 
in our example, it generates a ShopProduct object.

I have used the ShopProduct class as a template to generate two ShopProduct objects. Although they 
are functionally identical (that is, empty), $product1 and $product2 are different objects of the same type 
generated from a single class.

If you are still confused, try this analogy. Think of a class as a cast in a machine that makes plastic ducks. 
Our objects are the ducks that this machine generates. The type of thing generated is determined by the 
mold from which it is pressed. The ducks look identical in every way, but they are distinct entities. In other 
words, they are different instances of the same type. The ducks may even have their own serial numbers to 
prove their identities. Every object that is created in a PHP script is also given its own unique identifier. (Note 
that the identifier is unique for the life of the object; that is, PHP reuses identifiers, even within a process).  
I can demonstrate this by printing out the $product1 and $product2 objects:

// listing 03.03

var_dump($product1);
var_dump($product2);

Executing these functions produces the following output:

object(popp\ch03\batch01\ShopProduct)#235 (0) {
}
object(popp\ch03\batch01\ShopProduct)#234 (0) {
}

■■ Note   In ancient versions of PHP (up to version 5.1), you could print an object directly. This casted the 
object to a string containing the object’s ID. From PHP 5.2 onward, the language no longer supports this magic, 
and any attempt to treat an object as a string now causes an error unless a method named __toString() is 
defined in the object’s class. I look at methods later in this chapter, and I cover __toString() in Chapter 4, 
“Advanced Features.”

http://dx.doi.org/10.1007/978-1-4842-1996-6_4


Chapter 3 ■ Object Basics

17

By passing the objects to var_dump(), I extract useful information including, after the hash sign, each 
object’s internal identifier.

In order to make these objects more interesting, I can amend the ShopProduct class to support special 
data fields called properties.

Setting Properties in a Class
Classes can define special variables called properties. A property, also known as a member variable, holds 
data that can vary from object to object. So in the case of ShopProduct objects, you may wish to manipulate 
title and price fields, for example.

A property in a class looks similar to a standard variable except that, in declaring a property, you must 
precede the property variable with a visibility keyword. This can be public, protected, or private, and it 
determines the scope from which the property can be accessed.

■■ Note   Scope refers to the function or class context in which a variable has meaning (it refers in the same 
way to methods, which I will cover later in this chapter). So a variable defined in a function exists in local 
scope, and a variable defined outside of the function exists in global scope. As a rule of thumb, it is not possible 
to access data defined in a scope that is more local than the current one. So if you define a variable inside a 
function, you cannot later access it from outside that function. Objects are more permeable than this, in that 
some object variables can sometimes be accessed from other contexts. Which variables can be accessed and 
from what context is determined by the public, protected, and private keywords, as you shall see.

I will return to these keywords and the issue of visibility later in this chapter. For now, I will declare 
some properties using the public keyword:

// listing 03.04

class ShopProduct
{
    public $title = "default product";
    public $producerMainName = "main name";
    public $producerFirstName = "first name";
    public $price  = 0;
}

As you can see, I set up four properties, assigning a default value to each of them. Any objects I 
instantiate from the ShopProduct class will now be prepopulated with default data. The public keyword in 
each property declaration ensures that I can access the property from outside of the object context.

You can access property variables on an object-by-object basis using the characters '->' (the object 
operator) in conjunction with an object variable and property name, like this:

// listing 03.05

$product1 = new ShopProduct();
print $product1->title;

default product



Chapter 3 ■ Object Basics

18

Because the properties are defined as public, you can assign values to them just as you can read them, 
replacing any default value set in the class:

// listing 03.06

$product1 = new ShopProduct();
$product2 = new ShopProduct();
$product1->title="My Antonia";
$product2->title="Catch 22";

By declaring and setting the $title property in the ShopProduct class, I ensure that all ShopProduct objects 
have this property when first created. This means code that uses this class can work with ShopProduct objects 
based on that assumption. Because I can reset it, though, the value of $title may vary from object to object.

■■ Note   Code that uses a class, function, or method is often described as the class’s, function’s, or method’s 
client or as client code. You will see this term frequently in the coming chapters.

In fact, PHP does not force us to declare all our properties in the class. You could add properties 
dynamically to an object, like this:

// listing 03.07

$product1->arbitraryAddition = "treehouse";

However, this method of assigning properties to objects is not considered good practice in object-
oriented programming.

Why is it bad practice to set properties dynamically? When you create a class you define a type. You 
inform the world that your class (and any object instantiated from it) consists of a particular set of fields and 
functions. If your ShopProduct class defines a $title property, then any code that works with ShopProduct 
objects can proceed on the assumption that a $title property will be available. There can be no guarantees 
about properties that have been dynamically set, though.

My objects are still cumbersome at this stage. When I need to work with an object’s properties, I must 
currently do so from outside the object. I reach in to set and get property information. Setting multiple 
properties on multiple objects will soon become a chore:

// listing 03.08

$product1 = new ShopProduct();
$product1->title = "My Antonia";
$product1->producerMainName  = "Cather";
$product1->producerFirstName = "Willa";
$product1->price = 5.99;

I work once again with the ShopProduct class, overriding all the default property values one by one until 
I have set all product details. Now that I have set some data, I can also access it:

// listing 03.09

print "author: {$product1->producerFirstName} "
    . "{$product1->producerMainName}\n";



Chapter 3 ■ Object Basics

19

This outputs the following:

author: Willa Cather

There are a number of problems with this approach to setting property values. Because PHP lets you 
set properties dynamically, you will not get warned if you misspell or forget a property name. For example, 
assume I want to type this line:

$product1->producerMainName  = "Cather";

Unfortunately, I mistakenly type it like this:

$product1->producerSecondName  = "Cather";

As far as the PHP engine is concerned, this code is perfectly legal, and I would not be warned. When I 
come to print the author’s name, though, I will get unexpected results.

Another problem is that my class is altogether too relaxed. I am not forced to set a title, a price, or 
producer names. Client code can be sure that these properties exist, but is likely to be confronted with 
default values as often as not. Ideally, I would like to encourage anyone who instantiates a ShopProduct 
object to set meaningful property values.

Finally, I have to jump through hoops to do something that I will probably want to do quite often. As we 
have seen, printing the full author name is a tiresome process.

It would be nice to have the object handle such drudgery on my behalf.
All of these problems can be addressed by giving the ShopProduct object its own set of functions that 

can be used to manipulate property data from within the object context.

Working with Methods
Just as properties allow your objects to store data, methods allow your objects to perform tasks. Methods are 
special functions declared within a class. As you might expect, a method declaration resembles a function 
declaration. The function keyword precedes a method name, followed by an optional list of argument 
variables in parentheses. The method body is enclosed by braces:

    public function myMethod($argument, $another)
    {
        // ...
    }

Unlike functions, methods must be declared in the body of a class. They can also accept a number of 
qualifiers, including a visibility keyword. Like properties, methods can be declared public, protected, or 
private. By declaring a method public, you ensure that it can be invoked from outside of the current object. 
If you omit the visibility keyword in your method declaration, the method will be declared public implicitly. 
It is considered good practice, however, to declare visibility explicitly for all methods (I will return to method 
modifiers later in the chapter

// listing 03.10

class ShopProduct
{



Chapter 3 ■ Object Basics

20

    public $title = "default product";
    public $producerMainName = "main name";
    public $producerFirstName = "first name";
    public $price = 0;

    public function getProducer()
    {
        return $this->producerFirstName . " "
            . $this->producerMainName;
    }
}

In most circumstances, you will invoke a method using an object variable in conjunction with the object 
operator, ->, and the method name. You must use parentheses in your method call as you would if you were 
calling a function (even if you are not passing any arguments to the method):

// listing 03.11

$product1 = new ShopProduct();
$product1->title = "My Antonia";
$product1->producerMainName  = "Cather";
$product1->producerFirstName = "Willa";
$product1->price = 5.99;

print "author: {$product1->getProducer()}\n";

This outputs the following:

author: Willa Cather

I add the getProducer() method to the ShopProduct class. Notice that I declare getProducer() public, 
which means it can be called from outside the class.

I introduce a feature in this method’s body. The $this pseudo-variable is the mechanism by which a 
class can refer to an object instance. If you find this concept hard to swallow, try replacing $this with the 
phrase “the current instance.” Consider the following statement:

$this->producerFirstName

This translates to the following:

the $producerFirstName property of the current instance

So the getProducer() method combines and returns the $producerFirstName and $producerMainName 
properties, saving me from the chore of performing this task every time I need to quote the full producer name.

This has improved the class a little. I am still stuck with a great deal of unwanted flexibility, though. I rely 
on the client coder to change a ShopProduct object’s properties from their default values. This is problematic 
in two ways. First, it takes five lines to properly initialize a ShopProduct object, and no coder will thank you 
for that. Second, I have no way of ensuring that any of the properties are set when a ShopProduct object is 
initialized. What I need is a method that is called automatically when an object is instantiated from a class.



Chapter 3 ■ Object Basics

21

Creating a Constructor Method
A constructor method is invoked when an object is created. You can use it to set things up, ensuring that 
essential properties are assigned values and any necessary preliminary work is completed.

■■ Note   In versions previous to PHP 5, a constructor method took on the name of the class that enclosed it. 
So the ShopProduct class would use a ShopProduct() method as its constructor. This no longer works in all 
circumstances and was deprecated as of PHP 7. Name your constructor method __construct().

Note that the method name begins with two underscore characters. You will see this naming 
convention for many other special methods in PHP classes. Here I define a constructor for the ShopProduct 
class:

// listing 03.12

class ShopProduct
{
    public $title;
    public $producerMainName;
    public $producerFirstName;
    public $price = 0;

    public function __construct(
        $title,
        $firstName,
        $mainName,
        $price
    ) {
        $this->title = $title;
        $this->producerFirstName = $firstName;
        $this->producerMainName = $mainName;
        $this->price = $price;
    }

    public function getProducer()
    {
        return $this->producerFirstName . " "
            . $this->producerMainName;
    }
}

Once again, I gather functionality into the class, saving effort and duplication in the code that uses it. 
The __construct() method is invoked when an object is created using the new operator:

// listing 03.13

$product1 = new ShopProduct(
    "My Antonia",
    "Willa",



Chapter 3 ■ Object Basics

22

    "Cather",
    5.99
);

print "author: {$product1->getProducer()}\n";

This produces the following:

author: Willa Cather

Any arguments supplied are passed to the constructor. So in my example, I pass the title, the first name, 
the main name, and the product price to the constructor. The constructor method uses the pseudo-variable 
$this to assign values to each of the object’s properties.

■■ Note   A ShopProduct object is now easier to instantiate and safer to use. Instantiation and setup are 
completed in a single statement. Any code that uses a ShopProduct object can be reasonably sure that all its 
properties are initialized.

This predictability is an important aspect of object-oriented programming. You should design your 
classes so that users of objects can be sure of their features. One way you can make an object safe is to render 
predictable the types of data it holds in its properties. One might ensure that a $name property is always made 
up of character data, for example. But how can you achieve this if property data is passed in from outside the 
class? In the next section, I examine a mechanism you can use to enforce object types in method declarations.

Arguments and Types
Type determines the way data can be managed in your scripts. You use the string type to display character 
data, for example, and manipulate such data with string functions. Integers are used in mathematical 
expressions, Booleans are used in test expressions, and so on. These categories are known as primitive types. 
On a higher level, though, a class defines a type. A ShopProduct object, therefore, belongs to the primitive 
type object, but it also belongs to the ShopProduct class type. In this section, I will look at types of both 
kinds in relation to class methods.

Method and function definitions do not necessarily require that an argument should be of a particular 
type. This is both a curse and a blessing. The fact that an argument can be of any type offers you flexibility. 
You can build methods that respond intelligently to different data types, tailoring functionality to changing 
circumstances. This flexibility can also cause ambiguity to creep into code when a method body expects an 
argument to hold one type but gets another.

Primitive Types
PHP is a loosely typed language. This means that there is no necessity for a variable to be declared to hold 
a particular data type. The variable $number could hold the value 2 and the string "two" within the same 
scope. In strongly typed languages, such as C or Java, you must declare the type of a variable before assigning 
a value to it, and, of course, the value must be of the specified type.

This does not mean that PHP has no concept of type. Every value that can be assigned to a variable has  
a type. You can determine the type of a variable’s value using one of PHP’s type-checking functions. Table 3-1  
lists the primitive types recognized in PHP and their corresponding test functions. Each function accepts a 
variable or value and returns true if this argument is of the relevant type.



Chapter 3 ■ Object Basics

23

Checking the type of a variable can be particularly important when you work with method and function 
arguments.

Primitive Types Matter: An Example
You need to keep a close eye on type in your code. Here’s an example of one of the many type-related 
problems that you could encounter.

Imagine that you are extracting configuration settings from an XML file. The <resolvedomains> XML 
element tells your application whether it should attempt to resolve IP addresses to domain names, a useful 
but relatively expensive process. Here is some sample XML:

<!-- listing 03.14 -->
<settings>
    <resolvedomains>false</resolvedomains>
</settings>

The string "false" is extracted by your application and passed as a flag to a method called 
outputAddresses(), which displays IP address data. Here is outputAddresses():

// listing 03.15

class AddressManager
{
    private $addresses = ["209.131.36.159", "216.58.213.174"];

    public function outputAddresses($resolve)
    {
        foreach ($this->addresses as $address) {
            print $address;
            if ($resolve) {
                print " (".gethostbyaddr($address).")";
            }
            print "\n";

Table 3-1.  Primitive Types and Checking Functions in PHP

Type Checking Function Type Description

is_bool() Boolean One of the two special values, true or false

is_integer() Integer A whole number. Alias of is_int() and is_long()

is_double() Double A floating point number (a number with a decimal point). Alias 
of is_float()

is_string() String Character data

is_object() Object An object

is_array() Array An array

is_resource() Resource A handle for identifying and working with external resources 
such as databases or files

is_null() Null An unassigned value



Chapter 3 ■ Object Basics

24

        }
    }
}

Of course, the AddressManager class could do with some improvement. It’s not very useful to hardcode 
IP addresses into a class, for example. Nevertheless, the outputAddresses() method loops through the 
$addresses array property, printing each element. If the $resolve argument variable itself resolves to true, 
the method outputs the domain name, as well as the IP address.

Here’s one approach that uses the settings XML configuration element in conjunction with the 
AddressManager class. See if you can spot how it is flawed:

// listing 03.16

$settings = simplexml:load_file(__DIR__."/resolve.xml");
$manager = new AddressManager();
$manager->outputAddresses((string)$settings->resolvedomains);

The code fragment uses the SimpleXML API to acquire a value for the resolvedomains element. In 
this example, I know that this value is the text element "false", and I cast it to a string as the SimpleXML 
documentation suggests I should.

This code will not behave as you might expect. In passing the string "false" to the outputAddresses() 
method, I misunderstand the implicit assumption the method makes about the argument. The method is 
expecting a Boolean value (that is true or false). The string "false" will, in fact, resolve to true in a test. 
This is because PHP will helpfully cast a nonempty string value to the Boolean true for you in a test context. 
Consider this code:

if ( "false" ) {
    // ...
}

It is actually equivalent to this:

if ( true ) {
    // ...
}

There are a number of approaches you might take to fix this.
You could make the outputAddresses() method more forgiving, so that it recognizes a string and 

applies some basic rules to convert it to a Boolean equivalent:

// listing 03.17

    public function outputAddresses($resolve)
    {
        if (is_string($resolve)) {
            $resolve =
               (preg_match("/^(false|no|off)$/i", $resolve) ) ? false : true;
        }
        // ...
    }



Chapter 3 ■ Object Basics

25

There are good design reasons for avoiding an approach like this, however. Generally speaking, it is 
better to provide a clear and strict interface for a method or function than it is to offer a fuzzily forgiving one. 
Fuzzy and forgiving functions and methods can promote confusion and thereby breed bugs.

You could take another approach: Leave the outputAddresses() method as it is and include a 
comment containing clear instructions that the $resolve argument should contain a Boolean value. This 
approach essentially tells the coder to read the small print or reap the consequences:

    /**
     * Outputs the list of addresses.
     * If $resolve is true then each address will be resolved
     * @param    $resolve    boolean    Resolve the address?
     */
    function outputAddresses($resolve)
    {
        // ...
    }

This is a reasonable approach, assuming your client coders are diligent readers of documentation.
Finally, you could make outputAddresses() strict about the type of data it is prepared to find in the 

$resolve argument. For primitive types like boolean, there was really only one way to do this prior to the 
release of PHP 7. You would have to write code to examine incoming data and take some kind of action if it 
does not match the required type:

    function outputAddresses($resolve)
    {
        if (! is_bool($resolve)) {
            // do something drastic
        }
        //...
    }

This approach can be used to force client code to provide the correct data type in the $resolve 
argument or to issue a warning.

■■ Note   In the next section, “Taking the Hint: Object Types,” I will describe a much better way of constraining 
the type of arguments passed to methods and functions.

Converting a string argument on the client’s behalf would be friendly but would probably present other 
problems. In providing a conversion mechanism, you second-guess the context and intent of the client. By 
enforcing the Boolean data type, on the other hand, you leave the client to decide whether to map strings to 
Boolean values and determine which word should map to true or false. The outputAddresses() method, 
meanwhile, concentrates on the task it is designed to perform. This emphasis on performing a specific task in 
deliberate ignorance of the wider context is an important principle in object-oriented programming, and I will 
return to it frequently throughout the book.



Chapter 3 ■ Object Basics

26

In fact, your strategies for dealing with argument types will depend on the seriousness of any potential 
bugs on the one hand, and the benefits of flexibility on the other. PHP casts most primitive values for you, 
depending on context. Numbers in strings are converted to their integer or floating point equivalents when 
used in a mathematical expression, for example. So your code might be naturally forgiving of type errors. If 
you expect one of your method arguments to be an array, however, you may need to be more careful. Passing 
a nonarray value to one of PHP’s array functions will not produce a useful result and could cause a cascade 
of errors in your method.

It is likely, therefore, that you will strike a balance among testing for type, converting from one type to 
another, and relying on good, clear documentation (you should provide the documentation, whatever else 
you decide to do).

However you address problems of this kind, you can be sure of one thing—type matters. The fact that 
PHP is loosely typed makes it all the more important. You cannot rely on a compiler to prevent type-related 
bugs; you must consider the potential impact of unexpected types when they find their way into your 
arguments. You cannot afford to trust client coders to read your thoughts, and you should always consider 
how your methods will deal with incoming garbage.

Taking the Hint: Object Types
Just as an argument variable can contain any primitive type, by default it can contain an object of any type. 
This flexibility has its uses, but can present problems in the context of a method definition.

Imagine a method designed to work with a ShopProduct object:

// listing 03.18

class ShopProductWriter
{
    public function write($shopProduct)
    {
        $str  = $shopProduct->title . ": "
            . $shopProduct->getProducer()
            . " (" . $shopProduct->price . ")\n";
        print $str;
    }
}

You can test this class like this:

// listing 03.19

$product1 = new ShopProduct("My Antonia", "Willa", "Cather", 5.99);
$writer = new ShopProductWriter();
$writer->write($product1);

This outputs the following:

My Antonia: Willa Cather (5.99)

The ShopProductWriter class contains a single method, write(). The write() method accepts a 
ShopProduct object and uses its properties and methods to construct and print a summary string. I used the 
name of the argument variable, $shopProduct, as a signal that the method expects a ShopProduct object, but 



Chapter 3 ■ Object Basics

27

I did not enforce this. That means I could be passed an unexpected object or primitive type and be none the 
wiser until I begin trying to work with the $shopProduct argument. By that time, my code may already have 
acted on the assumption that it has been passed a genuine ShopProduct object.

■■ Note   You might wonder why I didn't add the write() method directly to ShopProduct. The reason lies with 
areas of responsibility. The ShopProduct class is responsible for managing product data; the ShopProductWriter 
is responsible for writing it. You will begin to see why this division of labor can be useful as you read this chapter.

To address this problem, PHP 5 introduced class type declarations (known then as type hints). To add a 
class type declaration to a method argument, you simply place a class name in front of the method argument 
you need to constrain. So I can amend the write() method thus:

// listing 03.20

    public function write(ShopProduct $shopProduct)
    {
        // ...
    }

Now the write() method will only accept the $shopProduct argument if it contains an object of type 
ShopProduct. This snippet tries to call write() with a dodgy object:

// listing 03.21

class Wrong
{
}

$writer = new ShopProductWriter();
$writer->write(new Wrong());

Because the write() method contains a class type declaration, passing it a Wrong object causes a fatal error.

TypeError: Argument 1 passed to ShopProductWriter::write() must be an instance of 
ShopProduct, instance of Wrong given, called in Runner.php on ...

This saves me from having to test the type of the argument before I work with it. It also makes the 
method signature much clearer for the client coder. She can see the requirements of the write() method 
at a glance. She does not have to worry about some obscure bug arising from a type error because the 
declaration is rigidly enforced.

Even though this automated type checking is a great way of preventing bugs, it is important to 
understand that type declarations are checked at runtime. This means that a class declaration will only 
report an error at the moment that an unwanted object is passed to the method. If a call to write() is buried 
in a conditional clause that only runs on Christmas morning, you may find yourself working the holiday if 
you haven’t checked your code carefully.



Chapter 3 ■ Object Basics

28

Armed with scalar type declarations, I can add some constraints to the ShopProduct class:

// listing 03.22

class ShopProduct
{
    public $title;
    public $producerMainName;
    public $producerFirstName;
    public $price = 0;

    public function __construct(
        string $title,
        string $firstName,
        string $mainName,
        float $price
    ) {
        $this->title = $title;
        $this->producerFirstName = $firstName;
        $this->producerMainName = $mainName;
        $this->price = $price;
    }

    // ...
}

With the constructor method shored up in this way, I can be sure that the $title, $firstName, 
$mainName arguments will always contain string data, and that $price will contain a float. I can demonstrate 
this by instantiating ShopProduct with the wrong information:

// listing 03.23

// will fail
$product = new ShopProduct("title", "first", "main", []);

I attempt to instantiate a ShopProduct object. I pass three strings to the constructor, but I fail at the final 
hurdle by passing in an empty array instead of the required float. Thanks to type declarations, PHP won’t let 
me get away with that:

TypeError: Argument 4 passed to ShopProduct::__construct() must be of the type float, 
array given, called in...

By default, PHP will implicitly cast arguments to the required type, where possible. This is an example 
of the tension between safety and flexibility we encountered earlier. The new implementation of the 
ShopProduct class, for example, will quietly turn a string into a float for us. So, this instantiation would not fail:

// listing 03.24

$product = new ShopProduct("title", "first", "main", "4.22");

Behind the scenes, the string "4.22" becomes the float 4.22



Chapter 3 ■ Object Basics

29

So far, so useful. But think back to the problem we encountered with the AddressManager class. The 
string "false" was quietly resolving to the Boolean true. By default, this will still happen if I use a bool type 
declaration in the AddressManager::outputAddresses() method like this:

// listing 03.25

    public function outputAddresses(bool $resolve)
    {
        // ...
    }

Now consider a call that passes along a string like this:

// listing 03.26

$manager->outputAddresses("false");

Because of implicit casting, it is functionally identical to one that passes the Boolean value true.
You can make scalar type declarations strict, although only on a file by file basis. Here, I turn on strict 

type declarations and call outputAddresses() with a string once again:

// listing 03.27

declare(strict_types=1);
$manager->outputAddresses("false");

Because I declare strict typing, this call causes a TypeError to be thrown:

TypeError: Argument 1 passed to AddressManager::outputAddresses() must be of the type 
boolean, string given, called in ...

■■ Note   A strict_types declaration applies to the file from which a call is made, and not to the file in which 
a function or method is implemented. So it’s up to client code to enforce strictness.

You may need to make an argument optional, but nonetheless constrain its type if it is provided. You 
can do this by providing a default value:

// listing 03.28

class ConfReader
{

    public function getValues(array $default = null)
    {
        $values = [];

        // do something to get values

        // merge the provided defaults (it will always be an array)



Chapter 3 ■ Object Basics

30

        $values = array_merge($default, $values);
        return $values;
    }
}

In Table 3-2, I list the type declarations supported by PHP.

When I described class type declarations, I implied that types and classes are synonymous. There is 
a key difference between the two, however. When you define a class, you also define a type, but a type can 
describe an entire family of classes. The mechanism by which different classes can be grouped together 
under a type is called inheritance. I discuss inheritance in the next section.

Inheritance
Inheritance is the means by which one or more classes can be derived from a base class.

A class that inherits from another is said to be a subclass of it. This relationship is often described in 
terms of parents and children. A child class is derived from and inherits characteristics from the parent. 
These characteristics consist of both properties and methods. The child class will typically add new 
functionality to that provided by its parent (also known as a superclass); for this reason, a child class is said 
to extend its parent.

Before I dive into the syntax of inheritance, I’ll examine the problems it can help you to solve.

The Inheritance Problem
Look again at the ShopProduct class. At the moment, it is nicely generic. It can handle all sorts of products:

// listing 03.29

$product1 = new ShopProduct("My Antonia", "Willa", "Cather", 5.99);
$product2 = new ShopProduct(
    "Exile on Coldharbour Lane",
    "The",

Table 3-2.  Type declarations

Type declaration Since Description

array 5.1 An array. Can default to null or an array

int 7.0 An integer Can default to null or an integer

float 7.0 A floating point number (a number with a decimal point). An integer will 
be accepted—even with strict mode enabled. Can default to null, a float, 
or an integer

callable 5.4 Callable code (such as an anonymous function). Can default to null

bool 7.0 A Boolean. Can default to null or a Boolean.

string 5.0 Character data. Can default to null or a string.

self 5.0 A reference to the containing class

[a class type] 5.0 The type of a class or interface. Can default to null



Chapter 3 ■ Object Basics

31

    "Alabama 3",
    10.99
);
print "author: " . $product1->getProducer() . "\n";
print "artist: " . $product2->getProducer() . "\n";

Here’s the output:

author: Willa Cather
artist: The Alabama 3

Separating the producer name into two parts works well with both books and CDs. I want to be able to 
sort on “Alabama 3” and “Cather”, not on “The” and “Willa”. Laziness is an excellent design strategy, so there 
is no need to worry about using ShopProduct for more than one kind of product at this stage.

If I add some new requirements to my example, however, things rapidly become more complicated. 
Imagine, for example, that you need to represent data specific to books and CDs. For CDs, you must store the 
total playing time; for books, the total number of pages. There could be any number of other differences, but 
this will serve to illustrate the issue.

How can I extend my example to accommodate these changes? Two options immediately present 
themselves. First, I could throw all the data into the ShopProduct class. Second, I could split ShopProduct 
into two separate classes.

Let’s examine the first approach. Here, I combine CD- and book-related data in a single class:

// listing 03.30

class ShopProduct
{
    public $numPages;
    public $playLength;
    public $title;
    public $producerMainName;
    public $producerFirstName;
    public $price;

    public function __construct(
        string $title,
        string $firstName,
        string $mainName,
        float $price,
        int $numPages = 0,
        int $playLength = 0
    ) {
        $this->title             = $title;
        $this->producerFirstName = $firstName;
        $this->producerMainName  = $mainName;
        $this->price             = $price;
        $this->numPages          = $numPages;
        $this->playLength        = $playLength;
    }



Chapter 3 ■ Object Basics

32

    public function getNumberOfPages()
    {
        return $this->numPages;
    }

    public function getPlayLength()
    {
        return $this->playLength;
    }

    public function getProducer()
    {
        return $this->producerFirstName . " "
            . $this->producerMainName;
    }
}

I have provided method access to the $numPages and $playLength properties to illustrate the divergent 
forces at work here. An object instantiated from this class will include a redundant method and, for a CD, must 
be instantiated using an unnecessary constructor argument: a CD will store information and functionality 
relating to book pages, and a book will support play-length data. This is probably something you could live with 
right now. But what would happen if I added more product types, each with its own methods, and then added 
more methods for each type? Our class would become increasingly complex and hard to manage.

So forcing fields that don’t belong together into a single class leads to bloated objects with redundant 
properties and methods.

The problem doesn’t end with data, either. I run into difficulties with functionality as well. Consider 
a method that summarizes a product. The sales department has requested a clear summary line for use in 
invoices. They want me to include the playing time for CDs and a page count for books, so I will be forced to 
provide different implementations for each type. I could try using a flag to keep track of the object’s format. 
Here’s an example:

// listing 03.31

    public function getSummaryLine()
    {
        $base  = "{$this->title} ( {$this->producerMainName}, ";
        $base .= "{$this->producerFirstName} )";
        if ($this->type == 'book') {
            $base .= ": page count - {$this->numPages}";
        } elseif ($this->type == 'cd') {
            $base .= ": playing time - {$this->playLength}";
        }
        return $base;
    }

In order to set the $type property, I could test the $numPages argument to the constructor. Still, once 
again, the ShopProduct class has become more complex than necessary. As I add more differences to my 
formats, or add new formats, these functional differences will become even harder to manage. Perhaps I 
should try another approach to this problem.

As ShopProduct is beginning to feel like two classes in one, I could accept this and create two types 
rather than one. Here’s how I might do it:



Chapter 3 ■ Object Basics

33

// listing 03.32

class CdProduct
{
    public $playLength;
    public $title;
    public $producerMainName;
    public $producerFirstName;
    public $price;

    public function __construct(
        string $title,
        string $firstName,
        string $mainName,
        float  $price,
        int    $playLength
    ) {
        $this->title             = $title;
        $this->producerFirstName = $firstName;
        $this->producerMainName  = $mainName;
        $this->price             = $price;
        $this->playLength        = $playLength;
    }

    public function getPlayLength()
    {
        return $this->playLength;
    }

    public function getSummaryLine()
    {
        $base  = "{$this->title} ( {$this->producerMainName}, ";
        $base .= "{$this->producerFirstName} )";
        $base .= ": playing time - {$this->playLength}";
        return $base;
    }

    public function getProducer()
    {
        return $this->producerFirstName . " "
            . $this->producerMainName;
    }
}

// listing 03.33

class BookProduct
{
    public $numPages;
    public $title;
    public $producerMainName;



Chapter 3 ■ Object Basics

34

    public $producerFirstName;
    public $price;

    public function __construct(
        string $title,
        string $firstName,
        string $mainName,
        float  $price,
        int    $numPages
    ) {
        $this->title             = $title;
        $this->producerFirstName = $firstName;
        $this->producerMainName  = $mainName;
        $this->price             = $price;
        $this->numPages          = $numPages;
    }

    public function getNumberOfPages()
    {
        return $this->numPages;
    }

    public function getSummaryLine()
    {
        $base  = "{$this->title} ( {$this->producerMainName}, ";
        $base .= "{$this->producerFirstName} )";
        $base .= ": page count - {$this->numPages}";
        return $base;
    }

    public function getProducer()
    {
        return $this->producerFirstName . " "
            . $this->producerMainName;
    }
}

I have addressed the complexity issue, but at a cost. I can now create a getSummaryLine() method for 
each format without having to test a flag. Neither class maintains fields or methods that are not relevant to it.

The cost lies in duplication. The getProducerName() method is exactly the same in each class. Each 
constructor sets a number of identical properties in the same way. This is another unpleasant odor you 
should train yourself to sniff out.

If I need the getProducer() methods to behave identically for each class, any changes I make to 
one implementation will need to be made for the other. Without care, the classes will soon slip out of 
synchronization.

Even if I am confident that I can maintain the duplication, my worries are not over. I now have two types 
rather than one.

Remember the ShopProductWriter class? Its write() method is designed to work with a single type: 
ShopProduct. How can I amend this to work as before? I could remove the class type declaration from the 
method signature, but then I must trust to luck that write() is passed an object of the correct type. I could 
add my own type checking code to the body of the method:



Chapter 3 ■ Object Basics

35

// listing 03.34

class ShopProductWriter
{
    public function write($shopProduct)
    {
        if (
            ! ($shopProduct instanceof CdProduct)  &&
            ! ($shopProduct instanceof BookProduct)
        ) {
            die("wrong type supplied");
        }
        $str  = "{$shopProduct->title}: "
            . $shopProduct->getProducer()
            . " ({$shopProduct->price})\n";
        print $str;
    }
}

Notice the instanceof operator in the example; instanceof resolves to true if the object in the left-
hand operand is of the type represented by the right-hand operand.

Once again, I have been forced to include a new layer of complexity. Not only do I have to test the 
$shopProduct argument against two types in the write() method, but I have to trust that each type will 
continue to support the same fields and methods as the other. It was all much neater when I simply 
demanded a single type because I could use a class type declaration and because I could be confident that 
the ShopProduct class supported a particular interface.

The CD and book aspects of the ShopProduct class don’t work well together but can’t live apart, it 
seems. I want to work with books and CDs as a single type while providing a separate implementation for 
each format. I want to provide common functionality in one place to avoid duplication, but allow each 
format to handle some method calls differently. I need to use inheritance.

Working with Inheritance
The first step in building an inheritance tree is to find the elements of the base class that don’t fit together or 
that need to be handled differently.

I know that the getPlayLength() and getNumberOfPages() methods do not belong together. I also 
know that I need to create different implementations for the getSummaryLine() method. Let’s use these 
differences as the basis for two derived classes:

// listing 03.35

class ShopProduct
{
    public $numPages;
    public $playLength;
    public $title;
    public $producerMainName;
    public $producerFirstName;
    public $price;
    public function __construct(
        string $title,



Chapter 3 ■ Object Basics

36

        string $firstName,
        string $mainName,
        float  $price,
        int    $numPages = 0,
        int    $playLength = 0
    ) {
        $this->title             = $title;
        $this->producerFirstName = $firstName;
        $this->producerMainName  = $mainName;
        $this->price             = $price;
        $this->numPages          = $numPages;
        $this->playLength        = $playLength;
    }

    public function getProducer()
    {
        return $this->producerFirstName . " "
            . $this->producerMainName;
    }

    public function getSummaryLine()
    {
        $base  = "{$this->title} ( {$this->producerMainName}, ";
        $base .= "{$this->producerFirstName} )";
        return $base;
    }
}

// listing 03.36

class CdProduct extends ShopProduct
{
    public function getPlayLength()
    {
        return $this->playLength;
    }

    public function getSummaryLine()
    {
        $base  = "{$this->title} ( {$this->producerMainName}, ";
        $base .= "{$this->producerFirstName} )";
        $base .= ": playing time - {$this->playLength}";
        return $base;
    }
}

// listing 03.37

class BookProduct extends ShopProduct
{
    public function getNumberOfPages()



Chapter 3 ■ Object Basics

37

    {
        return $this->numPages;
    }

    public function getSummaryLine()
    {
        $base  = "{$this->title} ( {$this->producerMainName}, ";
        $base .= "{$this->producerFirstName} )";
        $base .= ": page count - {$this->numPages}";
        return $base;
    }
}

To create a child class, you must use the extends keyword in the class declaration. In the example, I 
created two new classes, BookProduct and CdProduct. Both extend the ShopProduct class.

Because the derived classes do not define constructors, the parent class’s constructor is automatically 
invoked when they are instantiated. The child classes inherit access to all the parent’s public and protected 
methods (though not to private methods or properties). This means that you can call the getProducer() 
method on an object instantiated from the CdProduct class, even though getProducer() is defined in the 
ShopProduct class:

// listing 03.38

$product2 = new CdProduct(
    "Exile on Coldharbour Lane",
    "The",
    "Alabama 3",
    10.99,
    0,
    60.33
);
print "artist: {$product2->getProducer()}\n";

So both the child classes inherit the behavior of the common parent. You can treat a BookProduct 
object as if it were a ShopProduct object. You can pass a BookProduct or CdProduct object to the 
ShopProductWriter class’s write() method and all will work as expected.

Notice that both the CdProduct and BookProduct classes override the getSummaryLine() method, 
providing their own implementation. Derived classes can extend but also alter the functionality of their parents.

The super class’s implementation of this method might seem redundant because it is overridden 
by both its children. Nevertheless, it provides basic functionality that new child classes might use. The 
method’s presence also provides a guarantee to client code that all ShopProduct objects will provide a 
getSummaryLine() method. Later on you will see how it is possible to make this promise in a base class 
without providing any implementation at all. Each child ShopProduct class inherits its parent’s properties. 
Both BookProduct and CdProduct access the $title property in their versions of getSummaryLine().

Inheritance can be a difficult concept to grasp at first. By defining a class that extends another, you 
ensure that an object instantiated from it is defined by the characteristics of first the child and then the 
parent class. Another way of thinking about this is in terms of searching. When I invoke $product2-
>getProducer(), there is no such method to be found in the CdProduct class, and the invocation falls 
through to the default implementation in ShopProduct. When I invoke $product2->getSummaryLine(), on 
the other hand, the getSummaryLine() method is found in CdProduct and invoked.



Chapter 3 ■ Object Basics

38

The same is true of property accesses. When I access $title in the BookProduct class’s 
getSummaryLine() method, the property is not found in the BookProduct class. It is acquired instead from 
the parent class, from ShopProduct. The $title property applies equally to both subclasses, and therefore, it 
belongs in the superclass.

A quick look at the ShopProduct constructor, however, shows that I am still managing data in the base 
class that should be handled by its children. The BookProduct class should handle the $numPages argument 
and property, and the CdProduct class should handle the $playLength argument and property. To make this 
work, I will define constructor methods in each of the child classes.

Constructors and Inheritance
When you define a constructor in a child class, you become responsible for passing any arguments on to the 
parent. If you fail to do this, you can end up with a partially constructed object.

To invoke a method in a parent class, you must first find a way of referring to the class itself: a handle. 
PHP provides us with the parent keyword for this purpose.

To refer to a method in the context of a class rather than an object, you use :: rather than ->:

parent::__construct()

The preceding means, “Invoke the __construct() method of the parent class.” Here I amend my 
example so that each class handles only the data that is appropriate to it:

// listing 03.39

class ShopProduct
{
    public $title;
    public $producerMainName;
    public $producerFirstName;
    public $price;

    function __construct(
        $title,
        $firstName,
        $mainName,
        $price
    ) {
        $this->title             = $title;
        $this->producerFirstName = $firstName;
        $this->producerMainName  = $mainName;
        $this->price             = $price;
    }

    function getProducer()
    {
        return $this->producerFirstName . " "
            . $this->producerMainName;
    }

    function getSummaryLine()
    {



Chapter 3 ■ Object Basics

39

        $base  = "{$this->title} ( {$this->producerMainName}, ";
        $base .= "{$this->producerFirstName} )";
        return $base;
    }
}

// listing 03.40

class BookProduct extends ShopProduct
{
    public $numPages;

    public function __construct(
        string $title,
        string $firstName,
        string $mainName,
        float  $price,
        int    $numPages
    ) {
        parent::__construct(
            $title,
            $firstName,
            $mainName,
            $price
        );
        $this->numPages = $numPages;
    }

    public function getNumberOfPages()
    {
        return $this->numPages;
    }

    public function getSummaryLine()
    {
        $base  = "{$this->title} ( $this->producerMainName, ";
        $base .= "$this->producerFirstName )";
        $base .= ": page count – {$this->numPages}";
        return $base;
    }
}

// listing 03.41

class CdProduct extends ShopProduct
{
    public $playLength;

    public function __construct(
        string $title,
        string $firstName,



Chapter 3 ■ Object Basics

40

        string $mainName,
        float  $price,
        int    $playLength
    ) {
        parent::__construct(
            $title,
            $firstName,
            $mainName,
            $price
        );
        $this->playLength = $playLength;
    }

    public function getPlayLength()
    {
        return $this->playLength;
    }

    public function getSummaryLine()
    {
        $base  = "{$this->title} ( {$this->producerMainName}, ";
        $base .= "{$this->producerFirstName} )";
        $base .= ": playing time - {$this->playLength}";
        return $base;
    }
}

Each child class invokes the constructor of its parent before setting its own properties. The base class 
now knows only about its own data. Child classes are generally specializations of their parents. As a rule of 
thumb, you should avoid giving parent classes any special knowledge about their children.

■■ Note   Prior to PHP 5, constructors took on the name of the enclosing class. The new unified constructors 
use the name __construct(). Using the old syntax, a call to a parent constructor would tie you to that particular 
class: parent::ShopProduct();. The old constructor syntax was deprecated in PHP 7.0 and should not be used.

Invoking an Overridden Method
The parent keyword can be used with any method that overrides its counterpart in a parent class. When you 
override a method, you may not wish to obliterate the functionality of the parent, but rather to extend it. You 
can achieve this by calling the parent class’s method in the current object’s context. If you look again at the 
getSummaryLine() method implementations, you will see that they duplicate a lot of code. It would be better 
to use rather than reproduce the functionality already developed in the ShopProduct class:

// listing 03.42

// ShopProduct class...

    function getSummaryLine()



Chapter 3 ■ Object Basics

41

    {
        $base  = "{$this->title} ( {$this->producerMainName}, ";
        $base .= "{$this->producerFirstName} )";
        return $base;
    }

// listing 03.43

// BookProduct class...

    public function getSummaryLine()
    {
        $base  = parent::getSummaryLine();
        $base .= ": page count - $this->numPages";
        return $base;
    }

I set up the core functionality for the getSummaryLine() method in the ShopProduct base class. Rather 
than reproduce this in the CdProduct and BookProduct subclasses, I simply call the parent method before 
proceeding to add more data to the summary string.

Now that you have seen the basics of inheritance, I will reexamine property and method visibility in 
light of the full picture.

Public, Private, and Protected: Managing Access to Your Classes
So far, I have declared all properties public. Public access is the default setting for methods and for 
properties if you use the old var keyword in your property declaration.

Elements in your classes can be declared public, private, or protected:

•	 Public properties and methods can be accessed from any context.

•	 A private method or property can only be accessed from within the enclosing class. 
Even subclasses have no access.

•	 A protected method or property can only be accessed from within either the 
enclosing class or from a subclass. No external code is granted access.

So how is this useful to us? Visibility keywords allow you to expose only those aspects of a class that are 
required by a client. This sets a clear interface for your object.

By preventing a client from accessing certain properties, access control can also help prevent bugs in 
your code. Imagine, for example, that you want to allow ShopProduct objects to support a discount. You 
could add a $discount property and a setDiscount() method:

// listing 03.44

// ShopProduct class

    public $discount = 0;
//...

    public function setDiscount(int $num)
    {
        $this->discount = $num;
    }



Chapter 3 ■ Object Basics

42

Armed with a mechanism for setting a discount, you can create a getPrice() method that takes 
account of the discount that has been applied:

    public function getPrice()
    {
        return ($this->price - $this->discount);
    }

At this point, you have a problem. You only want to expose the adjusted price to the world, but a client 
can easily bypass the getPrice() method and access the $price property:

print "The price is {$product1->price}\n";

This will print the raw price and not the discount-adjusted price you wish to present. You can put a stop 
to this straight away by making the $price property private. This will prevent direct access, forcing clients to 
use the getPrice() method. Any attempt from outside the ShopProduct class to access the $price property 
will fail. As far as the wider world is concerned, this property has ceased to exist.

Setting properties to private can be an overzealous strategy. A private property cannot be accessed by 
a child class. Imagine that our business rules state that books alone should be ineligible for discounts. You 
could override the getPrice() method so that it returns the $price property, applying no discount:

// listing 03.45

// BookProduct

    public function getPrice()
    {
        return $this->price;
    }

As the private $price property is declared in the ShopProduct class and not BookProduct, the attempt to 
access it here will fail. The solution to this problem is to declare $price protected, thereby granting access 
to descendant classes. Remember that a protected property or method cannot be accessed from outside 
the class hierarchy in which it was declared. It can only be accessed from within its originating class or from 
within children of the originating class.

As a general rule, err on the side of privacy. Make properties private or protected at first and relax your 
restriction only as needed. Many (if not most) methods in your classes will be public, but once again, if 
in doubt, lock it down. A method that provides local functionality for other methods in your class has no 
relevance to your class’s users. Make it private or protected.

Accessor Methods
Even when client programmers need to work with values held by your class, it is often a good idea to deny 
direct access to properties, providing methods instead that relay the needed values. Such methods are 
known as accessors or getters and setters.

You have already seen one benefit afforded by accessor methods. You can use an accessor to filter a 
property value according to circumstances, as was illustrated by the getPrice() method.

You can also use a setter method to enforce a property type. Type declarations can be used to constrain 
method arguments, but a property can contain data of any type. Remember the ShopProductWriter class 
that uses a ShopProduct object to output list data? I can develop this further, so that it writes any number of 
ShopProduct objects at one time:



Chapter 3 ■ Object Basics

43

// listing 03.46

class ShopProductWriter
{
    public $products = [];

    public function addProduct(ShopProduct $shopProduct)
    {
        $this->products[] = $shopProduct;
    }

    public function write()
    {
        $str =  "";
        foreach ($this->products as $shopProduct) {
            $str .= "{$shopProduct->title}: ";
            $str .= $shopProduct->getProducer();
            $str .= " ({$shopProduct->getPrice()})\n";
        }
        print $str;
    }
}

The ShopProductWriter class is now much more useful. It can hold many ShopProduct objects and 
write data for them all in one go. I must trust my client coders to respect the intentions of the class, though. 
Despite the fact that I have provided an addProduct() method, I have not prevented programmers from 
manipulating the $products property directly. Not only could someone add the wrong kind of object to the 
$products array property, but he could even overwrite the entire array and replace it with a primitive value. I 
can prevent this by making the $products property private:

class ShopProductWriter {
    private $products = [];
//...

It’s now impossible for external code to damage the $products property. All access must be via the 
addProduct() method, and the class type declaration I use in the method declaration ensures that only 
ShopProduct objects can be added to the array property.

The ShopProduct Classes
Let’s close this chapter by amending the ShopProduct class and its children to lock down access control:

// listing 03.48

class ShopProduct
{
    private   $title;
    private   $producerMainName;
    private   $producerFirstName;
    protected $price;
    private   $discount = 0;



Chapter 3 ■ Object Basics

44

    public function __construct(
        string $title,
        string $firstName,
        string $mainName,
        float  $price
    ) {
        $this->title             = $title;
        $this->producerFirstName = $firstName;
        $this->producerMainName  = $mainName;
        $this->price             = $price;
    }

    public function getProducerFirstName()
    {
        return $this->producerFirstName;
    }

    public function getProducerMainName()
    {
        return $this->producerMainName;
    }

    public function setDiscount($num)
    {
        $this->discount = $num;
    }

    public function getDiscount()
    {
        return $this->discount;
    }

    public function getTitle()
    {
        return $this->title;
    }

    public function getPrice()
    {
        return ($this->price - $this->discount);
    }

    public function getProducer()
    {
        return $this->producerFirstName . ” ”
            . $this->producerMainName;
    }

    public function getSummaryLine()
    {
        $base  = "{$this->title} ( {$this->producerMainName}, ";
        $base .= "{$this->producerFirstName} )";



Chapter 3 ■ Object Basics

45

        return $base;
    }
}

// listing 03.49

class CdProduct extends ShopProduct
{
    private $playLength;
    public function __construct(
        string $title,
        string $firstName,
        string $mainName,
        float  $price,
        int    $playLength
    ) {
        parent::__construct(
            $title,
            $firstName,
            $mainName,
            $price
        );
        $this->playLength = $playLength;
    }

    public function getPlayLength()
    {
        return $this->playLength;
    }

    public function getSummaryLine()
    {
        $base  = "{$this->title} ( {$this->producerMainName}, ";
        $base .= "{$this->producerFirstName} )";
        $base .= ": playing time - {$this->playLength}";
        return $base;
    }
}

// listing 03.50

class BookProduct extends ShopProduct
{
    private $numPages;

    public function __construct(
        string $title,
        string $firstName,
        string $mainName,
        float  $price,
        int    $numPages
    ) {



Chapter 3 ■ Object Basics

46

        parent::__construct(
            $title,
            $firstName,
            $mainName,
            $price
        );
        $this->numPages = $numPages;
    }

    public function getNumberOfPages()
    {
        return $this->numPages;
    }

    public function getSummaryLine()
    {
        $base  = parent::getSummaryLine();
        $base .= ": page count - $this->numPages";
        return $base;
    }

    public function getPrice()
    {
        return $this->price;
    }
}

There is nothing substantially new in this version of the ShopProduct family. All properties are either 
private or protected, and I added a number of accessor methods to round things off.

Summary
This chapter covered a lot of ground, taking a class from an empty implementation through to a fully 
featured inheritance hierarchy. You took in some design issues, particularly with regard to type and 
inheritance. You saw PHP’s support for visibility and explored some of its uses. In the next chapter, I will 
show you more of PHP’s object-oriented features.



47© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_4

CHAPTER 4

Advanced Features

You have already seen how class type hinting and access control give you more control over a class’s 
interface. In this chapter, I will delve deeper into PHP’s object-oriented features.

This chapter will cover several subjects:

•	 Static methods and properties: Accessing data and functionality through classes 
rather than objects

•	 Abstract classes and interfaces: Separating design from implementation

•	 Traits: Sharing implementation between class hierarchies

•	 Error handling: Introducing exceptions

•	 Final classes and methods: Limiting inheritance

•	 Interceptor methods: Automating delegation

•	 Destructor methods: Cleaning up after your objects

•	 Cloning objects: Making object copies

•	 Resolving objects to strings: Creating a summary method

•	 Callbacks: Adding functionality to components with anonymous functions and 
classes

Static Methods and Properties
All of the examples in the previous chapter worked with objects. I characterized classes as templates from 
which objects are produced, and objects as active instances of classes—the things whose methods you 
invoke and whose properties you access. I implied that, in object-oriented programming, the real work is 
done by instances of classes. Classes, after all, are merely templates for objects.

In fact, it is not that simple. You can access both methods and properties in the context of a class rather 
than that of an object. Such methods and properties are “static” and must be declared as such by using the 
static keyword:

// listing 04.01
class StaticExample
{
    static public $aNum = 0;
    public static function sayHello()
    {



Chapter 4 ■ Advanced Features

48

        print "hello";
    }
}

Static methods are functions with class scope. They cannot themselves access any normal properties in 
the class because these would belong to an object; however, they can access static properties. If you change 
a static property, all instances of that class are able to access the new value.

Because you access a static element via a class and not an instance, you do not need a variable that 
references an object. Instead, you use the class name in conjunction with ::, as in this example:

print StaticExample::$aNum;
StaticExample::sayHello();

This syntax should be familiar from the previous chapter. I used :: in conjunction with parent to access 
an overridden method. Now, as then, I am accessing class rather than object data. Class code can use the 
parent keyword to access a superclass without using its class name. To access a static method or property 
from within the same class (rather than from a child), I would use the self keyword. self is to classes what 
the $this pseudo-variable is to objects. So from outside the StaticExample class, I access the $aNum property 
using its class name:

StaticExample::$aNum;

From within the StaticExample class, I can use the self keyword:

// listing 04.02
class StaticExample
{
    static public $aNum = 0;
    public static function sayHello()
    {
        self::$aNum++;
        print "hello (".self::$aNum.")\n";
    }
}

■■ Note   Making a method call using parent is the only circumstance in which you should use a static 
reference to a nonstatic method.

Unless you are accessing an overridden method, you should only ever use :: to access a method or property 
that has been explicitly declared static.

In documentation, however, you will often see static syntax used to refer to a method or property. This does 
not mean that the item in question is necessarily static, just that it belongs to a certain class. The write() 
method of the ShopProductWriter class might be referred to as ShopProductWriter::write(), for example, 
even though the write() method is not static. You will see this syntax here when that level of specificity is 
appropriate.



Chapter 4 ■ Advanced Features

49

By definition, static methods and properties are invoked on classes and not objects. For this reason, 
they are often referred to as class variables and properties. As a consequence of this class orientation, you 
cannot use the $this pseudo-variable inside a static method.

So, why would you use a static method or property? Static elements have a number of characteristics 
that can be useful. First, they are available from anywhere in your script (assuming that you have access to 
the class). This means you can access functionality without needing to pass an instance of the class from 
object to object or, worse, storing an instance in a global variable. Second, a static property is available to 
every instance of a class, so you can set values that you want to be available to all members of a type. Finally, 
the fact that you don’t need an instance to access a static property or method can save you from instantiating 
an object purely to get at a simple function.

To illustrate this, I will build a static method for the ShopProduct class that automates the instantiation 
of ShopProduct objects. Using SQLite, I might define a products table like this:

CREATE TABLE products (
                            id INTEGER PRIMARY KEY AUTOINCREMENT,
                            type TEXT,
                            firstname TEXT,
                            mainname TEXT,
                            title TEXT,
                            price float,
                            numpages int,
                            playlength int,
                            discount int )

Now I want to build a getInstance() method that accepts a row ID and PDO object, uses them to 
acquire a database row, and then returns a ShopProduct object. I can add these methods to the ShopProduct 
class I created in the previous chapter. As you probably know, PDO stands for PHP Data Object. The PDO 
class provides a common interface to different database applications:

// listing 04.03

// ShopProduct class...

    private $id = 0;
    // ...

    public function setID(int $id)
    {
        $this->id = $id;
    }
    // ...

    public static function getInstance(int $id, \PDO $pdo): ShopProduct
    {
        $stmt = $pdo->prepare("select * from products where id=?");
        $result = $stmt->execute([$id]);
        $row = $stmt->fetch();
        if (empty($row)) {
            return null;
        }



Chapter 4 ■ Advanced Features

50

        if ($row['type'] == "book") {
            $product = new BookProduct(
                $row['title'],
                $row['firstname'],
                $row['mainname'],
                (float) $row['price'],
                (int) $row['numpages']
            );
        } elseif ($row['type'] == "cd") {
            $product = new CdProduct(
                $row['title'],
                $row['firstname'],
                $row['mainname'],
                (float) $row['price'],
                (int) $row['playlength']
            );
        } else {
            $firstname = (is_null($row['firstname'])) ? "" : $row['firstname'];
            $product = new ShopProduct(
                $row['title'],
                $firstname,
                $row['mainname'],
                (float) $row['price']
            );
        }
        $product->setId((int) $row['id']);
        $product->setDiscount((int) $row['discount']);
        return $product;
    }

As you can see, the getInstance() method returns a ShopProduct object and, based on a type flag, is 
smart enough to work out the precise specialization it should instantiate. I have omitted any error handling 
to keep the example compact. In a real-world version of this, for example, I would not be so trusting as to 
assume that the provided PDO object was initialized to talk to the correct database. In fact, I probably wrap 
the PDO with a class that would guarantee this behavior. You can read more about object-oriented coding and 
databases in Chapter 13.

This method is more useful in a class context than an object context. It lets you convert raw data from 
the database into an object easily, without requiring that you have a ShopProduct object to start with. The 
method does not use any instance properties or methods, so there is no reason why it should not be declared 
static. Given a valid PDO object, I can invoke the method from anywhere in an application:

$dsn = "sqlite:/".__DIR__."/products.db";
$pdo = new \PDO($dsn, null, null);
$pdo->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);
$obj = ShopProduct::getInstance(1, $pdo);

Methods like this act as “factories” in that they take raw materials (such as row data or configuration 
information) and use them to produce objects. The term factory is applied to code designed to generate 
object instances. You will encounter factory examples again in future chapters.

In some ways, of course, this example poses as many problems as it solves. Although I make the 
ShopProduct::getInstance() method accessible from anywhere in a system without the need for an 
ShopProduct instance, I also demand that client code provides a PDO object. Where is this to be found? 

http://dx.doi.org/10.1007/978-1-4842-1996-6_13


Chapter 4 ■ Advanced Features

51

And is it really good practice for a parent class to have such intimate knowledge of its children? (Hint: no, it 
is not.) Problems of this kind—where to acquire key objects and values and how much classes should know 
about one another—are very common in object-oriented programming. I examine various approaches to 
object generation in Chapter 9.

Constant Properties
Some properties should not be changed. The Answer to Life, the Universe, and Everything is 42, and you 
want it to stay that way. Error and status flags will often be hard-coded into your classes. Although they 
should be publicly and statically available, client code should not be able to change them.

PHP allows you to define constant properties within a class. Like global constants, class constants 
cannot be changed once they are set. A constant property is declared with the const keyword. Constants 
are not prefixed with a dollar sign like regular properties. By convention, they are often named using only 
uppercase characters:

// listing 04.04
class ShopProduct
{
    const AVAILABLE      = 0;
    const OUT_OF_STOCK   = 1;
    // ...

Constant properties can contain only primitive values. You cannot assign an object to a constant. Like 
static properties, constant properties are accessed through the class and not an instance. Just as you define a 
constant without a dollar sign, no leading symbol is required when you refer to one:

print ShopProduct::AVAILABLE;

Attempting to set a value on a constant once it has been declared will cause a parse error.
You should use constants when your property needs to be available across all instances of a class, as 

well as when the property value needs to be fixed and unchanging.

Abstract Classes
An abstract class cannot be instantiated. Instead it defines (and, optionally, partially implements) the 
interface for any class that might extend it.

You define an abstract class with the abstract keyword. Here I redefine the ShopProductWriter class I 
created in the previous chapter, this time as an abstract class:

// listing 04.05
abstract class ShopProductWriter
{
    protected $products = [];

    public function addProduct(ShopProduct $shopProduct)
    {
        $this->products[] = $shopProduct;
    }
}

http://dx.doi.org/10.1007/978-1-4842-1996-6_9


Chapter 4 ■ Advanced Features

52

You can create methods and properties as normal, but any attempt to instantiate an abstract object in 
this way will cause an error:

$writer = new ShopProductWriter();

You can see the error in this output:

Error: Cannot instantiate abstract class popp\ch04\batch03\ShopProductWriter

In most cases, an abstract class will contain at least one abstract method. These are declared, once 
again, with the abstract keyword. An abstract method cannot have an implementation. You declare it in 
the normal way, but end the declaration with a semicolon rather than a method body. Here I add an abstract 
write() method to the ShopProductWriter class:

abstract class ShopProductWriter
{
    protected $products = [];

    public function addProduct(ShopProduct $shopProduct)
    {
        $this->products[]=$shopProduct;
    }

    abstract public function write();
}

In creating an abstract method, you ensure that an implementation will be available in all concrete 
child classes, but you leave the details of that implementation undefined.

Assume I were to create a class derived from ShopProductWriter that does not implement the write() 
method, as in this example:

class ErroredWriter extends ShopProductWriter
{
}

I would face the following error:

PHP Fatal error:  Class ErroredWriter contains 1 abstract method and
must therefore be declared abstract or implement the remaining methods
 (ShopProductWriter::write) in...

So any class that extends an abstract class must implement all abstract methods or itself be declared 
abstract. An extending class is responsible for more than simply implementing an abstract method. In doing 
so, it must reproduce the method signature. This means that the access control of the implementing method 
cannot be stricter than that of the abstract method. The implementing method should also require the same 
number of arguments as the abstract method, reproducing any class type hinting.



Chapter 4 ■ Advanced Features

53

Here are two implementations of ShopProductWriter:

// listing 04.06
class XmlProductWriter extends ShopProductWriter
{

    public function write()
    {
        $writer = new \XMLWriter();
        $writer->openMemory();
        $writer->startDocument('1.0', 'UTF-8');
        $writer->startElement("products");
        foreach ($this->products as $shopProduct) {
            $writer->startElement("product");
            $writer->writeAttribute("title", $shopProduct->getTitle());
            $writer->startElement("summary");
            $writer->text($shopProduct->getSummaryLine());
            $writer->endElement(); // summary
            $writer->endElement(); // product
        }
        $writer->endElement(); // products
        $writer->endDocument();
        print $writer->flush();
    }
}

// listing 04.07
class TextProductWriter extends ShopProductWriter
{
    public function write()
    {
        $str = "PRODUCTS:\n";
        foreach ($this->products as $shopProduct) {
            $str .= $shopProduct->getSummaryLine()."\n";
        }
        print $str;
    }
}

I create two classes, each with its own implementation of the write() method. The first outputs XML 
and the second outputs text. A method that requires a ShopProductWriter object will not know which of 
these two classes it is receiving, but it can be absolutely certain that a write() method is implemented. Note 
that I don’t test the type of $products before treating it as an array. This is because this property is initialized 
as an empty array in the ShopProductWriter.

Interfaces
Although abstract classes let you provide some measure of implementation, interfaces are pure templates. 
An interface can only define functionality; it can never implement it. An interface is declared with the 
interface keyword. It can contain properties and method declarations but not method bodies.



Chapter 4 ■ Advanced Features

54

Here’s an interface:

// listing 04.08
interface Chargeable
{
    public function getPrice(): float;
}

As you can see, an interface looks very much like a class. Any class that incorporates this interface 
commits to implementing all the methods it defines, or it must be declared abstract.

A class can implement an interface using the implements keyword in its declaration. Once you have 
done this, the process of implementing an interface is the same as extending an abstract class that contains 
only abstract methods. Now I will make the ShopProduct class implement Chargeable:

// listing 04.09
class ShopProduct implements Chargeable
{
    // ...
    protected $price;
    // ...

    public function getPrice(): float
    {
        return $this->price;
    }
    // ...
}

ShopProduct already had a getPrice() method, so why might it be useful to implement the Chargeable 
interface? Once again, the answer has to do with types. An implementing class takes on the type of the class 
it extends and the interface that it implements.

This means that the CdProduct class belongs to the following:

CdProduct
ShopProduct
Chargeable

This can be exploited by client code. To know an object’s type is to know its capabilities. Consider this 
method:

    public function cdInfo(CdProduct $prod)
    {
        // ...
    }

The method knows that the $prod object has a getPlayLength() method in addition to all the methods 
defined in the ShopProduct class and Chargeable interface.

Passed the same object, the method knows that $prod supports all the methods in ShopProduct:

    public function addProduct(ShopProduct $prod)
    {



Chapter 4 ■ Advanced Features

55

         // ...
    }

Without further testing, however, the method will know nothing of the getPlayLength() method.
Once again, passed the same CdProduct object, the method knows nothing at all of the ShopProduct or 

CdProduct types:

    public function addChargeableItem(Chargeable $item)
    {
        //...
    }

However, this method is only concerned with whether the $item argument contains a getPrice() method.
Because any class can implement an interface (in fact, a class can implement any number of interfaces), 

interfaces effectively join types that are otherwise unrelated. I might define an entirely new class that 
implements Chargeable:

class Shipping implements Chargeable
{
    public function getPrice(): float
    {
        //...
    }
}

I can pass a Shipping object to the addChargeableItem method just as I can pass it a ShopProduct object.
The important thing to a client working with a Chargeable object is that it can call a getPrice() 

method. Any other available methods are associated with other types, whether through the object’s own 
class, a superclass, or another interface. These are irrelevant to the client.

A class can both extend a superclass and implement any number of interfaces. The extends clause 
should precede the implements clause:

class Consultancy extends TimedService implements Bookable, Chargeable
{
    // ...
}

Notice that the Consultancy class implements more than one interface. Multiple interfaces follow the 
implements keyword in a comma-separated list.

PHP only supports inheritance from a single parent, so the extends keyword can precede a single class 
name only.

Traits
As we have seen, interfaces help you manage the fact that, like Java, PHP does not support multiple 
inheritance. In other words, a class in PHP can only extend a single parent. However, you can make a class 
promise to implement as many interfaces as you like; for each interface it implements, the class takes on the 
corresponding type.

So interfaces provide types without implementation. But what if you want to share an implementation 
across inheritance hierarchies? PHP 5.4 introduced traits, and these let you do just that.



Chapter 4 ■ Advanced Features

56

A trait is a class-like structure that cannot itself be instantiated but can be incorporated into classes. Any 
methods defined in a trait become available as part of any class that uses it. A trait changes the structure of a 
class, but doesn’t change its type. Think of traits as includes for classes.

Let’s look at why a trait might be useful.

A Problem for Traits to Solve
Here is a version of the ShopProduct class with a calculateTax() method:

// listing 04.10

class ShopProduct
{
    private $taxrate = 17;

// ...

    public function calculateTax(float $price): float
    {
        return (($this->taxrate / 100) * $price);
    }
}

// listing 04.11
$p = new ShopProduct("Fine Soap", "", "Bob's Bathroom", 1.33);
print $p->calculateTax(100) . "\n";

The calculateTax() method accepts a $price argument and calculates a sales tax amount based on 
the private $taxrate property.

Of course, a subclass gains access to calculateTax(). But what about entirely different class 
hierarchies? Imagine a class named UtilityService, which inherits from another class, Service. If 
UtilityService needs to use an identical routine, I might find myself duplicating calculateTax() in its 
entirety:

abstract class Service
{
    // service oriented stuff
}

class UtilityService extends Service
{
    private $taxrate = 17;

    function calculateTax(float $price): float
    {
        return ( ( $this->taxrate/100 ) * $price );
    }
}

$u = new UtilityService();
print $u->calculateTax(100)."\n";



Chapter 4 ■ Advanced Features

57

Defining and Using a Trait
One of the core object-oriented design goals I will cover in this book is the removal of duplication. As you 
will see in Chapter 11, one solution to this kind of duplication is to factor it out into a reusable strategy class. 
Traits provide another approach—less elegant, perhaps, but certainly effective.

Here I declare a single trait that defines a calculateTax() method, and then I include it in both 
ShopProduct and UtilityService:

// listing 04.12
trait PriceUtilities
{
    private $taxrate = 17;

    public function calculateTax(float $price): float
    {
        return (($this->taxrate / 100) * $price);
    }

    // other utilities
}

// listing 04.13
class ShopProduct
{
    use PriceUtilities;
}

// listing 04.14
abstract class Service
{
    // service oriented stuff
}

// listing 04.15
class UtilityService extends Service
{
    use PriceUtilities;
}

// listing 04.16
$p = new ShopProduct();
print $p->calculateTax(100) . "\n";

$u = new UtilityService();
print $u->calculateTax(100) . "\n";

I declare the PriceUtilities trait with the trait keyword. The body of a trait looks very similar to that 
of a class. It is simply a set of methods and properties collected within braces. Once I have declared it, I can 
access the PriceUtilities trait from within my classes. I do this with the use keyword followed by the name 
of the trait I wish to incorporate. So having declared and implemented the calculateTax() method in a 
single place, I go ahead and incorporate it into both the ShopProduct and the UtilityService classes.

http://dx.doi.org/10.1007/978-1-4842-1996-6_11


Chapter 4 ■ Advanced Features

58

Using More than One Trait
You can include multiple traits in a class by listing each one after the use keyword, separated by commas. In 
this example, I define and apply a new trait, IdentityTrait, keeping my original PriceUtilities trait:

// listing 04.17
trait IdentityTrait
{
    public function generateId(): string
    {
        return uniqid();
    }
}

// listing 04.18
class ShopProduct
{
    use PriceUtilities, IdentityTrait;
}

// listing 04.19
$p = new ShopProduct();
print $p->calculateTax(100) . "\n";
print $p->generateId() . "\n";

By applying both PriceUtilities and IdentityTrait with the use keyword, I make the 
calculateTax() and the generateId() methods available to the ShopProduct class. This means the class 
offers both the calculateTax() and generateId() methods.

■■ Note   The IdentityTrait trait provides the generateId() method. In fact, a database often generates 
identifiers for objects, but you might switch in a local implementation for testing purposes. You can find out 
more about objects, databases, and unique identifiers in Chapter 12, which covers the Identity Map pattern. You 
can learn more about testing and mocking in Chapter 18.

Combining Traits and Interfaces
Although traits are useful, they don’t change the type of the class to which they are applied. So when you 
apply the IdentityTrait trait to multiple classes, they won’t share a type that could be hinted for in a 
method signature.

Luckily, traits play well with interfaces. I can define an interface that requires a generateId() method, 
and then declare that ShopProduct implements it:

// listing 04.20
interface IdentityObject
{
    public function generateId(): string;
}

http://dx.doi.org/10.1007/978-1-4842-1996-6_12
http://dx.doi.org/10.1007/978-1-4842-1996-6_18


Chapter 4 ■ Advanced Features

59

// listing 04.21
trait IdentityTrait
{
    public function generateId(): string
    {
        return uniqid();
    }
}

// listing 04.22
class ShopProduct implements IdentityObject
{
    use PriceUtilities, IdentityTrait;
}

As before, ShopProduct uses the IdentityTrait trait. However, the method this imports, generateId() 
now also fulfills a commitment to the IdentityObject interface. This means that we can pass ShopProduct 
objects to methods and functions that use type hinting to demand IdentityObject instances, like this:

// listing 04.23
    public static function storeIdentityObject(IdentityObject $idobj)
    {
        // do something with the IdentityObject
    }

// listing 04.24
$p = new ShopProduct();
self::storeIdentityObject($p);
print $p->calculateTax(100) . "\n";
print $p->generateId() . "\n";

Managing Method Name Conflicts with insteadof
The ability to combine traits is a nice feature, but sooner or later conflicts are inevitable. Consider what 
would happen, for example, if I were to use two traits that provide a calculateTax() method:

// listing 04.25
trait TaxTools
{
    function calculateTax(float $price): float
    {
        return 222;
    }
}

// listing 04.26
trait PriceUtilities
{
    private $taxrate = 17;

    public function calculateTax(float $price): float
    {



Chapter 4 ■ Advanced Features

60

        return (($this->taxrate / 100) * $price);
    }

    // other utilities
}

// listing 04.27
class UtilityService extends Service
{
    use PriceUtilities, TaxTools;
}

// listing 04.28
$u = new UtilityService();
print $u->calculateTax(100) . "\n";

Because I have included two traits that contain calculateTax() methods, PHP is unable to work out 
which should override the other. The result is a fatal error:

PHP Fatal error:  Trait method calculateTax has not been applied, because there
are collisions with other trait methods on...

To fix this problem, I can use the insteadof keyword. Here’s how:

// listing 04.29
class UtilityService extends Service
{
    use PriceUtilities, TaxTools {
        TaxTools::calculateTax insteadof PriceUtilities;
    }
}

// listing 04.30
$u = new UtilityService();
print $u->calculateTax(100) . "\n";

In order to apply further directives to a use statement, I must first add a body. I do this with opening 
and closing braces. Within this block, I use the insteadof operator. This requires a fully qualified method 
reference (i.e., one that identifies both the trait and the method names, separated by a scope resolution 
operator) on the left-hand side. On the right-hand side, insteadof requires the name of the trait whose 
equivalent method should be overridden:

TaxTools::calculateTax insteadof PriceUtilities;

The preceding snippet means, “Use the calculateTax() method of TaxTools instead of the method of 
the same name in PriceUtilities.”

So when I run this code, I get the dummy output I planted in TaxTools::calculateTax():

222



Chapter 4 ■ Advanced Features

61

Aliasing overridden trait methods
We have seen that you can use insteadof to disambiguate between methods. What do you do, though, if you 
want to then access the overridden method? The as operator allows you to alias trait methods. Once again, 
the as operator requires a full reference to a method on its left-hand side. On the right-hand side of the 
operator, you should put the name of the alias. So here, for example, I reinstate the calculateTax() method 
of the PriceUtilities trait using the new name basicTax():

// listing 04.31
class UtilityService extends Service
{

    use PriceUtilities, TaxTools {
        TaxTools::calculateTax insteadof PriceUtilities;
        PriceUtilities::calculateTax as basicTax;
    }
}

// listing 04.32
$u = new UtilityService();
print $u->calculateTax(100) . "\n";
print $u->basicTax(100) . "\n";

This gives the following output:

222
17

So PriceUtilities::calculateTax() has been resurrected as part of the UtilityService class under 
the name basicTax().

■■ Note   Where a method name clashes between traits, it is not enough to alias one of the method names in 
the use block. You must first determine which method supercedes the other using the insteadof operator. Then 
you can reassign the discarded method a new name with the as operator.

Incidentally, you can also use method name aliasing where there is no name clash. You might, for 
example, want to use a trait method to implement an abstract method signature declared in a parent class or 
in an interface.

Using static methods in traits
Most of the examples you have seen so far could use static methods because they do not store 
instance data. There’s nothing complicated about placing a static method in a trait. Here I change the 
PriceUtilities::$taxrate property and the PriceUtilities::calculateTax() methods so that they are static:

// listing 04.33
trait PriceUtilities
{



Chapter 4 ■ Advanced Features

62

    private static $taxrate = 17;

    public static function calculateTax(float $price): float
    {
        return ((self::$taxrate / 100) * $price);
    }

    // other utilities
}

// listing 04.34
class UtilityService extends Service
{
    use PriceUtilities;
}

// listing 04.35
$u = new UtilityService();
print $u::calculateTax(100) . "\n";

As you might expect, this script outputs the following:

17

So, static methods are declared in traits and accessed via the host class in the normal way.

Accessing Host Class Properties
You might assume that static methods are really the only way to go as far as traits are concerned. Even trait 
methods that are not declared static are essentially static in nature, right? Well, wrong, in fact—you can 
access properties and methods in a host class:

// listing 04.36
trait PriceUtilities
{
    function calculateTax(float $price): float
    {
        // is this good design?
        return (($this->taxrate / 100) * $price);
    }

    // other utilities
}

// listing 04.37
class UtilityService extends Service
{
    public $taxrate = 17;
    use PriceUtilities;
}



Chapter 4 ■ Advanced Features

63

// listing 04.38
$u = new UtilityService();
print $u->calculateTax(100) . "\n";

In the preceding code, I amend the PriceUtilities trait so that it accesses a property in its host class. 
If you think that this is bad design, you’re right. It’s spectacularly bad design. Although it’s useful for the trait 
to access data set by its host class, there is nothing to require the UtilityService class to actually provide 
a $taxrate property. Remember that traits should be usable across many different classes. What is the 
guarantee or even the likelihood that any host classes will declare a $taxrate?

On the other hand, it would be great to be able to establish a contract that says, essentially, “If you use 
this trait, then you must provide it certain resources.”

In fact, you can achieve exactly this effect. Traits support abstract methods.

Defining Abstract Methods in Traits
You can define abstract methods in a trait in just the same way you would in a class. When a trait is used by a 
class, it takes on the commitment to implement any abstract methods it declares.

Armed with this knowledge, I can reimplement my previous example so that the trait forces the using 
class to provide tax rate information:

// listing 04.39
trait PriceUtilities
{
    function calculateTax(float $price): float
    {
        // better design.. we know getTaxRate() is implemented
        return (($this->getTaxRate() / 100) * $price);
    }

    abstract function getTaxRate(): float;
    // other utilities
}

// listing 04.40
class UtilityService extends Service
{
    use PriceUtilities;

    public function getTaxRate(): float
    {
        return 17;
    }
}

// listing 04.41
$u = new UtilityService();
print $u->calculateTax(100) . "\n";

By declaring an abstract getTaxRate() method in the PriceUtilities trait, I force the UtilityService 
class to provide an implementation. Of course, since PHP does not constrain return types, the UtilityServi
ce::calculateTax() method cannot be absolutely certain it’s going to get a sane value from getTaxRate(). 



Chapter 4 ■ Advanced Features

64

You could overcome this to some extent by writing all sorts of checking routines, but this misses the point. It 
is probably adequate just to signal to a client coder that she should provide certain information by requiring 
the implementation of a method or two.

Changing Access Rights to Trait Methods
You can, of course, declare a trait method public, private, or protected. However, you can also change this 
access from within the class that uses the trait. You have already seen that the as operator can be used to 
alias a method name. If you use an access modifier on the right-hand side of this operator, it will change the 
method’s access level rather than its name.

Imagine, for example, you would like to use calculateTax() from within UtilityService, but not 
make it available to implementing code. Here’s how you would change the use statement:

// listing 04.42
trait PriceUtilities
{
    public function calculateTax(float $price): float
    {
        return (($this->getTaxRate() / 100) * $price);
    }
    public abstract function getTaxRate(): float;
    // other utilities
}

// listing 04.43
class UtilityService extends Service
{
    use PriceUtilities {
        PriceUtilities::calculateTax as private;
    }

    private $price;

    public function __construct(float $price)
    {
        $this->price = $price;
    }

    public function getTaxRate(): float
    {
        return 17;
    }

    public function getFinalPrice(): float
    {
        return ($this->price + $this->calculateTax($this->price));
    }
}



Chapter 4 ■ Advanced Features

65

// listing 04.44
$u = new UtilityService(100);
print $u->getFinalPrice() . "\n";

I deploy the as operator in conjunction with the private keyword in order to set private access to 
calculateTax(). This means I can access the method from getFinalPrice(). Here’s an external attempt to 
access calculateTax():

$u = new UtilityService(100);
print $u->calculateTax()."\n";

Unfortunately, this code will generate an error:

Error: Call to private method popp\ch04\batch06_9\UtilityService::calculateTax() from 
context ...

Late Static Bindings: The static Keyword
Now that you’ve seen abstract classes, traits, and interfaces, it’s time to return briefly to static methods. You 
saw that a static method can be used as factory, a way of generating instances of the containing class. If 
you’re as lazy a coder as me, you might chafe at the duplication in an example like this:

// listing 04.45
abstract class DomainObject
{

}

// listing 04.46
class User extends DomainObject
{
    public static function create(): User
    {
        return new User();
    }
}

// listing 04.47
class Document extends DomainObject
{
    public static function create(): Document
    {
        return new Document();
    }
}

I create a super class named DomainObject. In a real-world project, of course, this would contain 
functionality common to its extending classes. Then I create two child classes, User and Document. I would 
like my concrete classes to have static create() methods.



Chapter 4 ■ Advanced Features

66

■■ Note   Why would I use a static factory method when a constructor performs the work of creating an 
object already? In Chapter 12, I’ll describe a pattern called Identity Map. An Identity Map component generates 
and manages a new object only if an object with the same distinguishing characteristics is not already under 
management. If the target object already exists, it is returned. A factory method like create() would make a 
good client for a component of this sort.

This code works fine, but it has an annoying amount of duplication. I don’t want to have to create 
boilerplate code like this for every DomainObject child class that I create. Instead, I’ll try pushing the 
create() method up to the superclass:

// listing 04.48
abstract class DomainObject
{
    public static function create(): DomainObject
    {
        return new self();
    }
}

// listing 04.49
class User extends DomainObject
{
}

// listing 04.50
class Document extends DomainObject
{
}

// listing 04.51
Document::create();

Well, that looks neat. I now have common code in one place, and I’ve used self as a reference to the 
class. But I have made an assumption about the self keyword. In fact, it does not act for classes exactly the 
same way that $this does for objects. self does not refer to the calling context; it refers to the context of 
resolution. So if I run the previous example, I get this:

Error: Cannot instantiate abstract class popp\ch04\batch06\DomainObject

So self resolves to DomainObject, the place where create() is defined, and not to Document, the class 
on which it was called. Until PHP 5.3 this was a serious limitation, which spawned many rather clumsy 
workarounds. PHP 5.3 introduced a concept called late static bindings. The most obvious manifestation of 
this feature is the keyword: static. static is similar to self, except that it refers to the invoked rather than 
the containing class. In this case, it means that calling Document::create() results in a new Document object 
and not a doomed attempt to instantiate a DomainObject object.

http://dx.doi.org/10.1007/978-1-4842-1996-6_12


Chapter 4 ■ Advanced Features

67

So now I can take advantage of my inheritance relationship in a static context:

abstract class DomainObject
{
    public static function create(): DomainObject
    {
        return new static();
    }
}

class User extends DomainObject
{
}

class Document extends DomainObject
{
}

print_r(Document::create());

Document Object
(
)

The static keyword can be used for more than just instantiation. Like self and parent, static can 
be used as an identifier for static method calls, even from a non-static context. Let’s say I want to include 
the concept of a group for my DomainObject classes. By default in my new classification, all classes fall into 
category “default,” but I’d like to be able override this for some branches of my inheritance hierarchy:

// listing 04.52
abstract class DomainObject
{
    private $group;

    public function __construct()
    {
        $this->group = static::getGroup();
    }

    public static function create(): DomainObject
    {
        return new static();
    }

    public static function getGroup(): string
    {
        return "default";
    }
}



Chapter 4 ■ Advanced Features

68

// listing 04.53
class User extends DomainObject
{
}

// listing 04.54
class Document extends DomainObject
{
    public static function getGroup(): string
    {
        return "document";
    }
}

// listing 04.55
class SpreadSheet extends Document
{
}

// listing 04.56
print_r(User::create());
print_r(SpreadSheet::create());

I introduced a constructor to the DomainObject class. It uses the static keyword to invoke a static 
method: getGroup(). DomainObject provides the default implementation, but Document overrides it. I also 
created a new class, SpreadSheet, that extends Document. Here’s the output:

popp\ch04\batch07\User Object
(
    [group:popp\ch04\batch07\DomainObject:private] => default
)
popp\ch04\batch07\SpreadSheet Object
(
    [group:popp\ch04\batch07\DomainObject:private] => document
)

For the User class, not much clever needs to happen. The DomainObject constructor calls getGroup() 
and finds it locally. In the case of SpreadSheet, though, the search begins at the invoked class, SpreadSheet 
itself. It provides no implementation, so the getGroup() method in the Document class is invoked. Before 
PHP 5.3 and late static binding, I would have been stuck with the self keyword here, which would only look 
for getGroup() in the DomainObject class.

Handling Errors
Things go wrong. Files are misplaced, database servers are left uninitialized, URLs are changed, XML files are 
mangled, permissions are poorly set, disk quotas are exceeded. The list goes on and on. In the fight to anticipate 
every problem, a simple method can sometimes sink under the weight of its own error-handling code.



Chapter 4 ■ Advanced Features

69

Here is a simple Conf class that stores, retrieves, and sets data in an XML configuration file:

// listing 04.57
class Conf
{
    private $file;
    private $xml;
    private $lastmatch;

    public function __construct(string $file)
    {
        $this->file = $file;
        $this->xml = simplexml:load_file($file);
    }

    public function write()
    {
        file_put_contents($this->file, $this->xml->asXML());
    }

    public function get(string $str)
    {
        $matches = $this->xml->xpath("/conf/item[@name=\"$str\"]");
        if (count($matches)) {
            $this->lastmatch = $matches[0];
            return (string)$matches[0];
        }
        return null;
    }

    public function set(string $key, string $value)
    {
        if (! is_null($this->get($key))) {
            $this->lastmatch[0]=$value;
            return;
        }
        $conf = $this->xml->conf;
        $this->xml->addChild('item', $value)->addAttribute('name', $key);
    }
}

The Conf class uses the SimpleXml extension to access name value pairs. Here’s the kind of format with 
which it is designed to work:

<?xml version="1.0"?>
<conf>
    <item name="user">bob</item>
    <item name="pass">newpass</item>
    <item name="host">localhost</item>
</conf>



Chapter 4 ■ Advanced Features

70

The Conf class’s constructor accepts a file path, which it passes to simplexml:load_file().It stores the 
resulting SimpleXmlElement object in a property called $xml. The get() method uses XPath to locate an item 
element with the given name attribute, returning its value. set() either changes the value of an existing item 
or creates a new one. Finally, the write() method saves the new configuration data back to the file.

Like much example code, the Conf class is highly simplified. In particular, it has no strategy for handling 
nonexistent or unwriteable files. It is also optimistic in outlook. It assumes that the XML document will be 
well-formed and will contain the expected elements.

Testing for these error conditions is relatively trivial, but I must still decide how to respond to them 
should they arise. There are generally two options.

First, I could end execution. This is simple but drastic. My humble class would then take responsibility 
for bringing an entire script crashing down around it. Although methods such as __construct() and 
write() are well placed to detect errors, they do not have the information to decide how to handle them.

Rather than handle the error in my class, then, I could return an error flag of some kind. This could be a 
Boolean or an integer value such as 0 or -1. Some classes will also set an error string or flag, so that the client 
code can request more information after a failure.

Many PEAR packages combine these two approaches by returning an error object (an instance of PEAR_
Error), which acts both as notification that an error has occurred and contains the error message within 
it. This approach is now deprecated, but plenty of classes have not been upgraded, not least because client 
code often depends on the old behavior.

The problem here is that you pollute your return value. You have to rely on the client coder to test for the 
return type every time your error-prone method is called. This can be risky. Trust no one!

When you return an error value to calling code, there is no guarantee that the client will be any better 
equipped than your method to decide how to handle the error. If this is the case, then the problem begins 
all over again. The client method will have to determine how to respond to the error condition, maybe even 
implementing a different error-reporting strategy.

Exceptions
PHP 5 introduced exceptions to PHP, a radically different way of handling error conditions. Different for PHP, 
that is. You will find them hauntingly familiar if you have Java or C++ experience. Exceptions address all of 
the issues that I have raised so far in this section.

An exception is a special object instantiated from the built-in Exception class (or from a derived class). 
Objects of type Exception are designed to hold and report error information.

The Exception class constructor accepts two optional arguments, a message string and an error code. 
The class provides some useful methods for analyzing error conditions. These are described in Table 4-1.

The Exception class is fantastically useful for providing error notification and debugging information 
(the getTrace() and getTraceAsString() methods are particularly helpful in this regard). In fact, it is 
almost identical to the PEAR_Error class that was discussed earlier. There is much more to an exception than 
the information it holds, though.



Chapter 4 ■ Advanced Features

71

Throwing an Exception
The throw keyword is used in conjunction with an Exception object. It halts execution of the current method 
and passes responsibility for handling the error back to the calling code. Here I amend the __construct() 
method to use the throw statement:

// listing 04.58
    public function __construct(string $file)
    {
        $this->file = $file;
        if (! file_exists($file)) {
            throw new \Exception("file '$file' does not exist");
        }
        $this->xml = simplexml:load_file($file);
    }

The write() method can use a similar construct:

// listing 04.59
    public function write()
    {
        if (! is_writeable($this->file)) {
            throw new \Exception("file '{$this->file}' is not writeable");
        }
        file_put_contents($this->file, $this->xml->asXML());
    }

Table 4-1.  The Exception Class’s Public Methods

Method Description

getMessage() Get the message string that was passed to the constructor

getCode() Get the code integer that was passed to the constructor

getFile() Get the file in which the exception was generated

getLine() Get the line number at which the exception was generated

getPrevious() Get a nested Exception object

getTrace() Get a multidimensional array tracing the method calls that led to the exception, 
including method, class, file, and argument data

getTraceAsString() Get a string version of the data returned by getTrace()

__toString() Called automatically when the Exception object is used in string context. Returns a 
string describing the exception details



Chapter 4 ■ Advanced Features

72

The __construct() and write() methods can now check diligently for file errors as they do their work, 
but they let code more fitted for the purpose decide how to respond to any errors detected.

So how does client code know how to handle an exception when thrown? When you invoke a method 
that may throw an exception, you can wrap your call in a try clause. A try clause is made up of the try 
keyword followed by braces. The try clause must be followed by at least one catch clause in which you can 
handle any error, like this:

// listing 04.60
try {
    $conf = new Conf(__DIR__ . "/conf01.xml");
    print "user: " . $conf->get('user') . "\n";
    print "host: " . $conf->get('host') . "\n";
    $conf->set("pass", "newpass");
    $conf->write();
} catch (\Exception $e) {
    die($e->__toString());
}

As you can see, the catch clause superficially resembles a method declaration. When an exception is 
thrown, the catch clause in the invoking scope is called. The Exception object is automatically passed in as 
the argument variable.

Just as execution is halted within the throwing method when an exception is thrown, so it is within the 
try clause—control passes directly to the catch clause.

Subclassing Exception
You can create classes that extend the Exception class as you would with any user-defined class. There are 
two reasons why you might want to do this. First, you can extend the class’s functionality. Second, the fact 
that a derived class defines a new class type can aid error handling in itself.

You can, in fact, define as many catch clauses as you need for a try statement. The particular catch 
clause invoked will depend on the type of the thrown exception and the class type hint in the argument list. 
Here are some simple classes that extend Exception:

// listing 04.61
class XmlException extends \Exception
{
    private $error;

    public function __construct(\LibXmlError $error)
    {
        $shortfile = basename($error->file);
        $msg = "[{$shortfile}, line {$error->line}, col {$error->column}] {$error->message}";
        $this->error = $error;
        parent::__construct($msg, $error->code);
    }

    public function getLibXmlError()
    {
        return $this->error;
    }



Chapter 4 ■ Advanced Features

73

}

// listing 04.62
class FileException extends \Exception
{
}

// listing 04.63
class ConfException extends \Exception
{
}

The LibXmlError class is generated behind the scenes when SimpleXml encounters a broken XML file. It 
has $message and $code properties, and it resembles the Exception class. I take advantage of this similarity 
and use the LibXmlError object in the XmlException class. The FileException and ConfException classes 
do nothing more than subclass Exception. I can now use these classes in my code and amend both __
construct() and write():

// listing 04.64

// Conf class...

    function __construct(string $file)
    {
        $this->file = $file;
        if (! file_exists($file)) {
            throw new FileException("file '$file' does not exist");
        }
        $this->xml = simplexml:load_file($file, null, LIBXML_NOERROR);
        if (! is_object($this->xml)) {
            throw new XmlException(libxml:get_last_error());
        }
        $matches = $this->xml->xpath("/conf");
        if (! count($matches)) {
            throw new ConfException("could not find root element: conf");
        }
    }

    function write()
    {
        if (! is_writeable($this->file)) {
            throw new FileException("file '{$this->file}' is not writeable");
        }
        file_put_contents($this->file, $this->xml->asXML());
    }

__construct() throws either an XmlException, a FileException, or a ConfException, depending on 
the kind of error it encounters. Note that I pass the option flag LIBXML_NOERROR to simplexml:load_file(). 
This suppresses warnings, leaving me free to handle them with my XmlException class after the fact. If I 
encounter a malformed XML file, I know that an error has occurred because simplexml:load_file() won’t 
have returned an object. I can then access the error using libxml:get_last_error().



Chapter 4 ■ Advanced Features

74

The write() method throws a FileException if the $file property points to an unwritable entity.
So, I have established that __construct() might throw one of three possible exceptions. How can I take 

advantage of this? Here’s some code that instantiates a Conf object:

// listing 04.65
    public static function init()
    {
        try {
            $conf = new Conf(__DIR__."/conf.broken.xml");
            print "user: " . $conf->get('user') . "\n";
            print "host: " . $conf->get('host') . "\n";
            $conf->set("pass", "newpass");
            $conf->write();
        } catch (FileException $e) {
            // permissions issue or non-existent file
        } catch (XmlException $e) {
            // broken xml
        } catch (ConfException $e) {
            // wrong kind of XML file
        } catch (\Exception $e) {
            // backstop: should not be called
        }
    }

I provide a catch clause for each class type. The clause invoked depends on the exception type thrown. 
The first to match will be executed, so remember to place the most generic type at the end and the most 
specialized at the start. For example, if you were to place the catch clause for Exception ahead of the clause 
for XmlException and ConfException, neither of these would ever be invoked. This is because both of these 
classes belong to the Exception type, and would therefore match the first clause.

The first catch clause (FileException) is invoked if there is a problem with the configuration file (if the 
file is nonexistent or unwriteable). The second clause (XmlException) is invoked if an error occurs in parsing 
the XML file (e.g., if an element is not closed). The third clause (ConfException) is invoked if a valid XML 
file does not contain the expected root conf element. The final clause (Exception) should not be reached 
because my methods only generate the three exceptions, which are explicitly handled. It is often a good idea 
to have a “backstop” clause like this, in case you add new exceptions to the code during development.

■■ Note   If you do provide a “backstop” catch clause, you should ensure that you actually do something about 
the exception in most instances—failing silently can cause bugs which are hard to diagnose.

The benefit of these fine-grained catch clauses is that they allow you to apply different recovery or 
failure mechanisms to different errors. For example, you may decide to end execution, log the error and 
continue, or explicitly rethrow an error:

        try {
            //...
        } catch ( FileException $e ) {
            throw $e;
        }



Chapter 4 ■ Advanced Features

75

Another trick you can play here is to throw a new exception that wraps the current one. This allows you 
to stake a claim to the error and add your own contextual information, while retaining the data encapsulated 
by the exception you have caught. You can read more about this technique in Chapter 15.

So what happens if an exception is not caught by client code? It is implicitly rethrown, and the client’s 
own calling code is given the opportunity to catch it. This process continues either until the exception is 
caught or until it can no longer be thrown. At this point, a fatal error occurs. Here’s what would happen if I 
did not catch one of the exceptions in my example:

PHP Fatal error:  Uncaught exception 'FileException' with message
'file 'nonexistent/not_there.xml' does not exist' in ...

So, when you throw an exception, you force the client to take responsibility for handling it. This is not an 
abdication of responsibility. An exception should be thrown when a method has detected an error, but does 
not have the contextual information to be able to handle it intelligently. The write() method in my example 
knows when the attempt to write will fail, and it knows why, but it does not know what to do about it. This is 
as it should be. If I were to make the Conf class more knowledgeable than it currently is, it would lose focus 
and become less reusable.

Cleaning Up After try/catch Clauses with finally
The way that code flow is affected by exceptions can cause unexpected problems. For example, clean-
up code or other essential housekeeping may not be performed after an exception is generated within a 
try clause. As you have seen, if an exception is generated within a try clause, flow moves directly to the 
relevant catch clause. Code that closes database connections or file handles may not get called, and status 
information might not be updated.

Imagine, for example, that Runner::init() keeps a log of its actions. It logs the start of the initialization 
process, any errors encountered, and then it logs the end of the initialization process. Here I provide a 
typically simplified example of this kind of logging:

// listing 04.66
    public static function init()
    {
        try {
            $fh = fopen(__DIR__ . "/log.txt", "a");
            fputs($fh, "start\n");
            $conf = new Conf(dirname(__FILE__) . "/conf.broken.xml");
            print "user: " . $conf->get('user') . "\n";
            print "host: " . $conf->get('host') . "\n";
            $conf->set("pass", "newpass");
            $conf->write();
            fputs($fh, "end\n");
            fclose($fh);
        } catch (FileException $e) {
            // permissions issue or non-existent file
            fputs($fh, "file exception\n");
            throw $e;
        } catch (XmlException $e) {
            fputs($fh, "xml exception\n");

http://dx.doi.org/10.1007/978-1-4842-1996-6_15


Chapter 4 ■ Advanced Features

76

            // broken xml
        } catch (ConfException $e) {
            fputs($fh, "conf exception\n");
            // wrong kind of XML file
        } catch (\Exception $e) {
            fputs($fh, "general exception\n");
            // backstop: should not be called
        }
    }

I open a file, log.txt; I write to it; and then I call my configuration code. If an exception is encountered 
in this process, I log this fact in the relevant catch clause. I end the try clause by writing to the log and 
closing its file handle.

Of course, this last step will never be reached if an exception is encountered. Flow passes straight to the 
relevant catch block, and the rest of the try clause is never run. Here is the log output when a file exception 
is generated:

start
file exception

As you can see, the logging began, and the file exception was noted, but the portion of code that 
registers the end of logging was never reached, and so the log was not updated with that.

You might think that the solution would be to place the final logging step outside of the try /catch 
block altogether. This would not work reliably. If a generated exception is caught, and the try block allows 
execution to continue, then flow will move beyond the try / catch construct. However, a catch clause could 
rethrow the exception, or it might end script execution altogether.

To help programmers deal with problems like this, PHP 5.5 introduced a new clause: finally. If you’re 
familiar with Java, it’s likely you’ll have seen this clause before. Although catch clauses are only conditionally 
run when matching exceptions are thrown, the finally clause is always run, whether or not an exception is 
generated within the try block.

I can fix this problem by moving my log write and code to close to a finally clause:

    public static function init()
    {
        $fh = fopen(__DIR__ . "/log.txt", "a");
        try {
            fputs($fh, "start\n");
            $conf = new Conf(dirname(__FILE__) . "/conf.broken.xml");
            print "user: " . $conf->get('user') . "\n";
            print "host: " . $conf->get('host') . "\n";
            $conf->set("pass", "newpass");
            $conf->write();
        } catch (FileException $e) {
            // permissions issue or non-existent file
            fputs($fh, "file exception\n");
        } catch (XmlException $e) {
            fputs($fh, "xml exception\n");
            // broken xml
        } catch (ConfException $e) {
            fputs($fh, "conf exception\n");



Chapter 4 ■ Advanced Features

77

            // wrong kind of XML file
        } catch (Exception $e) {
            fputs($fh, "general exception\n");
            // backstop: should not be called
        } finally {
            fputs($fh, "end\n");
            fclose($fh);
        }
    }

Because the log write and the fclose() invocation are wrapped in a finally clause, these statements 
will be run even if, as is the case when a FileException is caught, the exception is rethrown.

Here, again, is the log text when a FileException is generated:

start
file exception
end

■■ Note   A finally clause will be run if an invoked catch clause rethrows an exception or returns a value. 
However, calling die() or exit() in a try or catch block will end script execution, and the finally clause will 
not be run.

Final Classes and Methods
Inheritance allows for enormous flexibility within a class hierarchy. You can override a class or method 
so that a call in a client method will achieve radically different effects, according to which class instance 
it has been passed. Sometimes, though, a class or method should remain fixed and unchanging. If you 
have achieved the definitive functionality for your class or method, and you feel that overriding it can only 
damage the ultimate perfection of your work, you may need the final keyword.

final puts a stop to inheritance. A final class cannot be subclassed. Less drastically, a final method 
cannot be overridden.

Here’s a final class:

// listing 04.67
final class Checkout
{
    // ...
}

Here’s an attempt to subclass the Checkout class:

// listing 04.68
class IllegalCheckout extends Checkout
{
    // ...
}



Chapter 4 ■ Advanced Features

78

This produces an error:

PHP Fatal error:  Class IllegalCheckout may not inherit from final class (Checkout) in ....

I could relax matters somewhat by declaring a method in Checkout final, rather than the whole class. 
The final keyword should be placed in front of any other modifiers such as protected or static, like this:

// listing 04.69
class Checkout
{
    final public function totalize()
    {
        // calculate bill
    }
}

I can now subclass Checkout, but any attempt to override totalize() will cause a fatal error:

// listing 04.70
class IllegalCheckout extends Checkout
{
    final public function totalize()
    {
        // change bill calculation
    }
}

PHP Fatal error:  Cannot override final method popp\ch04\batch14\Checkout::totalize() ...

Good object-oriented code tends to emphasize the well-defined interface. Behind the interface, 
though, implementations will often vary. Different classes or combinations of classes conform to common 
interfaces but behave differently in different circumstances. By declaring a class or method final, you limit 
this flexibility. There will be times when this is desirable, and you will see some of them later in the book. 
However, you should think carefully before declaring something final. Are there really no circumstances in 
which overriding would be useful? You could always change your mind later on, of course, but this might not 
be so easy if you are distributing a library for others to use. Use final with care.

The Internal Error Class
Back when exceptions were first introduced, the world of trying and catching applied primarily to code 
written in PHP and not the core engine. Internally generated errors maintained their own logic. This could 
get messy if you wanted to manage core errors in the same way as code-generated exceptions. PHP 7 has 
made a start on addressing this issue with the Error class. This implements Throwable—the same built-in 
interface that the Exception class implements, and therefore it can be treated in the same way. This also 
means the methods described in Table 4-1 are honored. Error is subclassed for individual error types. Here’s 
how you might catch a parse error generated by an eval statement:



Chapter 4 ■ Advanced Features

79

        try {
            eval("illegal code");
        } catch (\Error $e) {
            print get_class($e)."\n";
        } catch (\Exception $e) {
            // do something with an Exception
        }

Here’s the output:

ParseError

So you can match some types of internal errors in catch clauses, either by specifying the Error 
superclass or by specifying a more specific subclass. Table 4-2 shows the current Error subclasses.

■■ Note   At the time of this writing, an attempt to call Error::getMessage() fails with an error, despite the 
fact that this is declared in the Throwable interface. It is likely that this issue will have been fixed by the time 
you read this!

Working with Interceptors
PHP provides built-in interceptor methods that can intercept messages sent to undefined methods and 
properties. This is also known as overloading, but as that term means something quite different in Java and 
C++, I think it is better to talk in terms of interception.

PHP supports three built-in interceptor methods. Like __construct(), these are invoked for you when 
the right conditions are met. Table 4-3 describes the methods.

Table 4-2.  The Built-in Error Classes Introduced by PHP 7

Error Description

ArithmeticError Thrown for math-related errors—particularly those related to bitwise arithmetic

AssertionError Thrown when the assert() language construct (used in debugging) fails

DivisionByZeroError Thrown when an attempt is made to divide a number by zero

ParseError Thrown when a runtime attempt to parse PHP (using eval(), for example) fails

TypeError Thrown when an argument of the wrong type is passed to a method, a method 
returns a value of the wrong type, or an incorrect number of arguments are passed 
to a method



Chapter 4 ■ Advanced Features

80

The __get() and __set() methods are designed for working with properties that have not been 
declared in a class (or its parents).

__get()is invoked when client code attempts to read an undeclared property. It is called automatically 
with a single string argument containing the name of the property that the client is attempting to access. 
Whatever you return from the __get() method will be sent back to the client as if the target property exists 
with that value. Here’s a quick example:

// listing 04.71
class Person
{
    public function __get(string $property)
    {
        $method = "get{$property}";
        if (method_exists($this, $method)) {
            return $this->$method();
        }
    }

    public function getName(): string
    {
        return "Bob";
    }

    public function getAge(): int
    {
        return 44;
    }
}

When a client attempts to access an undefined property, the __get() method is invoked. I have 
implemented __get() to take the property name and construct a new string, prepending the word “get”. I 
pass this string to a function called method_exists(), which accepts an object and a method name and tests 
for method existence. If the method does exist, I invoke it and pass its return value to the client. Assume the 
client requests a $name property:

$p = new Person();
print $p->name;

Table 4-3.  The Interceptor Methods

Method Description

__get($property) Invoked when an undefined property is accessed

__set($property, $value) Invoked when a value is assigned to an undefined property

__isset($property) Invoked when isset() is called on an undefined property

__unset($property) Invoked when unset() is called on an undefined property

__call($method, $arg_array) Invoked when an undefined non-static method is called

__callStatic($method, $arg_array) Invoked when an undefined static method is called



Chapter 4 ■ Advanced Features

81

In this case, the getName() method is invoked behind the scenes:

Bob

If the method does not exist, I do nothing. The property that the user is attempting to access will resolve 
to NULL.

The __isset() method works in a similar way to __get(). It is invoked after the client calls isset() on 
an undefined property. Here’s how I might extend Person:

// listing 04.72
    public function __isset(string $property)
    {
        $method = "get{$property}";
        return (method_exists($this, $method));
    }

Now a cautious user can test a property before working with it:

if (isset($p->name)) {
    print $p->name;
}

The __set() method is invoked when client code attempts to assign to an undefined property. It is 
passed two arguments: the name of the property and the value the client is attempting to set. You can then 
decide how to work with these arguments. Here I further amend the Person class:

// listing 04.73
class Person
{
    private $myname;
    private $myage;

    public function __set(string $property, string $value)
    {
        $method = "set{$property}";
        if (method_exists($this, $method)) {
            return $this->$method($value);
        }
    }

    public function setName(string $name)
    {
        $this->myname = $name;
        if (! is_null($name)) {
            $this->myname = strtoupper($this->myname);
        }
    }



Chapter 4 ■ Advanced Features

82

    public function setAge(int $age)
    {
        $this->myage = $age;
    }
}

In this example, I work with “setter” methods rather than “getters.” If a user attempts to assign to an 
undefined property, the __set() method is invoked with the property name and the assigned value. I test for 
the existence of the appropriate method and invoke it if it exists. In this way, I can filter the assigned value.

■■ Note   Remember that methods and properties in PHP documentation are frequently spoken of in static 
terms in order to identify them with their classes. So you might talk about the Person::$name property, even 
though the property is not declared static and would in fact be accessed via an object.

So if I create a Person object and then attempt to set a property called Person::$name, the __set() 
method is invoked because this class does not define a $name property. The method is passed the string 
"name" and the value that the client assigned. How the value is then used depends on the implementation 
of __set(). In this example, I construct a method name out of the property argument combined with the 
string, "set". The setName() method is found and duly invoked. This transforms the incoming value and 
stores it in a real property:

$p = new Person();
$p->name = "bob";
// the $myname property becomes 'BOB'

As you might expect, __unset() mirrors __set(). When unset() is called on an undefined property, 
__unset() is invoked with the name of the property. You can then do what you like with the information. 
This example passes null to a method resolved using the same technique that you saw used by __set():

// listing 04.74
    public function __unset(string $property)
    {
        $method = "set{$property}";
        if (method_exists($this, $method)) {
            $this->$method(null);
        }
    }

The __call() method is probably the most useful of all the interceptor methods. It is invoked when an 
undefined method is called by client code. __call() is invoked with the method name and an array holding 
all arguments passed by the client. Any value that you return from the __call() method is returned to the 
client as if it were returned by the method invoked.

The __call() method can be useful for delegation. Delegation is the mechanism by which one object 
passes method invocations on to a second. It is similar to inheritance, in that a child class passes on a 
method call to its parent implementation. With inheritance the relationship between child and parent is 
fixed, so the ability to switch the receiving object at runtime means that delegation can be more flexible than 
inheritance. An example clarifies things a little. Here is a simple class for formatting information from the 
Person class:



Chapter 4 ■ Advanced Features

83

// listing 04.75
class PersonWriter
{

    public function writeName(Person $p)
    {
        print $p->getName() . "\n";
    }

    public function writeAge(Person $p)
    {
        print $p->getAge() . "\n";
    }
}

I could, of course, subclass this to output Person data in various ways. Here is an implementation of the 
Person class that uses both a PersonWriter object and the __call() method: 

// listing 04.76
class Person
{
    private $writer;

    public function __construct(PersonWriter $writer)
    {
        $this->writer = $writer;
    }

    public function __call(string $method, array $args)
    {
        if (method_exists($this->writer, $method)) {
            return $this->writer->$method($this);
        }
    }

    public function getName(): string
    {
        return "Bob";
    }
    public function getAge(): int
    {
        return 44;
    }
}

The Person class here demands a PersonWriter object as a constructor argument and stores it in a 
property variable. In the __call() method, I use the provided $method argument, testing for a method of the 
same name in the PersonWriter object I have stored. If I encounter such a method, I delegate the method 
call to the PersonWriter object, passing my current instance to it (in the $this pseudo-variable). Consider 
what happens if the client makes this call to Person:



Chapter 4 ■ Advanced Features

84

$person = new Person(new PersonWriter());
$person->writeName();

In this case, the __call() method is invoked. I find a method called writeName() in my PersonWriter 
object and invoke it. This saves me from manually invoking the delegated method like this:

function writeName() {
    $this->writer->writeName($this);
}

The Person class has magically gained two new methods. Although automated delegation can save a 
lot of legwork, there can be a cost in clarity. If you rely too much on delegation, you present the world with 
a dynamic interface that resists reflection (the runtime examination of class facets) and is not always clear 
to the client coder at first glance. This is because the logic that governs the interaction between a delegating 
class and its target can be obscure—buried in methods like __call() rather than signaled up front by 
inheritance relationships or method type hints, as is the case for similar relationships. The interceptor 
methods have their place, but they should be used with care, and classes that rely on them should document 
this fact very clearly.

I will return to the topics of delegation and reflection later in the book.
The __get() and __set() interceptor methods can also be used to manage composite properties. 

This can be a convenience for the client programmer. Imagine, for example, an Address class that manages 
a house number and a street name. Ultimately this object data will be written to database fields, so the 
separation of number and street is sensible. But if house numbers and street names are commonly acquired 
in undifferentiated lumps, then you might want to help the class’s user. Here is a class that manages a 
composite property, Address::$streetaddress:

// listing 04.77
class Address
{
    private $number;
    private $street;

    public function __construct(string $maybenumber, string $maybestreet = null)
    {
        if (is_null($maybestreet)) {
            $this->streetaddress = $maybenumber;
        } else {
            $this->number = $maybenumber;
            $this->street = $maybestreet;
        }
    }

    public function __set(string $property, string $value)
    {
        if ($property === "streetaddress") {
            if (preg_match("/^(\d+.*?)[\s,]+(.+)$/", $value, $matches)) {
                $this->number = $matches[1];
                $this->street = $matches[2];
            } else {
                throw new \Exception("unable to parse street address: '{$value}'");
            }



Chapter 4 ■ Advanced Features

85

        }
    }

    public function __get(string $property)
    {
        if ($property === "streetaddress") {
            return $this->number . " " . $this->street;
        }
    }
}

// listing 04.78
$address = new Address("441b Bakers Street");
print "street address: {$address->streetaddress}\n";
$address = new Address("15", "Albert Mews");
print "street address: {$address->streetaddress}\n";
$address->streetaddress = "34, West 24th Avenue";
print "street address: {$address->streetaddress}\n";

When a user attempts to set the (nonexistent) Address::$streetaddress property, the interceptor 
method __call() is invoked. There, I test for the property name, streetaddress. Before I can set the 
$number and $street properties, I must first ensure that the provided value can be parsed, and then go 
ahead and extract the fields. For this example, I have set simple rules. An address can be parsed if it begins 
with a number and has spaces or commas ahead of a second part. Thanks to back references, if the check 
passes, I already have the data I’m looking for in the $matches array, and I assign values to the $number 
and $street properties. If the parse fails, I throw an exception. So when a string such as 441b Bakers 
Street is assigned to Address::$streetaddress, it’s actually the $number and $street properties that get 
populated. I can demonstrate this with print_r():

$address = new Address("441b Bakers Street");
print_r($address);

Address Object
(
    [number:Address:private] => 441b
    [street:Address:private] => Bakers Street
)

The __get() method is much more straightforward, of course. Whenever the 
Address::$streetaddress property is accessed, __get() is invoked. In my implementation of this 
interceptor, I test for streetaddress and, if I find a match, I return a concatenation of the $number and 
$street properties.

Defining Destructor Methods
You have seen that the __construct() method is automatically invoked when an object is instantiated. PHP 
5 also introduced the __destruct() method. This is invoked just before an object is garbage-collected; that 
is, before it is expunged from memory. You can use this method to perform any final cleaning up that might 
be necessary.



Chapter 4 ■ Advanced Features

86

Imagine, for example, a class that saves itself to a database when so ordered. I could use the __
destruct() method to ensure that an instance saves its data when it is deleted:

// listing 04.79
class Person
{
    protected $name;
    private   $age;
    private   $id;

    public function __construct(string $name, int $age)
    {
        $this->name = $name;
        $this->age  = $age;
    }

    public function setId(int $id)
    {
        $this->id = $id;
    }

    public function __destruct()
    {
        if (! empty($this->id)) {
            // save Person data
            print "saving person\n";
        }
    }
}

The __destruct() method is invoked whenever a Person object is removed from memory. This will 
happen either when you call the unset() function with the object in question or when no further references 
to the object exist in the process. So if I create and destroy a Person object, you can see the __destruct() 
method come into play:

// listing 04.80
$person = new Person("bob", 44);
$person->setId(343);
unset($person);
// output:
// saving person

Although tricks like this are fun, it’s worth sounding a note of caution. __call(), __destruct(), and 
their colleagues are sometimes called magic methods. As you will know if you have ever read a fantasy novel, 
magic is not always a good thing. Magic is arbitrary and unexpected. Magic bends the rules. Magic incurs 
hidden costs.

In the case of __destruct(), for example, you can end up saddling clients with unwelcome surprises. 
Think about the Person class—it performs a database write in its __destruct() method. Now imagine a 
novice developer idly putting the Person class through its paces. He doesn’t spot the __destruct() method, 
and he sets about instantiating a set of Person objects. Passing values to the constructor, he assigns the 
CEO’s secret and faintly obscene nickname to the $name property, and then sets $age at 150. He runs his test 
script a few times, trying out colorful name and age combinations.



Chapter 4 ■ Advanced Features

87

The next morning, his manager asks him to step into a meeting room to explain why the database 
contains insulting Person data. The moral? Do not trust magic.

Copying Objects with __clone()
In PHP 4, copying an object was a simple matter of assigning from one variable to another:

class CopyMe
{
}
$first = new CopyMe();
$second = $first;
// PHP 4: $second and $first are 2 distinct objects
// PHP 5 plus: $second and $first refer to one object

This “simple matter” was a source of many bugs, as object copies were accidentally spawned when 
variables were assigned, methods were called, and objects were returned. This was made worse by the fact 
that there was no way of testing two variables to see whether they referred to the same object. Equivalence 
tests would tell you whether all fields were the same (==) or whether both variables were objects (===), but 
not whether they pointed to the same object.

In PHP, objects are always assigned and passed around by reference. This means that when my previous 
example is run with PHP 5, $first and $second contain references to the same object instead of two copies. 
Although this is generally what you want when working with objects, there will be occasions when you need 
to get a copy of an object rather than a reference to an object.

PHP provides the clone keyword for just this purpose. clone operates on an object instance, producing 
a by-value copy:

class CopyMe
{
}
$first  = new CopyMe();
$second = clone $first;
// PHP 5 plus: $second and $first are 2 distinct objects

The issues surrounding object copying only start here. Consider the Person class that I implemented in 
the previous section. A default copy of a Person object would contain the identifier (the $id property), which in 
a full implementation I would use to locate the correct row in a database. If I allow this property to be copied, a 
client coder can end up with two distinct objects referencing the same data source, which is probably not what 
she wanted when she made her copy. An update in one object will affect the other, and vice versa.

Luckily, you can control what is copied when clone is invoked on an object. You do this by 
implementing a special method called __clone() (note the leading two underscores that are characteristic 
of built-in methods). __clone() is called automatically when the clone keyword is invoked on an object.

When you implement __clone(),it is important to understand the context in which the method runs. 
__clone() is run on the copied object and not the original. Here I add __clone() to yet another version of 
the Person class:

// listing 04.81
class Person
{
    private $name;



Chapter 4 ■ Advanced Features

88

    private $age;
    private $id;

    public function __construct(string $name, int $age)
    {
        $this->name = $name;
        $this->age = $age;
    }

    public function setId(int $id)
    {
        $this->id = $id;
    }

    public function __clone()
    {
        $this->id = 0;
    }
}

When clone is invoked on a Person object, a new shallow copy is made, and its __clone() method is 
invoked. This means that anything I do in __clone() overwrites the default copy I already made. In this case, 
I ensure that the copied object’s $id property is set to zero:

// listing 04.82
$person = new Person("bob", 44);
$person->setId(343);
$person2 = clone $person;
// $person2 :
//     name: bob
//     age: 44
//     id: 0.

A shallow copy ensures that primitive properties are copied from the old object to the new. Object 
properties, though, are copied by reference, which may not be what you want or expect when cloning an 
object. Say that I give the Person object an Account object property. This object holds a balance that I want 
copied to the cloned object. What I don’t want, though, is for both Person objects to hold references to the 
same account:

// listing 04.83
class Account
{
    public $balance;

    public function __construct(float $balance)
    {
        $this->balance = $balance;
    }
}

// listing 04.84
class Person



Chapter 4 ■ Advanced Features

89

{
    private $name;
    private $age;
    private $id;
    public  $account;

    public function __construct(string $name, int $age, Account $account)
    {
        $this->name = $name;
        $this->age  = $age;
        $this->account = $account;
    }

    public function setId(int $id)
    {
        $this->id = $id;
    }

    public function __clone()
    {
        $this->id   = 0;
    }
}

// listing 04.85
$person = new Person("bob", 44, new Account(200));
$person->setId(343);
$person2 = clone $person;

// give $person some money
$person->account->balance += 10;
// $person2 sees the credit too
print $person2->account->balance;

This gives the following output:

210

$person holds a reference to an Account object that I have kept publicly accessible for the sake 
of brevity (as you know, I would usually restrict access to a property, providing an accessor method, 
if necessary). When the clone is created, it holds a reference to the same Account object that $person 
references. I demonstrate this by adding to the $person object’s Account and confirming the increased 
balance via $person2.

If I do not want an object property to be shared after a clone operation, then it is up to me to clone it 
explicitly in the __clone() method:

    function __clone()
    {
        $this->id   = 0;
        $this->account = clone $this->account;
    }



Chapter 4 ■ Advanced Features

90

Defining String Values for Your Objects
Another Java-inspired feature introduced by PHP 5 was the __toString() method. Before PHP 5.2, when 
you printed an object, it would resolve to a string like this:

// listing 04.86
class StringThing
{
}

// listing 04.87
$st = new StringThing();
print $st;

Object id #1

Since PHP 5.2, this code will produce an error like this:

Object of class popp\ch04\batch22\StringThing could not be converted to string ...

By implementing a __toString() method, you can control how your objects represent themselves 
when printed. __toString() should be written to return a string value. The method is invoked automatically 
when your object is passed to print or echo, and its return value is substituted. Here I add a __toString() 
version to a minimal Person class:

// listing 04.88
class Person
{
    function getName(): string
    {
        return "Bob";
    }

    function getAge(): int
    {
        return 44;
    }

    function __toString(): string
    {
        $desc  = $this->getName() . " (age ";
        $desc .= $this->getAge() . ")";
        return $desc;
    }
}

Now when I print a Person object, the object will resolve to this:

$person = new Person();



Chapter 4 ■ Advanced Features

91

print $person;

Bob (age 44)

The __toString() method is particularly useful for logging and error reporting, as well as for classes 
whose main task is to convey information. The Exception class, for example, summarizes exception data in 
its __toString() method.

Callbacks, Anonymous Functions, and Closures
Although not strictly an object-oriented feature, anonymous functions are useful enough to mention here 
because you may encounter them in object-oriented applications that utilize callbacks.

To kick things off, here are a couple of classes:

// listing 04.89

class Product {
    public $name;
    public $price;

    public function __construct(string $name, float $price)
    {
        $this->name = $name;
        $this->price = $price;
    }
}

class ProcessSale
{
    private $callbacks;

    public function registerCallback(callable $callback)
    {
        if (! is_callable($callback)) {
            throw new Exception("callback not callable");
        }
        $this->callbacks[] = $callback;
    }

    public function sale(Product $product)
    {
        print "{$product->name}: processing \n";
        foreach ($this->callbacks as $callback) {
            call_user_func($callback, $product);
        }
    }
}



Chapter 4 ■ Advanced Features

92

This code is designed to run my various callbacks. It consists of two classes, Product and ProcessSale. 
Product simply stores $name and $price properties. I’ve made these public for the purposes of brevity. 
Remember, in the real world, you’d probably want to make your properties private or protected and provide 
accessor methods. ProcessSale consists of two methods.

The first, registerCallback(), accepts an unhinted scalar, tests it, and adds it to a callback array. The 
test, a built-in function called is_callable(), ensures that whatever I’ve been given can be invoked by a 
function such as call_user_func() or array_walk().

The second method, sale(), accepts a Product object, outputs a message about it, and then loops 
through the $callback array property. It passes each element to call_user_func(), which calls the code, 
passing it a reference to the product. All of the following examples will work with the framework.

Why are callbacks useful? They allow you to plug functionality into a component at runtime that is not 
directly related to that component’s core task. By making a component callback aware, you give others the 
power to extend your code in contexts you don’t yet know about.

Imagine, for example, that a future user of ProcessSale wants to create a log of sales. If the user has 
access to the class, she might add logging code directly to the sale() method. This isn’t always a good idea, 
though. If she is not the maintainer of the package that provides ProcessSale, then her amendments will be 
overwritten the next time the package is upgraded. Even if she is the maintainer of the component, adding 
many incidental tasks to the sale() method will begin to overwhelm its core responsibility, and potentially 
make it less usable across projects. I will return to these themes in the next section.

Luckily, though, I made ProcessSale callback-aware. Here I create a callback that simulates logging:

// listing 04.90
$logger = create_function(
    '$product',
    'print "    logging ({$product->name})\n";'
);

$processor = new ProcessSale();
$processor->registerCallback($logger);

$processor->sale(new Product("shoes", 6));
print "\n";
$processor->sale(new Product("coffee", 6));

I use create_function() to build my callback. As you can see, it accepts two string arguments: first, 
a list of parameters; and second, the function body. The result is often called an anonymous function as 
it’s not named in the manner of a standard function. Instead, it can be stored in a variable and passed to 
functions and methods as a parameter. That’s just what I do, storing the function in the $logger variable 
and passing it to ProcessSale::registerCallback(). Finally, I create a couple of products and pass them 
to the sale() method. You have already seen what happens there. The sale is processed (in reality a simple 
message is printed about the product) and any callbacks are executed. Here is the code in action:

shoes: processing
    logging (shoes)

coffee: processing
    logging (coffee)

Look again at that create_function() example. See how ugly it is? Placing code designed to be executed 
inside a string is always a pain. You need to escape variables and quotation marks, and, if the callback grows 
to any size, it can be very hard to read, indeed. Wouldn’t it be neater if there were a more elegant way of 



Chapter 4 ■ Advanced Features

93

creating anonymous functions? Well, since PHP 5.3, there is a much better way of doing it. You can simply 
declare and assign a function in one statement. Here’s the previous example using the new syntax:

// listing 04.91
$logger2 = function ($product) {
    print "    logging ({$product->name})\n";
};

$processor = new ProcessSale();
$processor->registerCallback($logger2);

$processor->sale(new Product("shoes", 6));
print "\n";
$processor->sale(new Product("coffee", 6));

The only difference here lies in the creation of the anonymous function. As you can see, it’s a lot neater. 
I simply use the function keyword inline, and without a function name. Note that because this is an inline 
statement, a semicolon is required at the end of the code block. The output here is the same as that of the 
previous example.

Of course, callbacks needn’t be anonymous. You can use the name of a function, or even an object 
reference and a method, as a callback. Here I do just that:

// listing 04.92
class Mailer
{
    public function doMail(Product $product)
    {
        print "    mailing ({$product->name})\n";
    }
}

// listing 04.93
$processor = new ProcessSale();
$processor->registerCallback([new Mailer(), "doMail"]);

$processor->sale(new Product("shoes", 6));
print "\n";
$processor->sale(new Product("coffee", 6));

I create a class: Mailer. Its single method, doMail(), accepts a Product object and outputs a 
message about it. When I call registerCallback(), I pass it an array. The first element is a Mailer 
object, and the second is a string that matches the name of the method I want invoked. Remember that 
registerCallback() checks its argument for callability. is_callable() is smart enough to test arrays of this 
sort. A valid callback in array form should have an object as its first element, and the name of a method as its 
second element. I pass that test here, and here is my output:

shoes: process

ing
    mailing (shoes)

coffee: processing
    mailing (coffee)



Chapter 4 ■ Advanced Features

94

You can have a method return an anonymous function—something like this:

// listing 04.94
class Totalizer
{
    public static function warnAmount()
    {
        return function (Product $product) {
            if ($product->price > 5) {
                print "    reached high price: {$product->price}\n";
            }
        };
    }
}

// listing 04.95
$processor = new ProcessSale();
$processor->registerCallback(Totalizer::warnAmount());
// ...

Apart from the convenience of using the warnAmount() method as a factory for the anonymous 
function, I have not added much of interest here. But this structure allows me to do much more than just 
generate an anonymous function. It allows me to take advantage of closures. The new style anonymous 
functions can reference variables declared in the anonymous functions parent scope. This is a hard concept 
to grasp at times. It’s as if the anonymous function continues to remember the context in which it was 
created. Imagine that I want Totalizer::warnAmount() to do two things. First of all, I’d like it to accept 
an arbitrary target amount. Second, I want it to keep a tally of prices as products are sold. When the total 
exceeds the target amount, the function will perform an action (in this case, as you might have guessed, it 
will simply write a message).

I can make my anonymous function track variables from its wider scope with a use clause:

// listing 04.96
class Totalizer2
{
    public static function warnAmount($amt)
    {
        $count=0;
        return function ($product) use ($amt, &$count) {
            $count += $product->price;
            print "   count: $count\n";
            if ($count > $amt) {
                print "   high price reached: {$count}\n";
            }
        };
    }
}

// listing 04.97
$processor = new ProcessSale();
$processor->registerCallback(Totalizer2::warnAmount(8));



Chapter 4 ■ Advanced Features

95

$processor->sale(new Product("shoes", 6));
print "\n";
$processor->sale(new Product("coffee", 6));

The anonymous function returned by Totalizer2::warnAmount() specifies two variables in its use 
clause. The first is $amt. This is the argument that warnAmount() accepted. The second closure variable is 
$count. $count is declared in the body of warnAmount() and set initially to zero. Notice that I prepend an 
ampersand to the $count variable in the use clause. This means the variable will be accessed by reference 
rather than by value in the anonymous function. In the body of the anonymous function, I increment $count 
by the product’s value, and then test the new total against $amt. If the target value has been reached, I output 
a notification.

Here is the code in action:

shoes: processing
   count: 6

coffee: processing
   count: 12

   high price reached: 12

This demonstrates that the callback is keeping track of $count between invocations. Both $count and 
$amt remain associated with the function because they were present to the context of its declaration and 
because they were specified in its use clause.

Anonymous Classes
As of PHP 7 you can declare anonymous classes as well as functions. These are especially useful when you 
need to create and derive an instance from a small class. This is especially useful when the class in question 
is simple and specific to the local context.

Let’s return to our PersonWriter example. I’ll start off by creating an interface this time:

// listing 04.98
interface PersonWriter
{
    public function write(Person $person);
}

Now, here’s a version of the Person class that can use a PersonWriter object:

// listing 04.99
class Person
{
    public function output(PersonWriter $writer)
    {
        $writer->write($this);
    }



Chapter 4 ■ Advanced Features

96

    public function getName(): string
    {
        return "Bob";
    }

    public function getAge(): int
    {
        return 44;
    }
}

The output() method accepts a PersonWriter instance, and then passes an instance of the current class 
to its write() method. In this way, the Person class is nicely insulated from the implementation of the writer.

Moving on to client code, if we need a writer to print name and age values for a Person object, we might 
go ahead and create a class in the usual way. But it’s such a trivial implementation that we could equally 
create a class and pass it to Person at the same time:

// listing 04.100
        $person = new Person();
        $person->output(
            new class implements PersonWriter {
                public function write(Person $person)
                {
                    print $person->getName(). " " . $person->getAge() . "\n";
                }
            }
        );

As you can see, you can declare an anonymous class with the keywords, new class. You can then add 
any extends and implements clauses required before creating the class block.

Anonymous classes do not support closures. In other words, variables declared in a wider scope cannot 
be accessed within the class. However you can pass values to an anonymous class’s constructor. Let’s create 
a slightly more complex PersonWriter:

// listing 04.101
        $person = new Person();
        $person->output(
            new class("/tmp/persondump") implements PersonWriter {
                private $path;

                public function __construct(string $path)
                {
                    $this->path = $path;
                }

                public function write(Person $person)
                {
                    �file_put_contents($this->path, $person->getName(). " " . $person 

->getAge() . "\n");
                }
            }
        );



Chapter 4 ■ Advanced Features

97

I passed a path argument to the constructor. This value was stored in the $path property and eventually 
used by the write() method.

Of course, if your anonymous class begins to grow in size and complexity, it becomes more sensible to 
create a named class in a class file. This is especially true if you find yourself duplicating your anonymous 
class in more than one place.

Summary
In this chapter, we came to grips with PHP’s advanced object-oriented features. Some of these will become 
familiar as you work through the book. In particular, I will return frequently to abstract classes, exceptions, 
and static methods.

In the next chapter, I take a step back from built-in object features and look at classes and functions 
designed to help you work with objects.



99© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_5

CHAPTER 5

Object Tools

As we have seen, PHP supports object-oriented programming through language constructs such as classes 
and methods. The language also provides wider support through functions and classes designed to help you 
work with objects.

In this chapter, we will look at some tools and techniques that you can use to organize, test, and 
manipulate objects and classes.

This chapter will cover the following tools and techniques:

•	 Namespaces: Organize your code into discrete package-like compartments

•	 Include paths: Setting central accessible locations for your library code

•	 Class and object functions: Functions for testing objects, classes, properties, and 
methods

•	 The Reflection API: A powerful suite of built-in classes that provide unprecedented 
access to class information at runtime

PHP and Packages
A package is a set of related classes, usually grouped together in some way. Packages can be used to separate 
parts of a system from one another. Some programming languages formally recognize packages and provide 
them with distinct namespaces. PHP has no native concept of a package, but as of PHP 5.3, it introduced 
namespaces. I’ll look at this feature in the next section. I’ll also take a look at the old way of organizing 
classes into package-like structures.

PHP Packages and Namespaces
Although PHP does not intrinsically support the concept of a package, developers have traditionally used 
both naming schemes and the filesystem to organize their code into package-like structures.

Until PHP 5.3, developers were forced to name their files in a global context. In other words, if you 
named a class ShoppingBasket, it would become instantly available across your system. This caused two 
major problems. First, and most damaging, was the possibility of naming collisions. You might think that this 
is unlikely. After all, all you have to do is remember to give all your classes unique names, right? The trouble 



Chapter 5 ■ Object Tools

100

is, we all rely increasingly on library code. This is a good thing, of course, because it promotes code reuse. 
But assume your project does this:

// listing 05.01
require_once __DIR__ . "/../useful/Outputter.php";

class Outputter
{
    // output data
}

Now assume you incorporate the included file at useful/Outputter.php:

// listing 05.02
class Outputter
{
    //
}

Well, you can guess what will happen, right? This happens:

PHP Fatal error:  Cannot declare class Outputter because the name is already in use in  
/var/popp/src/ch05/batch01/useful/Outputter.php on line 4

Back before the introduction of namespaces, there was a conventional workaround to this problem. The 
answer was to prepend package names to class names, so that class names were guaranteed to be unique:

// listing 05.03

// my/Outputer.php

require_once __DIR__ . "/../useful/Outputter.php";

class my_Outputter
{
    // output data
}

// listing 05.04

// useful/Outputter.php

class useful_Outputter
{
    //
}

The problem here was that, as projects got more involved, class names grew longer and longer. It 
was not an enormous problem, but it resulted in issues with code readability, and made it harder to hold 
classnames in your head while you worked. Many cumulative coding hours were lost to typos.



Chapter 5 ■ Object Tools

101

If you’re maintaining legacy code, you may well still see code that follows this convention. For that 
reason, I’ll return briefly to the old way of handling packages later in this chapter.

Namespaces to the Rescue
PHP 5.3 introduced namespaces. In essence, a namespace is a bucket in which you can place your classes, 
functions, and variables. Within a namespace you can access these items without qualification. From 
outside, you must either import the namespace, or reference it, in order to access the items it contains.

Confused? An example should help. Here I rewrite the previous example using namespaces:

// listing 05.05
namespace my;

require_once __DIR__ . "/../useful/Outputter.php";

class Outputter
{
    // output data
}

// listing 05.06
namespace useful;

class Outputter
{
    //
}

Notice the namespace keyword. As you might expect, this keyword establishes a namespace. If you are 
using this feature, then the namespace declaration must be the first statement in its file. I have created two 
namespaces: my and useful. Typically, though, you’ll want to have deeper namespaces. You’ll start with an 
organization or project identifier. Then you’ll want to further qualify this by package. PHP lets you declare 
nested namespaces. To do this, you simply use a backslash character to divide each level:

// listing 05.07
namespace popp\ch05\batch04\util;

class Debug
{
    public static function helloWorld()
    {
        print "hello from Debug\n";
    }
}

You will typically use a name related to a product or organisation to define a repository. I might use 
one of my domains: getinstance.com, for example. Because a domain name is unique to its owner, this is a 
trick that Java developers typically use for their package names. They invert domain names so that they run 
from the most generic to the most specific. Alternatively, I might use the namespace I have chosen for code 
examples in this book: popp, for the book name. Once I’ve identified my repository, I might go on to define 
packages. In this case, I use the chapter and then a numbered batch. This allows me to organise groups of 



Chapter 5 ■ Object Tools

102

examples into discrete buckets. So at this point in the chapter, I am at popp\ch05\batch04. Finally, I can 
further organise code by category. I’ve gone with util.

So how would I call the method? In fact, it depends where you’re doing the calling from. If you are 
calling the method from within the namespace, you can go ahead and call the method directly:

Debug::helloWorld();

This is known as an unqualified name. Because I’m already in the popp\ch05\batch04\util 
namespace, I don’t have to prepend any kind of path to the class name. If I were accessing the class from 
outside of a namespaced context, I could do this:

\popp\ch05\batch04\Debug::helloworld();

What output would I get from the following code:

namespace main;

popp\ch05\batch04\Debug::helloworld();

That’s a trick question. In fact, this is my output:

PHP Fatal error:  Class 'popp\ch05\batch04\Debug' not found in...

That’s because I’m using a relative namespace here. PHP is looking below the namespace main for 
popp\ch05\batch04\util and not finding it. Just as you can make absolute URLs and filepaths by starting off 
with a separator, so you can with namespaces. This version of the example fixes the previous error:

namespace main;

\popp\ch05\batch04\Debug::helloworld();

That leading backslash tells PHP to begin its search at the root, and not from the current namespace.
But aren’t namespaces supposed to help you cut down on typing? The Debug class declaration is 

shorter, certainly, but those calls are just as wordy as they would have been with the old naming convention. 
You can get around this with the use keyword. This allows you to alias other namespaces within the current 
namespace. Here’s an example:

namespace main;
use popp\ch05\batch04\util;
util\Debug::helloWorld();

The popp\ch05\batch04\util namespace is imported and implicitly aliased to util. Notice that I 
didn’t begin with a leading backslash character. The argument to use is searched from global space and not 
from the current namespace. If I don’t want to reference a namespace at all, I can import the Debug class 
itself:

namespace main;
use popp\ch05\batch04\util\Debug;
Debug::helloWorld();



Chapter 5 ■ Object Tools

103

This is the convention that is most often used. But what would happen if I already had a Debug class in 
the calling namespace? Here is such a class:

// listing 05.08
namespace popp\ch05\batch04;

class Debug
{
    public static function helloWorld()
    {
        print "hello from popp\\ch05\\batch04\\Debug\n";
    }
}

And here is some calling code from the popp\ch05\batch04 namespace which references both Debug 
classes:

namespace popp\ch05\batch04;

use popp\ch05\batch04\util\Debug;
use popp\ch05\batch04\Debug;

Debug::helloWorld();

As you might expect, this causes a fatal error:

PHP Fatal error:  Cannot use popp\ch05\batch04\Debug as Debug because the name is already 
in use in...

So I seem to have come full circle, arriving back at class name collisions. Luckily, there’s an answer for 
this problem. I can make my alias explicit:

namespace main;

use popp\ch05\batch04\Debug as coreDebug;
coreDebug::helloWorld();

By using the as clause to use, I am able to change the Debug alias to coreDebug.
If you are writing code in a namespace, and you want to access a class that resides in global  

(non-namespaced) space, you can simply precede the name with a backslash. Here’s a class declared in 
global space:

// listing 05.09
class Lister
{
    public static function helloWorld()
    {
        print "hello from global\n";
    }
}



Chapter 5 ■ Object Tools

104

And here’s some namespaced code:

// listing 05.10
namespace popp\ch05\batch04\util;

class Lister
{
    public static function helloWorld()
    {
        print "hello from " . __NAMESPACE__ . "\n";
    }
}

// listing 05.11
namespace popp\ch05\batch04;

Lister::helloWorld();  // access local
\Lister::helloWorld(); // access global

The namespaced code declares its own Lister class. The client code, in the same namespace, uses an 
unqualified name to access the local version. A name qualified with a single backslash accesses a class in 
global space.

Here’s the output from the previous fragment:

hello from popp\ch05\batch04\util
hello from global

It’s worth showing because it demonstrates the operation of the __NAMESPACE__ constant. This will 
output the current namespace, and it’s useful in debugging.

You can declare more than one namespace in the same file using the syntax you have already seen. You 
can also use an alternative syntax that uses braces with the namespace keyword:

// listing 05.12
namespace com\getinstance\util {

    class Debug
    {
        public static function helloWorld()
        {
            print "hello from Debug\n";
        }
    }
}

namespace other {

    \com\getinstance\util\Debug::helloWorld();
}



Chapter 5 ■ Object Tools

105

If you must combine multiple namespaces in the same file, then this is the recommended practice. 
Usually, however, it’s considered best practice to define namespaces on a per-file basis.

■■ Note  You can’t use both the brace and line namespace syntaxes in the same file. You must choose one and 
stick to it throughout.

Using the File System to Simulate Packages
Whichever version of PHP you use, you should organize classes using the file system, which affords a kind of 
package structure. For example, you might create util and business directories and include class files with 
the require_once() statement, like this:

require_once('business/Customer.php');
require_once('util/WebTools.php');

You could also use include_once() with the same effect. The only difference between the include() 
and require() statements lies in their handling of errors. A file invoked using require() will bring down 
your entire process when you meet an error. The same error encountered via a call to include() will merely 
generate a warning and end execution of the included file, leaving the calling code to continue. This makes 
require() and require_once() the safe choice for including library files, and include() and include_
once() useful for operations like templating.

■■ Note  require() and require_once() are actually statements, not functions. This means that you can 
omit the brackets when using them. Personally, I prefer to use brackets anyway, but if you follow suit, be 
prepared to be bored by pedants eager to explain your mistake.

Figure 5-1 shows the util and business packages from the point of view of the Nautilus file manager.

Figure 5-1.  PHP packages organized using the file system



Chapter 5 ■ Object Tools

106

■■ Note  require_once() accepts a path to a file and includes it evaluated in the current script. The function 
will only incorporate its target if it has not already been incorporated elsewhere. This one-shot approach is 
particularly useful when accessing library code because it prevents the accidental redefinition of classes and 
functions. This can happen when the same file is included by different parts of your script in a single process 
using a function like require() or include().

It is customary to use require() and require_once() in preference to the similar include() and  
include_once() functions. This is because a fatal error encountered in a file accessed with the require() 
functions takes down the entire script. The same error encountered in a file accessed using the include() 
functions will cause the execution of the included file to cease, but will only generate a warning in the calling 
script. The former, more drastic behavior, is safer.

There is an overhead associated with the use of require_once() when compared with require(). If you need 
to squeeze every last millisecond out of your system, you may like to consider using require() instead. As is 
so often the case, this is a tradeoff between efficiency and convenience.

As far as PHP is concerned, there is nothing special about this structure. You are simply placing library 
scripts in different directories. It does lend itself to clean organization, and can be used in parallel with either 
namespaces or a naming convention.

Naming the PEAR Way
Back before namespaces were introduced, developers were forced to resort to conventions in order to avoid 
class name collisions. The most common of these, as we have seen, was the fake namespacing maintained 
by PEAR developers.

■■ Note PEAR  stands for the PHP Extension and Application Repository. It is an officially maintained archive 
of packages and tools that add to PHP’s functionality. Core PEAR packages are included in the PHP distribution, 
and others can be added using a simple command-line tool. You can browse the PEAR packages at  
http://pear.php.net.

PEAR uses the file system to define its packages as I have described. Before namespaces were 
introduced, every class was named according to its package path, with each directory name separated by an 
underscore character.

For example, PEAR includes a package called XML, which has an RPC subpackage. The RPC package 
contains a file called Server.php. The class defined inside Server.php is not called Server, as you might 
expect. Without namespaces, that would sooner or later clash with another Server class elsewhere in the 
PEAR project or in a user’s code. Instead, the class is named XML_RPC_Server. This approach made for 
unattractive class names. It did, however, make code easy to read because a class name always described its 
own context.

http://pear.php.net/


Chapter 5 ■ Object Tools

107

Include Paths
When you organize your components, there are two perspectives that you should bear in mind. I have 
covered the first, where files and directories are placed on the filesystem. But you should also consider the 
way that components access one another. I have glossed over the issue of include paths so far in this section. 
When you include a file, you could refer to it using a relative path from the current working directory or an 
absolute path on the file system.

■■ Note A lthough it is important to understand the way that include paths work and the issues involved in 
requiring files, it is also important to bear in mind that many modern systems no longer rely upon require 
statements at the class level. Instead, they use a combination of autoload and namespaces. I will cover autoload 
below, and then look in more detail at practical autoload recommendations and tools in Chapters 15 and 16.

The examples you have seen so far have occasionally specified a fixed relationship the requiring and 
required files:

require_once(__DIR__ . '/../useful/Outputter.php');

This works quite nicely, except that it hardcodes the relationship between files. There must always be a 
useful directory alongside the calling class’s containing directory.

Perhaps the worst approach is the tortuous relative path:

require_once('../../projectlib/business/User.php');

This is problematic because the path specified here is not relative to the file that contains this require_once 
statement, but to a configured calling context (often, but not always, the current working directory). Paths 
like this are a recipe for confusion (and in my experience almost always a sign that a system will need 
considerable improvement in other areas, too).

You could use an absolute path, of course:

require_once('/home/john/projectlib/business/User.php');

This will work for a single instance—but it’s brittle. By specifying paths in this much detail, you freeze 
the library file into a particular context. Whenever you install the project on a new server, all require 
statements will need changing to account for a new file path. This can make libraries hard to relocate and 
impractical to share among projects without making copies. In either case, you lose the package idea in all 
the additional directories. Is it the business package, or is it the projectlib/business package?

If you must manually include files in your code, the neatest approach is to decouple the invoking code 
from the library:

business/User.php

The preceding snippet can be referenced from anywhere on a system. You can do this with the include 
path. This is a list of directories that PHP searches when attempting to require a file. You can add to this list by 
altering the include_path directive. include_path is usually set in PHP’s central configuration file, php.ini. 
It defines a list of directories separated by colons on Unix-like systems and semicolons on Windows systems:

include_path = ".:/usr/local/lib/php-libraries"

http://dx.doi.org/10.1007/978-1-4842-1996-6_15
http://dx.doi.org/10.1007/978-1-4842-1996-6_16


Chapter 5 ■ Object Tools

108

If you’re using Apache, you can also set include_path in the server application’s configuration file 
(usually called httpd.conf) or a per-directory Apache configuration file (usually called .htaccess) with this 
syntax:

php_value  include_path  value    .:/usr/local/lib/php-libraries

■■ Note  .htaccess files are particularly useful in web space provided by some hosting companies, which 
provide very limited access to the server environment.

When you use a filesystem function such as fopen() or require() with a nonabsolute path that 
does not exist relative to the current working directory, the directories in the include path are searched 
automatically, beginning with the first in the list (in the case of fopen(), you must include a flag in its 
argument list to enable this feature). When the target file is encountered, the search ends, and the file 
function completes its task.

So by placing a package directory in an include directory, you need only refer to packages and files in 
your require() statements.

require_once("business/User.php");

You may need to add a directory to the include_path so that you can maintain your own library 
directory. To do this, you can edit the php.ini file (remember that, for the PHP server module, you will need 
to restart your server for the changes to take effect).

If you do not have the privileges necessary to work with the php.ini file, you can set the include path 
from within your scripts using the set_include_path() function. set_include_path() accepts an include 
path (as it would appear in php.ini) and changes the include_path setting for the current process only. The 
php.ini file probably already defines a useful value for include_path, so rather than overwrite it, you can 
access it using the get_include_path() function and append your own directory. Here’s how you can add a 
directory to the current include path:

set_include_path(get_include_path() . PATH_SEPARATOR . "/home/john/phplib/");

The PATH_SEPARATOR constant will resolve to a colon on a Unix system and a semicolon on a Windows 
platform. So, for reasons of portability, its use is considered best practice.

Autoload
Although it’s neat to use require_once in conjunction with the include path, many developers are doing 
away with require statements altogether at a high level and relying instead on autoload.

To do this, you should organize your classes so that each sits in its own file. Each class file should bear 
a fixed relationship to the name of the class it contains, so you might define a ShopProduct class in a file 
named ShopProduct.php with directories corresponding to elements of the class’s namespace.

PHP 5 introduced autoload functionality to help automate the inclusion of class files. The default 
support is pretty basic but still useful. It can be invoked by calling a function named spl_autoload_
register() with no arguments. If autoload functionality has been activated in this way, a special function 
named spl_autoload() will be invoked whenever an attempt is made to instantiate an unknown class. The 
spl_autoload() function will be passed the name of the class, and it will attempt to use this name (converted 
to lower case), together with a file extension (php or inc by default) to include the relevant class file.



Chapter 5 ■ Object Tools

109

Here’s a simple example:

spl_autoload_register();
$writer = new Writer();

Assuming I have not already included a file containing a Writer object, this instantiation looks bound 
to fail. However, because I have set up autoloading, PHP will attempt to include a file named writer.php or 
writer.inc, and will then try the instantiation a second time. If one of these files exists, and contains a class 
named Writer, then all will be well.

This default behavior supports namespaces, substituting directory names for each package:

spl_autoload_register();
$writer = new util\Writer();

The preceding code will find a file named writer.php (note the lowercase name) in a directory  
named util.

What if I happen to name my class files case-dependently? That is, what if I name them with the 
capital letters preserved? If I had placed the Writer class in a file named Writer.php, then the default 
implementation would have failed to find it.

Luckily, I can register my own custom function to handle different sets of conventions. In order to take 
advantage of this, I must pass a reference to a custom function to spl_autoload_register(). My autoload 
function should require a single argument. Then, if the PHP engine encounters an attempt to instantiate 
an unknown class, it will invoke this function, passing it the unknown class name as a string. It is up to 
the autoload function to define a strategy for locating and then including the missing class file. Once the 
autoload function has been invoked, PHP will attempt to instantiate the class once again.

Here’s a simple autoload function, together with a class to load:

// listing 05.13
class Blah
{
    public function wave()
    {
        print "saying hi from root";
    }
}

// listing 05.14
$basic = function ($classname) {
    $file = __DIR__ . "/" . "{$classname}.php";
    if (file_exists($file)) {
        require_once($file);
    }
};

\spl_autoload_register($basic);

$blah = new Blah();
$blah->wave();



Chapter 5 ■ Object Tools

110

Having failed to instantiate Blah initially, the PHP engine will see that I have registered an autoload 
function with spl_register_function() and pass it the string, "Blah". My implementation simply attempts 
to include the file Blah.php. This will only work, of course, if the file is in the same directory as the file in 
which the autoload function was declared. In a real-world example, I would have to combine include path 
configuration with my autoload logic (this is precisely what Composer’s autoload implementation does).

If I want to provide old school support, I might automate PEAR package includes:

// listing 05.15

class util_Blah
{
    public function wave()
    {
        print "saying hi from underscore file";
    }
}

// listing 05.16

$underscores = function ($classname) {
    $path = str_replace('_', DIRECTORY_SEPARATOR, $classname);
    $path = __DIR__ . "/$path";
    if (file_exists("{$path}.php")) {
        require_once("{$path}.php");
    }
};

\spl_autoload_register($underscores);

$blah = new util_Blah();
$blah->wave();

As you can see, the autoload function matches underscores in the supplied $classname and replaces 
each with the DIRECTORY_SEPARATOR character (/ on Unix systems). I attempt to include the class file  
(util/Blah.php). If the class file exists, and the class it contains has been named correctly, the object 
should be instantiated without an error. Of course, this does require the programmer to observe a naming 
convention that forbids the underscore character in a class name, except where it divides up packages.

What about namespaces? We’ve seen that the default autoload functionality supports namespaces. But 
if we override that default, it’s up to us to provide namespace support. This is just a matter matching and 
replacing backslash characters:

// listing 05.17
namespace util;

class LocalPath
{
    public function wave()
    {
        print "hello from ".get_class();
    }
}



Chapter 5 ■ Object Tools

111

// listing 05.18
$namespaces = function ($path) {
    if (preg_match('/\\\\/', $path)) {
        $path = str_replace('\\', DIRECTORY_SEPARATOR, $path);
    }
    if (file_exists("{$path}.php")) {
        require_once("{$path}.php");
    }
};

\spl_autoload_register($namespaces);
$obj = new util\LocalPath();
$obj->wave();

The value that is passed to the autoload function is always normalized to a fully qualified name, without 
a leading backslash, so there is no need to worry about aliasing or relative namespaces at the point of 
instantiation.

What if I wanted to support both PEAR-style class names and namespaces? I could combine my 
autoload implementations into a single custom function. Or, I could use the fact that spl_autoload_
register() stacks its autoload functions:

// listing 05.19
\spl_autoload_register($namespaces);
\spl_autoload_register($underscores);

$blah = new util_Blah();
$blah->wave();

$obj = new util\LocalPath();
$obj->wave();

When it encounters an unknown class, the PHP engine will invoke the autoload functions in turn, 
stopping when instantiation is possible, or when the all options have been exhausted.

There is obviously an overhead to this kind of stacking, so why does PHP support it? In a real world 
project, you’d likely combine the namespace and underscore strategies into a single function. However, 
components in large systems and in third-party libraries may need to register their own autoload 
mechanisms. Stacking allows multiple parts of a system to register autoload strategies independently, 
without overwriting one another. In fact, a library that only needs an autoload mechanism briefly can pass 
the name of its custom autoload function (or a reference to it, if the function is anonymous) to  
spl_autoload_unregister() to clean up after itself!

■■ Note PHP  supports __autoload(), a less powerful mechanism for managing automatic file includes. If you 
provide an implementation of the __autoload() function, PHP will call your function when it fails to locate a 
class. However, because this approach only supports http://www.php.net/spl_autoload_register, a single 
autoload function without stacking, it may be deprecated in future versions of PHP.

http://www.php.net/spl_autoload_register


Chapter 5 ■ Object Tools

112

The Class and Object Functions
PHP provides a powerful set of functions for testing classes and objects. Why is this useful? After all, you 
probably wrote most of the classes you are using in your script.

In fact, you don’t always know at runtime about the classes that you are using. You may have designed 
a system to work transparently with third-party bolt-on classes, for example. In this case, you will typically 
instantiate an object given only a class name. PHP allows you to use strings to refer to classes dynamically, 
like this:

// listing 05.20
namespace tasks;

class Task
{
    public function doSpeak()
    {
        print "hello\n";
    }
}

// listing 05.21
$classname = "Task";
require_once("tasks/{$classname}.php");
$classname = "tasks\\$classname";
$myObj = new $classname();
$myObj->doSpeak();

This script might acquire the string I assign to $classname from a configuration file or by comparing a 
web request with the contents of a directory. You can then use the string to load a class file and instantiate an 
object. Notice that I’ve constructed a namespace qualification in this fragment.

Typically, you would do something like this when you want your system to be able to run user-created 
plug-ins. Before you do anything as risky as that in a real project, you would have to check that the class 
exists, that it has the methods you are expecting, and so on.

■■ Note E ven with safeguards in place, you should be extremely wary of dynamically installing third-party plug-in 
code. You should never automatically run code uploaded by users. Any plug-in so installed would typically execute 
with the same privileges as your core code, so a malicious plug-in author could wreak havoc on your system.

This isn’t to say that plug-ins aren’t a fine idea. Allowing third-party developers to enhance a core system can 
offer great flexibility. To ensure greater security, you might support a directory for plug-ins, but require that 
the code files be installed by a system’s administrator, either directly or from within a password-protected 
management environment. The administrator would either personally check the plug-in code before installation 
or would source plug-ins from a reputable repository. This is the way that the popular blogging platform, 
WordPress, handles plug-ins.

Some class functions have been superseded by the more powerful Reflection API, which I will examine 
later in the chapter. Their simplicity and ease of use make them a first port of call in some instances, however.



Chapter 5 ■ Object Tools

113

Looking for Classes
The class_exists() function accepts a string representing the class to check for and returns a Boolean true 
value if the class exists and false otherwise.

Using this function, I can make the previous fragment a little safer:

// listing 05.22
$base = __DIR__;
$classname = "Task";
$path = "{$base}/tasks/{$classname}.php";
if (! file_exists($path)) {
    throw new \Exception("No such file as {$path}");
}
require_once($path);
$qclassname = "tasks\\$classname";
if (! class_exists($qclassname)) {
    throw new Exception("No such class as $qclassname");
}
$myObj = new $qclassname();
$myObj->doSpeak();

Of course, you can’t be sure that the class in question does not require constructor arguments. For 
that level of safety, you would have to turn to the Reflection API, covered later in the chapter. Nevertheless, 
class_exists() does allow you to check that the class exists before you work with it.

■■ Note R emember, as stated previously, you should always be wary of any data provided by outside sources. 
Test it and treat it before using it in any way. In the case of a file path, you should escape or remove dots and 
directory separators to prevent an unscrupulous user from changing directories and including unexpected files. 
However, when I describe ways of building systems that are easily extensible, these techniques generally cover 
a deployment’s owner (with the write privileges that implies), and not her external users.

You can also get an array of all classes defined in your script process using the get_declared_classes() 
function:

print_r(get_declared_classes());

This will list user-defined and built-in classes. Remember that it only returns the classes declared at 
the time of the function call. You may run require() or require_once() later on, and thereby add to the 
number of classes in your script.

Learning About an Object or Class
As you know, you can constrain the object types of method arguments using class type hinting. Even with 
this tool, you can’t always be certain of an object’s type.



Chapter 5 ■ Object Tools

114

There are a number of basic tools available to check the type of an object. First of all, you can check the 
class of an object with the get_class() function. This accepts any object as an argument and returns its 
class name as a string:

// listing 05.23
$product = self::getProduct();
if (get_class($product) === 'popp\ch05\batch05\CdProduct') {
    print "\$product is a CdProduct object\n";
}

In the fragment, I acquire something from the getProduct() function. To be absolutely certain that it is 
a CdProduct object, I use the get_class() method.

■■ Note  I covered the CdProduct and BookProduct classes in Chapter 3.

Here’s the getProduct() function:

// listing 05.24
    public static function getProduct()
    {
        return new CdProduct(
            "Exile on Coldharbour Lane",
            "The",
            "Alabama 3",
            10.99,
            60.33
        );
    }

getProduct() simply instantiates and returns a CdProduct object. I will make good use of this function 
in this section.

The get_class() function is a very specific tool. You often want a more general confirmation of a class’s 
type. You may want to know that an object belongs to the ShopProduct family, but you don’t care whether its 
actual class is BookProduct or CdProduct. To this end, PHP provides the instanceof operator.

■■ Note PHP  4 did not support instanceof. Instead, it provided the is_a() function, which was deprecated in 
PHP 5.0 but restored to the fold with PHP 5.3.

The instanceof operator works with two operands, the object to test on the left of the keyword and the 
class or interface name on the right. It resolves to true if the object is an instance of the given type:

// listing 05.25
$product = self::getProduct();
if ($product instanceof \popp\ch05\batch05\CdProduct) {
    print "\$product is an instance of CdProduct\n";
}

http://dx.doi.org/10.1007/978-1-4842-1996-6_3


Chapter 5 ■ Object Tools

115

Getting a Fully Qualified String Reference to a Class
Namespaces have cleaned up much that was ugly about object-oriented PHP. We no longer have to tolerate 
ridiculously long class names or risk naming collisions (legacy code aside). On the other hand, with aliasing 
and with relative namespace references, it can be a chore to resolve some class paths so that they are fully 
qualified.

Here are some examples of hard-to-resolve class names:

namespace mypackage;

use util as u;
use util\db\Querier as q;
class Local {}

// Resolve these:

// Aliased namespace
//  u\Writer;

// Aliased class
//  q;

// Class referenced in local context
//  Local

It’s not too hard to work out how these class references resolve, but it would be a pain to write code to 
capture every possibility. Given u\Writer, for example, an automated resolver would need to know that u is 
aliased to util and is not a namespace in its own right. Helpfully, PHP 5.5 introduced the ClassName::class 
syntax. In other words, given a class reference, you can append a scope resolution operator and the class 
keyword to get the fully qualified class name:

print u\Writer::class . "\n";
print q::class . "\n";
print Local::class . "\n";

The preceding snippet outputs this:

util\Writer
util\db\Querier
mypackage\Local

Learning About Methods
You can acquire a list of all the methods in a class using the get_class_methods() function. This requires a 
class name and returns an array containing the names of all the methods in the class:

print_r(get_class_methods('\\popp\\ch04\\batch02\\BookProduct'));



Chapter 5 ■ Object Tools

116

Assuming the BookProduct class exists, you might see something like this:

Array
(
    [0] => __construct
    [1] => getNumberOfPages
    [2] => getSummaryLine
    [3] => getPrice
    [4] => setID
    [5] => getProducerFirstName
    [6] => getProducerMainName
    [7] => setDiscount
    [8] => getDiscount
    [9] => getTitle
    [10] => getProducer
    [11] => getInstance
)

In the example, I pass a class name to get_class_methods() and dump the returned array with the 
print_r() function. I could alternatively have passed an object to get_class_methods() with the same 
result. Only the names of public methods will be included in the returned list.

As you have seen, you can store a method name in a string variable and invoke it dynamically together 
with an object, like this:

// listing 05.26
$product = self::getProduct(); // acquire an object
$method = "getTitle";          // define a method name
print $product->$method();     // invoke the method

Of course, this can be dangerous. What happens if the method does not exist? As you might expect, your 
script will fail with an error. You have already encountered one way of testing that a method exists:

if (in_array($method, get_class_methods($product))) {
  print $product->$method(); // invoke the method
}

I check that the method name exists in the array returned by get_class_methods() before invoking it. 
PHP provides more specialized tools for this purpose. You can check method names to some extent with 
two functions: is_callable() and method_exists(). is_callable() is the more sophisticated of the two 
functions. It accepts a string variable representing a function name as its first argument and returns true if 
the function exists and can be called. To apply the same test to a method, you should pass it an array in place 
of the function name. The array must contain an object or class name as its first element and the method 
name to check as its second element. The function will return true if the method exists in the class:

// listing 05.27
if (in_array($method, get_class_methods($product))) {
    print $product->$method(); // invoke the method
}

is_callable() optionally accepts a second argument, a Boolean. If you set this to true, the function 
will only check the syntax of the given method or function name, not for its actual existence.



Chapter 5 ■ Object Tools

117

The method_exists() function requires an object (or a class name) and a method name, and returns 
true if the given method exists in the object’s class:

// listing 05.28
if (method_exists($product, $method)) {
    print $product->$method(); // invoke the method
}

■■ Caution R emember that the fact that a method exists does not mean that it will be callable.  
method_exists() returns true for private and protected methods, as well as for public ones.

Learning About Properties
Just as you can query the methods of a class, so can you query its fields. The get_class_vars() function 
requires a class name and returns an associative array. The returned array contains field names as its keys 
and field values as its values. Let’s apply this test to the CdProduct object. For the purposes of illustration, we 
add a public property to the class, CdProduct::$coverUrl:

print_r(get_class_vars('\\popp\\ch05\\batch05\\CdProduct'));

Only the public property is shown:

Array
(
    [coverUrl] => cover url
)

Learning About Inheritance
The class functions also allow us to chart inheritance relationships. We can find the parent of a class, for 
example, with get_parent_class(). This function requires either an object or a class name, and it returns 
the name of the superclass, if any. If no such class exists—that is, if the class we are testing does not have a 
parent—then the function returns false.

print get_parent_class('\\popp\\ch04\\batch02\\BookProduct');

As you might expect, this yields the parent class: ShopProduct.
We can also test whether a class is a descendent of another using the is_subclass_of() function. This 

requires a child object (or the name of a class) and the name of the parent class. The function returns true if 
the second argument is a superclass of the first argument:

// listing 05.29
$product = self::getBookProduct(); // acquire an object

if (is_subclass_of($product, '\\popp\\ch04\\batch02\\ShopProduct')) {
    print "BookProduct is a subclass of ShopProduct\n";
}



Chapter 5 ■ Object Tools

118

is_subclass_of() will tell you only about class inheritance relationships. It will not tell you that a class 
implements an interface. For that, you should use the instanceof operator. Or, you can use a function that 
is part of the SPL (Standard PHP Library). class_implements() accepts a class name or an object reference, 
and returns an array of interface names:

// listing 05.30
if (in_array('someInterface', class_implements($product))) {
    print "BookProduct is an interface of someInterface\n";
}

Method Invocation
You have already encountered an example in which I used a string to invoke a method dynamically:

$product = getProduct();   // acquire an object
$method = "getTitle";      // define a method name
print $product->$method(); // invoke the method

PHP also provides the call_user_func() method to achieve the same end. call_user_func() can 
invoke either methods or functions. To invoke a function, it requires a single string as its first argument:

$returnVal = call_user_func("myFunction");

To invoke a method, it requires an array. The first element of this should be an object, and the second 
should be the name of the method to invoke:

$returnVal = call_user_func([$myObj, "methodName"]);

You can pass any arguments that the target method or function requires in additional arguments to 
call_user_func(), like this:

// listing 05.31
$product = self::getBookProduct(); // Acquire a BookProduct object
call_user_func([$product, 'setDiscount'], 20);

This dynamic call is, of course, equivalent to this:

$product->setDiscount(20);

The call_user_func() method won’t change your life greatly because you can equally use a string 
directly in place of the method name, like this:

$method = "setDiscount";
$product->$method(20);

Much more impressive, though, is the related call_user_func_array() function. This operates in the 
same way as call_user_func(), as far as selecting the target method or function is concerned. Crucially, 
though, it accepts any arguments required by the target method as an array.



Chapter 5 ■ Object Tools

119

■■ Note B eware—arguments passed to a function or method using call_user_func() are not passed by 
reference.

So why is this useful? Occasionally you are given arguments in array form. Unless you know in advance 
the number of arguments you are dealing with, it can be difficult to pass them on. In Chapter 4, I looked at 
the interceptor methods that can be used to create delegator classes. Here’s a simple example of a __call() 
method:

// listing 05.32
    public function __call($method, $args)
    {
        if (method_exists($this->thirdpartyShop, $method)) {
            return $this->thirdpartyShop->$method();
        }
    }

As you have seen, the __call() method is invoked when an undefined method is called by client code. 
In this example, I maintain an object in a property called $thirdpartyShop. If I find a method in the stored 
object that matches the $method argument, I invoke it. I blithely assume that the target method does not 
require any arguments, which is where my problems begin. When I write the __call() method, I have no 
way of telling how large the $args array may be from invocation to invocation. If I pass $args directly to the 
delegate method, I will pass a single array argument, and not the separate arguments it may be expecting. 
call_user_func_array() solves the problem perfectly:

// listing 05.33
    public function __call($method, $args)
    {
        if (method_exists($this->thirdpartyShop, $method)) {
            return call_user_func_array(
                [
                     $this->thirdpartyShop,
                     $method
                ],
                $args
            );
        }
    }

The Reflection API
PHP’s Reflection API is to PHP what the java.lang.reflect package is to Java. It consists of built-in classes 
for analyzing properties, methods, and classes. It’s similar in some respects to existing object functions, 
such as get_class_vars(), but is more flexible and provides much greater detail. It’s also designed to work 
with PHP’s object-oriented features, such as access control, interfaces, and abstract classes, in a way that the 
older, more limited class functions are not.

http://dx.doi.org/10.1007/978-1-4842-1996-6_4


Chapter 5 ■ Object Tools

120

Getting Started
The Reflection API can be used to examine more than just classes. For example, the ReflectionFunction 
class provides information about a given function, and ReflectionExtension yields insight about an 
extension compiled into the language. Table 5-1 lists some of the classes in the API.

Between them, the classes in the Reflection API provide unprecedented runtime access to information 
about the objects, functions, and extensions in your scripts.

The Reflection API’s power and reach mean you should usually use it in preference to the class and 
object functions. You will soon find it indispensable as a tool for testing classes. You might want to generate 
class diagrams or documentation, for example, or you might want to save object information to a database, 
examining an object’s accessor (getter and setter) methods to extract field names. Building a framework that 
invokes methods in module classes according to a naming scheme is another use of Reflection.

Time to Roll up Your Sleeves
You have already encountered some functions for examining the attributes of classes. These are useful but 
often limited. Here’s a tool that is up to the job. ReflectionClass provides methods that reveal information 
about every aspect of a given class, whether it’s a user-defined or internal class. The constructor of 
ReflectionClass accepts a class or interface name (or an object instance) as its sole argument:

// listing 05.34
$prodclass = new \ReflectionClass('popp\\ch04\\batch02\\CdProduct');
\Reflection::export($prodclass);

Once you’ve created a ReflectionClass object, you can use the Reflection utility class to dump 
information about CdProduct. Reflection has a static export() method that formats and dumps the data 

Table 5-1.  Some of the Classes in the Reflection API

Class Description

Reflection Provides a static export() method for summarizing class 
information

ReflectionClass Class information and tools

ReflectionMethod Class method information and tools

ReflectionParameter Method argument information

ReflectionProperty Class property information

ReflectionFunction Function information and tools

ReflectionExtension PHP extension information

ReflectionException An error class

ReflectionZendExtension PHP Zend extension information



Chapter 5 ■ Object Tools

121

managed by a Reflection object (that is, any instance of a class that implements the Reflector interface, to 
be pedantic). Here’s an abridged extract from the output generated by a call to Reflection::export():

Class [ <user> class popp\ch04\batch02\CdProduct extends popp\ch04\batch02\ShopProduct ] {
  @@ /var/popp/src/ch04/batch02/CdProduct.php 6-37

  - Constants [2] {
    Constant [ integer AVAILABLE ] { 0 }
    Constant [ integer OUT_OF_STOCK ] { 1 }
  }

  - Static properties [0] {
  }

  - Static methods [1] {
    �Method [ <user, inherits popp\ch04\batch02\ShopProduct> static public method  

getInstance ] {
      @@ /var/popp/src/ch04/batch02/ShopProduct.php 93 - 130

      - Parameters [2] {
        Parameter #0 [ <required> integer $id ]
        Parameter #1 [ <required> PDO $pdo ]
      }
      - Return [ popp\ch04\batch02\ShopProduct ]
    }
  }

  - Properties [3] {
    Property [ <default> private $playLength ]
    Property [ <default> public $status ]
    Property [ <default> protected $price ]
  }

  - Methods [11] {
    �Method [ <user, overwrites popp\ch04\batch02\ShopProduct, ctor> public method __

construct ] {
      @@ /var/popp/src/ch04/batch02/CdProduct.php 10 - 24

      - Parameters [5] {
        Parameter #0 [ <required> string $title ]
        Parameter #1 [ <required> string $firstName ]
        Parameter #2 [ <required> string $mainName ]
        Parameter #3 [ <required> float $price ]
        Parameter #4 [ <required> integer $playLength ]
      }
    }
...
}



Chapter 5 ■ Object Tools

122

As you can see, Reflection::export() provides remarkable access to information about a class. 
Reflection::export() provides summary information about almost every aspect of CdProduct, including 
the access control status of properties and methods, the arguments required by every method, and the 
location of every method within the script document. Compare that with a more established debugging 
function. The var_dump() function is a general-purpose tool for summarizing data. You must instantiate an 
object before you can extract a summary, and even then, it provides nothing like the detail made available by 
Reflection::export():

// listing 05.35
$cd = new CdProduct("cd1", "bob", "bobbleson", 4, 50);
var_dump($cd);

Here’s the output:

object(popp\ch04\batch02\CdProduct)#17 (8) {
  ["playLength":"popp\ch04\batch02\CdProduct":private]=>
  int(50)
  ["status"]=>
  NULL
  ["title":"popp\ch04\batch02\ShopProduct":private]=>
  string(3) "cd1"
  ["producerMainName":"popp\ch04\batch02\ShopProduct":private]=>
  string(9) "bobbleson"
  ["producerFirstName":"popp\ch04\batch02\ShopProduct":private]=>
  string(3) "bob"
  ["price":protected]=>
  float(4)
  ["discount":"popp\ch04\batch02\ShopProduct":private]=>
  int(0)
  ["id":"popp\ch04\batch02\ShopProduct":private]=>
  int(0)
}

var_dump() and its cousin print_r() are fantastically convenient tools for exposing the data in your 
scripts. For classes and functions, the Reflection API takes things to a whole new level, though.

Examining a Class
The Reflection::export() method can provide a great deal of useful information for debugging, but we 
can use the API in more specialized ways. Let’s work directly with the Reflection classes.

You’ve already seen how to instantiate a ReflectionClass object:

$prodclass = new \ReflectionClass('popp\\ch04\\batch02\\CdProduct');



Chapter 5 ■ Object Tools

123

Next, I will use the ReflectionClass object to investigate CdProduct within a script. What kind of class 
is it? Can an instance be created? Here’s a function to answer these questions:

// listing 05.36

    // class ClassInfo
    public static function getData(\ReflectionClass $class)
    {
        $details = "";
        $name = $class->getName();
        if ($class->isUserDefined()) {
            $details .= "$name is user defined\n";
        }
        if ($class->isInternal()) {
            $details .= "$name is built-in\n";
        }
        if ($class->isInterface()) {
            $details .= "$name is interface\n";
        }
        if ($class->isAbstract()) {
            $details .= "$name is an abstract class\n";
        }
        if ($class->isFinal()) {
            $details .= "$name is a final class\n";
        }
        if ($class->isInstantiable()) {
            $details .= "$name can be instantiated\n";
        } else {
            $details .= "$name can not be instantiated\n";
        }

        if ($class->isCloneable()) {
            $details .= "$name can be cloned\n";
        } else {
            $details .= "$name can not be cloned\n";
        }
        return $details;
    }

// listing 05.37
$prodclass = new \ReflectionClass('popp\\ch04\\batch02\\CdProduct');
print ClassInfo::getData($prodclass);

I create a ReflectionClass object, assigning it to a variable called $prodclass by passing the 
CdProduct class name to ReflectionClass’s constructor. $prodclass is then passed to a method named 
ClassInfo::classData() that demonstrates some of the methods that can be used to query a class.

The methods should be self-explanatory, but here’s a brief description of some of them:

•	 ReflectionClass::getName() returns the name of the class being examined.

•	 The ReflectionClass::isUserDefined() method returns true if the class has been 
declared in PHP code, and ReflectionClass::isInternal() yields true if the class 
is built-in.



Chapter 5 ■ Object Tools

124

•	 You can test whether a class is abstract with ReflectionClass::isAbstract() and 
whether it’s an interface with ReflectionClass::isInterface().

•	 If you want to get an instance of the class, you can test the feasibility of that with Refl
ectionClass::isInstantiable().

•	 You can check whether a class is cloneable with the 
ReflectionClass::isCloneable() method.

•	 You can even examine a user-defined class’s source code. The ReflectionClass 
object provides access to its class’s file name and to the start and finish lines of the 
class in the file.

Here’s a quick-and-dirty method that uses ReflectionClass to access the source of a class:

// listing 05.38
class ReflectionUtil
{
    public static function getClassSource(\ReflectionClass $class): string
    {
        $path  = $class->getFileName();
        $lines = file($path);
        $from  = $class->getStartLine();
        $to    = $class->getEndLine();
        $len   = $to - $from + 1;
        return implode(array_slice($lines, $from - 1, $len));
    }
}

// listing 05.39
print ReflectionUtil::getClassSource(
    new \ReflectionClass('popp\\ch04\\batch02\\CdProduct')
);

ReflectionUtil is a simple class with a single static method, ReflectionUtil::getClassSource(). 
That method takes a ReflectionClass object as its only argument and returns the referenced class’s source 
code. ReflectionClass::getFileName() provides the path to the class’s file as an absolute path, so the code 
should be able to go right ahead and open it. file() obtains an array of all the lines in the file. ReflectionC
lass::getStartLine() provides the class’s start line; ReflectionClass::getEndLine() finds the final line. 
From there, it’s simply a matter of using array_slice() to extract the lines of interest.

To keep things brief, this code omits error handling. In a real-world application, you’d want to check 
arguments and result codes.

Examining Methods
Just as ReflectionClass is used to examine a class, a ReflectionMethod object examines a method.

You can acquire a ReflectionMethod in two ways. First, you can get an array of ReflectionMethod 
objects from ReflectionClass::getMethods(). Second, if you need to work with a specific method, 
ReflectionClass::getMethod() accepts a method name and returns the relevant ReflectionMethod object.



Chapter 5 ■ Object Tools

125

Here, we use ReflectionClass::getMethods() to put the ReflectionMethod class through its paces:

// listing 05.40
$prodclass = new \ReflectionClass('popp\\ch04\\batch02\\CdProduct');
$methods = $prodclass->getMethods();

foreach ($methods as $method) {
    print ClassInfo::methodData($method);
    print "\n----\n";
}

// listing 05.41

    // class ClassInfo
    public static function methodData(\ReflectionMethod $method)
    {
        $details = "";
        $name = $method->getName();
        if ($method->isUserDefined()) {
            $details .= "$name is user defined\n";
        }
        if ($method->isInternal()) {
            $details .= "$name is built-in\n";
        }
        if ($method->isAbstract()) {
            $details .= "$name is abstract\n";
        }
        if ($method->isPublic()) {
            $details .= "$name is public\n";
        }
        if ($method->isProtected()) {
            $details .= "$name is protected\n";
        }
        if ($method->isPrivate()) {
            $details .= "$name is private\n";
        }
        if ($method->isStatic()) {
            $details .= "$name is static\n";
        }
        if ($method->isFinal()) {
            $details .= "$name is final\n";
        }
        if ($method->isConstructor()) {
            $details .= "$name is the constructor\n";
        }
        if ($method->returnsReference()) {
            $details .= "$name returns a reference (as opposed to a value)\n";
        }
        return $details;
    }



Chapter 5 ■ Object Tools

126

The code uses ReflectionClass::getMethods() to get an array of ReflectionMethod objects and then 
loops through the array, passing each object to methodData().

The names of the methods used in methodData() reflect their intent: the code checks whether the 
method is user-defined, built-in, abstract, public, protected, static, or final. You can also check whether the 
method is the constructor for its class and whether or not it returns a reference.

There’s one caveat: ReflectionMethod::returnsReference() doesn’t return true if the tested method 
simply returns an object, even though objects are passed and assigned by reference in PHP 5. Instead, Refle
ctionMethod::returnsReference() returns true only if the method in question has been explicitly declared 
to return a reference (by placing an ampersand character in front of the method name).

As you might expect, you can access a method’s source code using a technique similar to the one used 
previously with ReflectionClass:

// listing 05.42

    // class ReflectionUtil
    public static function getMethodSource(\ReflectionMethod $method): string
    {
        $path  = $method->getFileName();
        $lines = @file($path);
        $from  = $method->getStartLine();
        $to    = $method->getEndLine();
        $len   = $to - $from + 1;
        return implode(array_slice($lines, $from - 1, $len));
    }

// listing 05.43
$class = new \ReflectionClass('popp\\ch04\\batch02\\CdProduct');
$method = $class->getMethod('getSummaryLine');
print ReflectionUtil::getMethodSource($method);

Because ReflectionMethod provides us with getFileName(), getStartLine(), and getEndLine() 
methods, it’s a simple matter to extract the method’s source code.

Examining Method Arguments
Now that method signatures can constrain the types of object arguments, the ability to examine the 
arguments declared in a method signature becomes immensely useful. The Reflection API provides the 
ReflectionParameter class just for this purpose. To get a ReflectionParameter object, you need the help 
of a ReflectionMethod object. The ReflectionMethod::getParameters() method returns an array of 
ReflectionParameter objects.

ReflectionParameter can tell you the name of an argument and whether the variable is passed by 
reference (that is, with a preceding ampersand in the method declaration). It can also tell you the class 
required by argument hinting and whether the method will accept a null value for the argument.

Here are some of ReflectionParameter’s methods in action:

// listing 05.44
$class = new \ReflectionClass('popp\\ch04\\batch02\\CdProduct');

$method = $class->getMethod("__construct");
$params = $method->getParameters();



Chapter 5 ■ Object Tools

127

foreach ($params as $param) {
    print ClassInfo::argData($param) . "\n";
}

// listing 05.45

    // class ClassInfo
    public function argData(\ReflectionParameter $arg)
    {
        $details = "";
        $declaringclass = $arg->getDeclaringClass();
        $name  = $arg->getName();
        $class = $arg->getClass();
        $position = $arg->getPosition();
        $details .= "\$$name has position $position\n";
        if (! empty($class)) {
            $classname = $class->getName();
            $details .= "\$$name must be a $classname object\n";
        }

        if ($arg->isPassedByReference()) {
            $details .= "\$$name is passed by reference\n";
        }

        if ($arg->isDefaultValueAvailable()) {
            $def = $arg->getDefaultValue();
            $details .= "\$$name has default: $def\n";
        }

        if ($arg->allowsNull()) {
            $details .= "\$$name can be null\n";
        }

        return $details;
    }

Using the ReflectionClass::getMethod() method, the code acquires a ReflectionMethod object. It then 
uses ReflectionMethod::getParameters() to get an array of ReflectionParameter objects. The argData() 
function uses the ReflectionParameter object it was passed to acquire information about the argument.

First, it gets the argument’s variable name with ReflectionParameter::getName(). The ReflectionPa
rameter::getClass() method returns a ReflectionClass object if a hint’s been provided. The code checks 
whether the argument is a reference with isPassedByReference(); and finally, it looks for the availability of 
a default value, which it then adds to the return string.

Using the Reflection API
With the basics of the Reflection API under your belt, you can now put the API to work.

Imagine that you’re creating a class that calls Module objects dynamically. That is, it can accept plug-
ins written by third parties that can be slotted into the application without the need for any hard-coding. To 
achieve this, you might define an execute() method in the Module interface or abstract base class, forcing 
all child classes to define an implementation. You could allow the users of your system to list Module classes 



Chapter 5 ■ Object Tools

128

in an external XML configuration file. Your system can use this information to aggregate a number of Module 
objects before calling execute() on each one.

What happens, however, if each Module requires different information to do its job? In that case, the 
XML file can provide property keys and values for each Module, and the creator of each Module can provide 
setter methods for each property name. Given that foundation, it’s up to your code to ensure that the correct 
setter method is called for the correct property name.

Here’s some groundwork for the Module interface and a couple of implementing classes:

// listing 05.46
class Person
{
    public $name;

    public function __construct(string $name)
    {
        $this->name = $name;
    }
}

// listing 05.47
interface Module
{
    public function execute();
}

// listing 05.48
class FtpModule implements Module
{
    public function setHost($host)
    {
        print "FtpModule::setHost(): $host\n";
    }

    public function setUser($user)
    {
        print "FtpModule::setUser(): $user\n";
    }

    public function execute()
    {
        // do things
    }
}

// listing 05.49
class PersonModule implements Module
{
    public function setPerson(Person $person)
    {
        print "PersonModule::setPerson(): {$person->name}\n";
    }



Chapter 5 ■ Object Tools

129

    public function execute()
    {
        // do things
    }
}

Here, PersonModule and FtpModule both provide empty implementations of the execute() method. 
Each class also implements setter methods that do nothing but report that they were invoked. The system 
lays down the convention that all setter methods must expect a single argument: either a string or an object 
that can be instantiated with a single string argument. The PersonModule::setPerson() method expects a 
Person object, so I include a Person class in my example.

To work with PersonModule and FtpModule, the next step is to create a ModuleRunner class. It will use 
a multidimensional array indexed by module name to represent configuration information provided in the 
XML file. Here’s that code:

// listing 05.50
class ModuleRunner
{
    private $configData = [
        "popp\\ch05\\batch08\\PersonModule" => ['person' => 'bob'],
        "popp\\ch05\\batch08\\FtpModule"    => [
            'host' => 'example.com',
            'user' => 'anon'
        ]
    ];
    private $modules = [];
    // ...
}

The ModuleRunner::$configData property contains references to the two Module classes. For each 
module element, the code maintains a subarray containing a set of properties. ModuleRunner’s init() 
method is responsible for creating the correct Module objects, as shown here:

// listing 05.51

    // class ModuleRunner
    public function init()
    {
        $interface = new \ReflectionClass('popp\\ch05\\batch08\\Module');
        foreach ($this->configData as $modulename => $params) {
            $module_class = new \ReflectionClass($modulename);
            if (! $module_class->isSubclassOf($interface)) {
                throw new Exception("unknown module type: $modulename");
            }
            $module = $module_class->newInstance();
            foreach ($module_class->getMethods() as $method) {
                $this->handleMethod($module, $method, $params);
                // we cover handleMethod() in a future listing!
            }
            array_push($this->modules, $module);
        }
    }



Chapter 5 ■ Object Tools

130

// listing 05.52
$test = new ModuleRunner();
$test->init();

The init() method loops through the ModuleRunner::$configData array, and for each module 
element, it attempts to create a ReflectionClass object. An exception is generated when ReflectionClass’s 
constructor is invoked with the name of a nonexistent class, so in a real-world context, I would include more 
error handling here. I use the ReflectionClass::isSubclassOf() method to ensure that the module class 
belongs to the Module type.

Before you can invoke the execute() method of each Module, an instance has to be created. That’s 
the purpose of ReflectionClass::newInstance(). That method accepts any number of arguments, which 
it passes on to the relevant class’s constructor method. If all’s well, it returns an instance of the class (for 
production code, be sure to code defensively: check that the constructor method for each Module object 
doesn’t require arguments before creating an instance).

ReflectionClass::getMethods() returns an array of all ReflectionMethod objects available for the 
class. For each element in the array, the code invokes the ModuleRunner::handleMethod() method. It then 
passes it a Module instance, the ReflectionMethod object, and an array of properties to associate with the 
Module. handleMethod() verifies and invokes the Module object’s setter methods:

// listing 05.53

    // class ModuleRunner
    public function handleMethod(Module $module, \ReflectionMethod $method, $params)
    {
        $name = $method->getName();
        $args = $method->getParameters();

        if (count($args) != 1 || substr($name, 0, 3) != "set") {
            return false;
        }

        $property = strtolower(substr($name, 3));

        if (! isset($params[$property])) {
            return false;
        }

        $arg_class = $args[0]->getClass();

        if (empty($arg_class)) {
            $method->invoke($module, $params[$property]);
        } else {
            $method->invoke(
                $module,
                $arg_class->newInstance($params[$property])
            );
        }
    }

handleMethod() first checks that the method is a valid setter. In the code, a valid setter method must be 
named setXXXX() and must declare one—and only one—argument.



Chapter 5 ■ Object Tools

131

Assuming that the argument checks out, the code then extracts a property name from the method 
name by removing set from the beginning of the method name and converting the resulting substring to 
lowercase characters. That string is used to test the $params array argument. This array contains the user-
supplied properties that are to be associated with the Module object. If the $params array doesn’t contain the 
property, the code gives up and returns false.

If the property name extracted from the module method matches an element in the $params array, 
I can go ahead and invoke the correct setter method. To do that, the code must check the type of the first 
(and only) required argument of the setter method. The ReflectionParameter::getClass() method 
provides this information. If the method returns an empty value, the setter expects a primitive of some kind; 
otherwise, it expects an object.

To call the setter method, I need a new Reflection API method. ReflectionMethod::invoke() requires 
an object (or null for a static method) and any number of method arguments to pass on to the method it 
represents. ReflectionMethod::invoke() throws an exception if the provided object does not match its 
method. I call this method in one of two ways. If the setter method doesn’t require an object argument, I call 
ReflectionMethod::invoke() with the user-supplied property string. If the method requires an object, I use 
the property string to instantiate an object of the correct type, which is then passed to the setter.

The example assumes that the required object can be instantiated with a single string argument to its 
constructor. It’s best, of course, to check this before calling ReflectionClass::newInstance().

By the time that the ModuleRunner::init() method has run its course, the object has a store of Module 
objects, all primed with data. The class can now be given a method to loop through the Module objects, 
calling execute() on each one.

Summary
In this chapter, I covered some of the techniques and tools that you can use to manage your libraries and 
classes. I explored PHP’s namespace feature. You saw that we can combine include paths, namespaces, 
autoload, and the file system to provide flexible organization for classes.

We also examined PHP’s object and class functions, before taking things to the next level with the 
powerful Reflection API. Finally, we used the Reflection classes to build a simple example that illustrates 
one of the potential uses that Reflection has to offer.



133© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_6

CHAPTER 6

Objects and Design

Now that we have seen the mechanics of PHP’s object support in some detail, we will step back from the 
details and consider how best to use the tools that we have encountered. In this chapter, I introduce you 
to some of the issues surrounding objects and design. I will also look at the UML, a powerful graphical 
language for describing object-oriented systems.

This chapter will cover the following topics:

•	 Design basics: What I mean by design, and how object-oriented design differs from 
procedural code

•	 Class scope: How to decide what to include in a class

•	 Encapsulation: Hiding implementation and data behind a class’s interface

•	 Polymorphism: Using a common supertype to allow the transparent substitution of 
specialized subtypes at runtime

•	 The UML: Using diagrams to describe object-oriented architectures

Defining Code Design
One sense of code design concerns the definition of a system: the determination of a system’s requirements, 
scope, and objectives. What does the system need to do? For whom does it need to do it? What are the 
outputs of the system? Do they meet the stated need? On a lower level, design can be taken to mean the 
process by which you define the participants of a system and organize their relationships. This chapter is 
concerned with the second sense: the definition and disposition of classes and objects.

So what is a participant? An object-oriented system is made up of classes. It is important to decide the 
nature of these players in your system. Classes are made up, in part, of methods; so in defining your classes, 
you must decide which methods belong together. As you will see, though, classes are often combined in 
inheritance relationships to conform to common interfaces. It is these interfaces, or types, that should be 
your first port of call in designing your system.

There are other relationships that you can define for your classes. You can create classes that are 
composed of other types or that manage lists of other type instances. You can design classes that simply 
use other objects. The potential for such relationships of composition or use is built into your classes (e.g., 
through the use of type declarations in method signatures), but the actual object relationships take place 
at runtime, which can add flexibility to your design. You will see how to model these relationships in this 
chapter, and we’ll explore them further throughout the book.

As part of the design process, you must decide when an operation should belong to a type and when 
it should belong to another class used by the type. Everywhere you turn, you are presented with choices, 
decisions that might lead to clarity and elegance or might mire you in compromise.



Chapter 6 ■ Objects and Design

134

In this chapter, I will examine some issues that might influence a few of these choices.

Object-Oriented and Procedural Programming
How does object-oriented design differ from the more traditional procedural code? It is tempting to say that 
the primary distinction is that object-oriented code has objects in it. This is neither true nor useful. In PHP, 
you will often find procedural code using objects. You may also come across classes that contain tracts of 
procedural code. The presence of classes does not guarantee object-oriented design, even in a language 
such as Java, which forces you to do most things inside a class.

One core difference between object-oriented and procedural code can be found in the way that 
responsibility is distributed. Procedural code takes the form of a sequential series of commands and method 
calls. The controlling code tends to take responsibility for handling differing conditions. This top-down 
control can result in the development of duplications and dependencies across a project. Object-oriented 
code tries to minimize these dependencies by moving responsibility for handling tasks away from client 
code and toward the objects in the system.

In this section, I’ll set up a simple problem and then analyze it in terms of both object-oriented and 
procedural code to illustrate these points. My project is to build a quick tool for reading from and writing 
to configuration files. In order to maintain focus on the structures of the code, I will omit implementation 
details in these examples.

I’ll begin with a procedural approach to this problem. To start with, I will read and write text in this 
format:

key:value

I need only two functions for this purpose:

// listing 06.01

function readParams(string $source): array
{
    $params = [];
    // read text parameters from $source
    return $params;
}

function writeParams(array $params, string $source)
{
    // write text parameters to $source
}

The readParams function requires the name of a source file. It attempts to open it, and reads each line, 
looking for key/value pairs. It builds up an associative array as it goes. Finally, it returns the array to the 
controlling code. writeParams() accepts an associative array and the path to a source file. It loops through 
the associative array, writing each key/value pair to the file. Here’s some client code that works with the 
functions:

// listing 06.02

$file = __DIR__ . "/params.txt";
$params = [



Chapter 6 ■ Objects and Design

135

    "key1" => "val1",
    "key2" => "val2",
    "key3" => "val3",
];
writeParams($params, $file);
$output = readParams($file);
print_r($output);

This code is relatively compact and should be easy to maintain. The writeParams() function is called to 
create param.txt and to write to it with something like this:

key1:val1
key2:val2
key3:val3

The readParams() function parses the same format.
In many projects, scope grows and evolves. Let’s fake this by introducing a new requirement. The code 

must now also handle an XML structure that looks like this:

<params>
    <param>
        <key>my key</key>
        <val>my val</val>
    </param>
</params>

The parameter file should be read in XML mode if the parameter file ends in .xml. Although this is not 
difficult to accommodate, it threatens to make my code much harder to maintain. I really have two options 
at this stage. I can check the file extension in the controlling code, or I can test inside my read and write 
functions. Here I go for the latter approach:

// listing 06.03

function readParams(string $source): array
{
    $params = [];
    if (preg_match("/\.xml$/i", $source)) {
        // read XML parameters from $source
    } else {
         // read text parameters from $source
    }
    return $params;
}

function writeParams(array $params, string $source)
{
    if (preg_match("/\.xml$/i", $source)) {
        // write XML parameters to $source
    } else {
        // write text parameters to $source
    }
}



Chapter 6 ■ Objects and Design

136

■■ Note   Illustrative code always involves a difficult balancing act. It needs to be clear enough to make its 
point, which often means sacrificing error checking and fitness for its ostensible purpose. In other words, the 
example here is really intended to illustrate issues of design and duplication rather than the best way to parse 
and write file data. For this reason, I omit implementation where it is not relevant to the issue at hand.

As you can see, I have had to use the test for the XML extension in each of the functions. It is this 
repetition that might cause us problems down the line. If I were to be asked to include yet another parameter 
format, I would need to remember to keep the readParams() and writeParams() functions in line with one 
another.

Now I’ll address the same problem with some simple classes. First, I create an abstract base class that 
will define the interface for the type:

// listing 06.04

abstract class ParamHandler
{
    protected $source;
    protected $params = [];

    public function __construct(string $source)
    {
        $this->source = $source;
    }

    public function addParam(string $key, string $val)
    {
        $this->params[$key] = $val;
    }

    public function getAllParams(): array
    {
        return $this->params;
    }

    public static function getInstance(string $filename): ParamHandler
    {
        if (preg_match("/\.xml$/i", $filename)) {
            return new XmlParamHandler($filename);
        }
        return new TextParamHandler($filename);
    }
    abstract public function write(): bool;
    abstract public function read(): bool;
}

I define the addParam() method to allow the user to add parameters to the protected $params property 
and getAllParams() to provide access to a copy of the array.



Chapter 6 ■ Objects and Design

137

I also create a static getInstance() method that tests the file extension and returns a particular 
subclass according to the results. Crucially, I define two abstract methods, read()and write(), ensuring that 
any subclasses will support this interface.

■■ Note   Placing a static method for generating child objects in the parent class is convenient. Such a design 
decision has its own consequences, however. The ParamHandler type is now essentially limited to working with 
the concrete classes in this central conditional statement. What happens if you need to handle another format? 
Of course, if you are the maintainer of ParamHandler, you can always amend the getInstance() method. 
If you are a client coder, however, changing this library class may not be so easy (in fact, changing it won’t 
be hard, but you face the prospect of having to reapply your patch every time you reinstall the package that 
provides it). I will discuss issues of object creation in Chapter 9.

Now, I’ll define the subclasses, once again omitting the details of implementation to keep the example 
clean:

// listing 06.05

class XmlParamHandler extends ParamHandler
{
    public function write(): bool
    {
        // write XML
        // using $this->params
    }

    public function read(): bool
    {
        // read XML
        // and populate $this->params
    }
}

// listing 06.06
class TextParamHandler extends ParamHandler
{
    public function write(): bool
    {
        // write text
        // using $this->params
    }

    public function read(): bool
    {
        // read text
        // and populate $this->params
    }
}

http://dx.doi.org/10.1007/978-1-4842-1996-6_9


Chapter 6 ■ Objects and Design

138

These classes simply provide implementations of the write() and read() methods. Each class will 
write and read according to the appropriate format.

Client code will write to both text and XML formats entirely transparently, according to the file 
extension:

// listing 06.07

$test = ParamHandler::getInstance(__DIR__ . "/params.xml");
$test->addParam("key1", "val1");
$test->addParam("key2", "val2");
$test->addParam("key3", "val3");
$test->write(); // writing in XML format

We can also read from either file format:

// listing 06.08

$test = ParamHandler::getInstance(__DIR__ . "/params.txt");
$test->read(); // reading in text format
$params = $test->getAllParams();
print_r($params);

So, what can we learn from these two approaches?

Responsibility
The controlling code in the procedural example takes responsibility for deciding about format—not once, 
but twice. The conditional code is tidied away into functions, certainly, but this merely disguises the fact of a 
single flow, making decisions as it goes. Calls to readParams() and to writeParams() take place in different 
contexts, so we are forced to repeat the file extension test in each function (or to perform variations on this 
test).

In the object-oriented version, this choice about file format is made in the static getInstance() 
method, which tests the file extension only once, serving up the correct subclass. The client code takes 
no responsibility for implementation. It uses the provided object with no knowledge of, or interest in, the 
particular subclass it belongs to. It knows only that it is working with a ParamHandler object, and that it will 
support write() and read(). While the procedural code busies itself about details, the object-oriented code 
works only with an interface, unconcerned about the details of implementation. Because responsibility for 
implementation lies with the objects and not with the client code, it would be easy to switch in support for 
new formats transparently.

Cohesion
Cohesion is the extent to which proximate procedures are related to one another. Ideally, you should create 
components that share a clear responsibility. If your code spreads related routines widely, you will find them 
harder to maintain as you have to hunt around to make changes.

Our ParamHandler classes collect related procedures into a common context. The methods for working 
with XML share a context in which they can share data and where changes to one method can easily be 
reflected in another if necessary (e.g., if you needed to change an XML element name). The ParamHandler 
classes can therefore be said to have high cohesion.



Chapter 6 ■ Objects and Design

139

The procedural example, on the other hand, separates related procedures. The code for working with 
XML is spread across functions.

Coupling
Tight coupling occurs when discrete parts of a system’s code are tightly bound up with one another so that a 
change in one part necessitates changes in the others. Tight coupling is by no means unique to procedural 
code, though the sequential nature of such code makes it prone to the problem.

You can see this kind of coupling in the procedural example. The writeParams() and readParams() 
functions run the same test on a file extension to determine how they should work with data. Any change 
in logic you make to one will have to be implemented in the other. If you were to add a new format, for 
example, you would have to bring the functions into line with one another, so that they both implement a 
new file extension test in the same way. This problem can only get worse as you add new parameter-related 
functions.

The object-oriented example decouples the individual subclasses from one another and from the 
client code. If you were required to add a new parameter format, you could simply create a new subclass, 
amending a single test in the static getInstance() method.

Orthogonality
The killer combination of components with tightly defined responsibilities that are also independent 
from the wider system is sometimes referred to as orthogonality. Andrew Hunt and David Thomas discuss 
this subject in their book, The Pragmatic Programmer: From Journeyman to Master (Addison-Wesley 
Professional, 1999).

Orthogonality, it is argued, promotes reuse in that components can be plugged into new systems 
without needing any special configuration. Such components will have clear inputs and outputs, 
independent of any wider context. Orthogonal code makes change easier because the impact of altering 
an implementation will be localized to the component being altered. Finally, orthogonal code is safer. The 
effects of bugs should be limited in scope. An error in highly interdependent code can easily cause knock-on 
effects in the wider system.

There is nothing automatic about loose coupling and high cohesion in a class context. We could, after 
all, embed our entire procedural example into one misguided class. So how can we achieve this balance in 
our code? I usually start by considering the classes that should live in my system.

Choosing Your Classes
It can be surprisingly difficult to define the boundaries of your classes, especially as they will evolve with any 
system that you build.

It can seem straightforward when you are modeling the real world. Object-oriented systems often 
feature software representations of real things—Person, Invoice, and Shop classes abound. This would seem 
to suggest that defining a class is a matter of finding the things in your system and then giving them agency 
through methods. This is not a bad starting point, but it does have its dangers. If you see a class as a noun, 
a subject for any number of verbs, then you may find it bloating as ongoing development and requirement 
changes call for it to do more and more things.

Let’s consider the ShopProduct example that we created in Chapter 3. Our system exists to offer 
products to a customer, so defining a ShopProduct class is an obvious choice. But is that the only decision we 
need to make? We provide methods such as getTitle() and getPrice() for accessing product data. When 
we are asked to provide a mechanism for outputting summary information for invoices and delivery notes, it 
seems to make sense to define a write() method. When the client asks us to provide the product summaries 

http://dx.doi.org/10.1007/978-1-4842-1996-6_3


Chapter 6 ■ Objects and Design

140

in different formats, we look again at our class. We duly create writeXML() and writeHTML() methods 
in addition to the write() method. Or we add conditional code to write() to output different formats, 
according to an option flag.

Either way, the problem here is that the ShopProduct class is now trying to do too much. It is struggling 
to manage strategies for display, as well as for managing product data.

How should you think about defining classes? The best approach is to think of a class as having 
a primary responsibility and to make that responsibility as singular and focused as possible. Put the 
responsibility into words. It has been said that you should be able to describe a class’s responsibility in 
25 words or less, rarely using the words “and” or “or.” If your sentence gets too long or mired in clauses, it 
is probably time to consider defining new classes along the lines of some of the responsibilities you have 
described.

So, ShopProduct classes are responsible for managing product data. If we add methods for writing to 
different formats, we begin to add a new area of responsibility: product display. As you saw in Chapter 3, 
we actually defined two types based on these separate responsibilities. The ShopProduct type remained 
responsible for product data, and the ShopProductWriter type took on responsibility for displaying product 
information. Individual subclasses refined these responsibilities.

■■ Note   Very few design rules are entirely inflexible. You will sometimes see code for saving object data in 
an otherwise unrelated class, for example. Although this would seem to violate the rule that a class should have 
a singular responsibility, it can be the most convenient place for the functionality to live because a method has 
to have full access to an instance’s fields. Using local methods for persistence can also save us from creating 
a parallel hierarchy of persistence classes mirroring our savable classes, and thereby introducing unavoidable 
coupling. We deal with other strategies for object persistence in Chapter 12. Avoid religious adherence to design 
rules; they are not a substitute for analyzing the problem before you. Try to remain alive to the reasoning behind 
the rule, and emphasize that over the rule itself.

Polymorphism
Polymorphism, or class switching, is a common feature of object-oriented systems. You have encountered it 
several times already in this book.

Polymorphism is the maintenance of multiple implementations behind a common interface. This 
sounds complicated, but in fact, it should be very familiar to you by now. The need for polymorphism is 
often signaled by the presence of extensive conditional statements in your code.

When I first created the ShopProduct class in Chapter 3, I experimented with a single class which 
managed functionality for books and CDs, in addition to generic products. In order to provide summary 
information, I relied on a conditional statement:

// listing 03.31

    public function getSummaryLine()
    {
        $base  = "{$this->title} ( {$this->producerMainName}, ";
        $base .= "{$this->producerFirstName} )";
        if ($this->type == 'book') {
            $base .= ": page count - {$this->numPages}";
        } elseif ($this->type == 'cd') {

http://dx.doi.org/10.1007/978-1-4842-1996-6_3
http://dx.doi.org/10.1007/978-1-4842-1996-6_12
http://dx.doi.org/10.1007/978-1-4842-1996-6_3


Chapter 6 ■ Objects and Design

141

            $base .= ": playing time - {$this->playLength}";
        }
        return $base;
    }

These statements suggested the shape for the two subclasses: CdProduct and BookProduct.
By the same token, the conditional statements in my procedural parameter example contained the 

seeds of the object-oriented structure I finally arrived at. I repeated the same condition in two parts of the 
script:

// listing 06.03

function readParams(string $source): array
{
    $params = [];
    if (preg_match("/\.xml$/i", $source)) {
        // read XML parameters from $source
    } else {
         // read text parameters from $source
    }
    return $params;
}

function writeParams(array $params, string $source)
{
    if (preg_match("/\.xml$/i", $source)) {
        // write XML parameters to $source
    } else {
        // write text parameters to $source
    }
}

Each clause suggested one of the subclasses I finally produced: XmlParamHandler and 
TextParamHandler. These extended the abstract base class ParamHandler’s write() and read() methods:

// listing 06.09

// could return XmlParamHandler or TextParamHandler
$test = ParamHandler::getInstance($file);
$test->read();  // could be XmlParamHandler::read() or TextParamHandler::read()
$test->addParam("newkey1", "newval1");
$test->write(); // could be XmlParamHandler::write() or TextParamHandler::write()

It is important to note that polymorphism doesn’t banish conditionals. Methods such as 
ParamHandler::getInstance() will often determine which objects to return based on switch or if 
statements. These tend to centralize the conditional code into one place, though.

As you have seen, PHP enforces the interfaces defined by abstract classes. This is useful because we 
can be sure that a concrete child class will support exactly the same method signatures as those defined by 
an abstract parent. This includes type declarations and access controls. Client code can, therefore, treat all 
children of a common superclass interchangeably (as long it only relies on only functionality defined in the 
parent).



Chapter 6 ■ Objects and Design

142

Encapsulation
Encapsulation simply means the hiding of data and functionality from a client. And once again, it is a key 
object-oriented concept.

On the simplest level, you encapsulate data by declaring properties private or protected. By hiding a 
property from client code, you enforce an interface and prevent the accidental corruption of an object’s data.

Polymorphism illustrates another kind of encapsulation. By placing different implementations behind 
a common interface, you hide these underlying strategies from the client. This means that any changes that 
are made behind this interface are transparent to the wider system. You can add new classes or change the 
code in a class without causing errors. The interface is what matters, not the mechanisms working beneath 
it. The more independent these mechanisms are kept, the less chance that changes or repairs will have a 
knock-on effect in your projects.

Encapsulation is, in some ways, the key to object-oriented programming. Your objective should be to make 
each part as independent as possible from its peers. Classes and methods should receive as much information as 
is necessary to perform their allotted tasks, which should be limited in scope and clearly identified.

The introduction of the private, protected, and public keywords have made encapsulation easier. 
Encapsulation is also a state of mind, though. PHP 4 provided no formal support for hiding data. Privacy had 
to be signaled using documentation and naming conventions. An underscore, for example, is a common way 
of signaling a private property:

var $_touchezpas;

Code had to be checked closely, of course, because privacy was not strictly enforced. Interestingly, 
though, errors were rare because the structure and style of the code made it pretty clear which properties 
wanted to be left alone.

By the same token, even after PHP 5 arrived, we could break the rules and discover the exact subtype of 
an object that we were using in a class-switching context simply by using the instanceof operator:

    function workWithProducts(ShopProduct $prod)
    {
        if ($prod instanceof CdProduct) {
            // do cd thing
        } else if ($prod instanceof BookProduct) {
            // do book thing
        }
    }

You may have a very good reason to do this, but, in general, it carries a slightly uncertain odor. By querying 
the specific subtype in the example, I am setting up a dependency. Although the specifics of the subtype were 
hidden by polymorphism, it would have been possible to have changed the ShopProduct inheritance hierarchy 
entirely with no ill effects. This code ends that. Now, if I need to rationalize the CdProduct and BookProduct 
classes, I may create unexpected side effects in the workWithProducts() method.

There are two lessons to take away from this example. First, encapsulation helps you to create 
orthogonal code. Second, the extent to which encapsulation is enforceable is beside the point. 
Encapsulation is a technique that should be observed equally by classes and their clients.

Forget How to Do It
If you are like me, the mention of a problem will set your mind racing, looking for mechanisms that might 
provide a solution. You might select functions that will address an issue, revisit clever regular expressions, 
track down Composer packages. You probably have some pasteable code in an old project that does 



Chapter 6 ■ Objects and Design

143

something somewhat similar. At the design stage, you can profit by setting all that aside for a while. Empty 
your head of procedures and mechanisms.

Think only about the key participants of your system: the types it will need and their interfaces. 
Of course, your knowledge of process will inform your thinking. A class that opens a file will need a 
path, database code will need to manage table names and passwords, and so on. Let the structures 
and relationships in your code lead you, though. You will find that the implementation falls into place 
easily behind a well-defined interface. You then have the flexibility to switch out, improve, or extend an 
implementation should you need to, without affecting the wider system.

In order to emphasize interface, think in terms of abstract base classes rather than concrete children. 
In my parameter-fetching code, for example, the interface is the most important aspect of the design. I 
want a type that reads and writes name/value pairs. It is this responsibility that is important about the type, 
not the actual persistence medium or the means of storing and retrieving data. I design the system around 
the abstract ParamHandler class, and only add in the concrete strategies for actually reading and writing 
parameters later on. In this way, I build both polymorphism and encapsulation into my system from the 
start. The structure lends itself to class switching.

Having said that, of course, I knew from the start that there would be text and XML implementations of 
ParamHandler, and there is no question that this influenced my interface. There is always a certain amount 
of mental juggling to do when designing interfaces.

In Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley Professional, 
1995), the Gang of Four summed up this principle with the phrase, “Program to an interface, not an 
implementation.” It is a good one to add to your coder’s handbook.

Four Signposts
Very few people get it absolutely right at the design stage. Most of us amend our code as requirements 
change or as we gain a deeper understanding of the nature of the problem we are addressing.

As you amend your code, it can easily drift beyond your control. A method is added here and a new 
class there, and gradually your system begins to decay. As you have seen already, your code can point the 
way to its own improvement. These pointers in code are sometimes referred to as code smells—that is, 
features in code that may suggest particular fixes or at least call you to look again at your design. In this 
section, I distill some of the points already made into four signs that you should watch out for as you code.

Code Duplication
Duplication is one of the great evils in code. If you get a strange sense of déjà vu as you write a routine, 
chances are you have a problem.

Take a look at the instances of repetition in your system. Perhaps they belong together. Duplication 
generally means tight coupling. If you change something fundamental about one routine, will the similar 
routines need amendment? If this is the case, they probably belong in the same class.

The Class Who Knew Too Much
It can be a pain passing parameters around from method to method. Why not simply reduce the pain by 
using a global variable? With a global, everyone can get at the data.

Global variables have their place, but they do need to be viewed with some level of suspicion. That’s 
quite a high level of suspicion, by the way. By using a global variable, or by giving a class any kind of 
knowledge about its wider domain, you anchor it into its context, making it less reusable and dependent 
on code beyond its control. Remember, you want to decouple your classes and routines and not create 
interdependence. Try to limit a class’s knowledge of its context. I will look at some strategies for doing this 
later in the book.



Chapter 6 ■ Objects and Design

144

The Jack of All Trades
Is your class trying to do too many things at once? If so, see if you can list the responsibilities of the class. You 
may find that one of them will form the basis of a good class itself.

Leaving an overzealous class unchanged can cause particular problems if you create subclasses. Which 
responsibility are you extending with the subclass? What would you do if you needed a subclass for more 
than one responsibility? You are likely to end up with too many subclasses or an over-reliance on conditional 
code.

Conditional Statements
You will use if and switch statements with perfectly good reason throughout your projects. Sometimes, 
though, such structures can be a cry for polymorphism.

If you find that you are testing for certain conditions frequently within a class, especially if you find 
these tests mirrored across more than one method, this could be a sign that your one class should be two or 
more. See whether the structure of the conditional code suggests responsibilities that could be expressed 
in classes. The new classes should implement a shared abstract base class. Chances are that you will then 
have to work out how to pass the right class to client code. I will cover some patterns for creating objects in 
Chapter 9.

The UML
So far in this book, I have let the code speak for itself, and I have used short examples to illustrate concepts 
such as inheritance and polymorphism.

This is useful because PHP is a common currency here: it’s a language we have in common, if you have 
read this far. As our examples grow in size and complexity, though, using code alone to illustrate the broad 
sweep of design becomes somewhat absurd. It is hard to see an overview in a few lines of code.

UML stands for Unified Modeling Language. The initials are correctly used with the definite article. This 
isn’t just a unified modeling language, it is the Unified Modeling Language.

Perhaps this magisterial tone derives from the circumstances of the language’s forging. According to 
Martin Fowler (UML Distilled, Addison-Wesley Professional, 1999), the UML emerged as a standard only 
after long years of intellectual and bureaucratic sparring among the great and good of the object-oriented 
design community.

The result of this struggle is a powerful graphical syntax for describing object-oriented systems. We will 
only scratch the surface in this section, but you will soon find that a little UML (sorry, a little of the UML) 
goes a long way.

Class diagrams in particular can describe structures and patterns so that their meaning shines through. 
This luminous clarity is often harder to find in code fragments and bullet points.

Class Diagrams
Although class diagrams are only one aspect of the UML, they are perhaps the most ubiquitous. Because 
they are particularly useful for describing object-oriented relationships, I will primarily use these in this 
book.

Representing Classes
As you might expect, classes are the main constituents of class diagrams. A class is represented by a named 
box (see Figure 6-1).

http://dx.doi.org/10.1007/978-1-4842-1996-6_9


Chapter 6 ■ Objects and Design

145

The class is divided into three sections, with the name displayed in the first. These dividing lines are 
optional when we present no more information than the class name. In designing a class diagram, we may 
find that the level of detail in Figure 6-1 is enough for some classes. We are not obligated to represent every 
field and method, or even every class in a class diagram.

Abstract classes are represented either by italicizing the class name (see Figure 6-2) or by adding 
{abstract} to the class name (see Figure 6-3). The first method is the more common of the two, but the 
second is more useful when you are making notes.

■■ Note   The {abstract} syntax is an example of a constraint. Constraints are used in class diagrams to 
describe the way in which specific elements should be used. There is no special structure for the text between 
the braces; it should simply provide a short clarification of any conditions that may apply to the element.

Interfaces are defined in the same way as classes, except that they must include a stereotype (that is, an 
extension to the UML), as shown in Figure 6-4.

Figure 6-1.  A class

Figure 6-2.  An abstract class

Figure 6-3.  An abstract class defined using a constraint

Figure 6-4.  An interface



Chapter 6 ■ Objects and Design

146

Attributes
Broadly speaking, attributes describe a class’s properties. Attributes are listed in the section directly beneath 
the class name (see Figure 6-5).

Let’s take a close look at the attribute in the example. The initial symbol represents the level of visibility, 
or access control, for the attribute. Table 6-1 shows the three symbols available.

The visibility symbol is followed by the name of the attribute. In this case, I am describing the 
ShopProduct::$price property. A colon is used to separate the attribute name from its type (and optionally, 
its default value).

Once again, you need only include as much detail as is necessary for clarity.

Operations
Operations describe methods; or, more properly, they describe the calls that can be made on an instance of a 
class. Figure 6-6 shows two operations in the ShopProduct class.

As you can see, operations use a similar syntax to that used by attributes. The visibility symbol precedes 
the method name. A list of parameters is enclosed in parentheses. The method’s return type, if any, is 
delineated by a colon. Parameters are separated by commas and follow the attribute syntax, with the 
attribute name separated from its type by a colon.

Figure 6-5.  An attribute

Table 6-1.  Visibility Symbols

Symbol Visibility Explanation

+ Public Available to all code

- Private Available to the current class only

# Protected Available to the current class and its subclasses only

Figure 6-6.  Operations



Chapter 6 ■ Objects and Design

147

As you might expect, this syntax is relatively flexible. You can omit the visibility flag and the return type. 
Parameters are often represented by their type alone, as the argument name is not usually significant.

Describing Inheritance and Implementation
The UML describes the inheritance relationship as generalization. This relationship is signified by a line 
leading from the subclass to its parent. The line is tipped with an empty closed arrow.

Figure 6-7 shows the relationship between the ShopProduct class and its child classes.

The UML describes the relationship between an interface and the classes that implement it as 
realization. So, if the ShopProduct class were to implement the Chargeable interface, we could add it to our 
class diagram, as in Figure 6-8.

Associations
Inheritance is only one of a number of relationships in an object-oriented system. An association occurs 
when a class property is declared to hold a reference to an instance (or instances) of another class.

In Figure 6-9, we model two classes and create an association between them.

Figure 6-7.  Describing inheritance

Figure 6-8.  Describing interface implementation

Figure 6-9.  A class association



Chapter 6 ■ Objects and Design

148

At this stage, we are vague about the nature of this relationship. We have only specified that a Teacher object 
will have a reference to one or more Pupil objects, or vice versa. This relationship may or may not be reciprocal.

You can use arrows to describe the direction of the association. If the Teacher class has an instance of 
the Pupil class but not the other way round, then you should make your association an arrow leading from 
the Teacher to the Pupil class. This association, which is called unidirectional, is shown in Figure 6-10.

If each class has a reference to the other, you can use a double-headed arrow to describe a bidirectional 
relationship, as in Figure 6-11).

You can also specify the number of instances of a class that are referenced by another in an association. 
You do this by placing a number or range beside each class. You can also use an asterisk (*) to stand for any 
number. In Figure 6-12, there can be one Teacher object and zero or more Pupil objects.

In Figure 6-13, there can be one Teacher object and between five and ten Pupil objects in the association.

Figure 6-10.  A unidirectional association

Figure 6-11.  A bidirectional association

Figure 6-12.  Defining multiplicity for an association

Figure 6-13.  Defining multiplicity for an association



Chapter 6 ■ Objects and Design

149

Aggregation and Composition
Aggregation and composition are similar to association. All describe a situation in which a class holds a 
permanent reference to one or more instances of another. With aggregation and composition, though, the 
referenced instances form an intrinsic part of the referring object.

In the case of aggregation, the contained objects are a core part of the container, but they can also be 
contained by other objects at the same time. The aggregation relationship is illustrated by a line that begins 
with an unfilled diamond.

In Figure 6-14, I define two classes: SchoolClass and Pupil. The SchoolClass class aggregates Pupil.
Pupils make up a class, but the same Pupil object can be referred to by different SchoolClass instances 

at the same time. If I were to dissolve a school class, I would not necessarily delete the pupil, who may attend 
other classes.

Composition represents an even stronger relationship than this. In composition, the contained object 
can be referenced by its container only. It should be deleted when the container is deleted. Composition 
relationships are depicted in the same way as aggregation relationships, except that the diamond should be 
filled (see Figure 6-15).

Figure 6-14.  Aggregation



Chapter 6 ■ Objects and Design

150

A Person class maintains a reference to a SocialSecurityData object. The contained instance can 
belong only to the containing Person object.

Describing Use
The use relationship is described as a dependency in the UML. It is the most transient of the relationships 
discussed in this section because it does not describe a permanent link between classes.

A used class may be passed as an argument or acquired as a result of a method call.
The Report class in Figure 6-16 uses a ShopProductWriter object. The use relationship is shown by 

the broken line and open arrow that connects the two. It does not, however, maintain this reference as a 
property in the same way that a ShopProductWriter object maintains an array of ShopProduct objects.

Figure 6-15.  Composition

Figure 6-16.  A dependency relationship



Chapter 6 ■ Objects and Design

151

Using Notes
Class diagrams can capture the structure of a system, but they provide no sense of process. Figure 6-
16 tells us about the classes in our system. From Figure 6-16, you know that a Report object uses a 
ShopProductWriter, but you don’t know the mechanics of this. In Figure 6-17, I use a note to clarify things 
somewhat.

As you can see, a note consists of a box with a folded corner. It will often contain scraps of pseudo-code.
This clarifies Figure 6-16; you can now see that the Report object uses a ShopProductWriter to output 

product data. This is hardly a revelation, but use relationships are not always so obvious. In some cases, even 
a note might not provide enough information. Luckily, you can model the interactions of objects in your 
system, as well as the structure of your classes.

Sequence Diagrams
A sequence diagram is object-based rather than class-based. It is used to model a process in a system step-
by-step.

Let’s build up a simple diagram, modeling the means by which a Report object writes product data. A 
sequence diagram presents the participants of a system from left to right (see Figure 6-18).

I have labeled my objects with class names alone. If I had more than one instance of the same class 
working independently in my diagram, I would include an object name using the format, label:class (e.g., 
product1:ShopProduct).

You show the lifetime of the process you are modeling from top to bottom, as in Figure 6-19.

Figure 6-17.  Using a note to clarify a dependency

Figure 6-18.  Objects in a sequence diagram



Chapter 6 ■ Objects and Design

152

The vertical broken lines represent the lifetime of the objects in the system. The larger boxes that follow 
the lifelines represent the focus of a process. If you read Figure 6-19 from top to bottom, you can see how 
the process moves among objects in the system. This is hard to read without showing the messages that are 
passed between the objects. I add these in Figure 6-20.

Figure 6-20.  The complete sequence diagram

Figure 6-19.  Object lifelines in a sequence diagram



Chapter 6 ■ Objects and Design

153

The arrows represent the messages sent from one object to another. Return values are often left 
implicit (although they can be represented by a broken line, passing from the invoked object to the message 
originator). Each message is labeled using the relevant method call. You can be quite flexible with your 
labeling, although there is some syntax. Square brackets represent a condition:

[okToPrint]
write()

This snippet means that the write() invocation should only be made if the correct condition is met. An 
asterisk is used to indicate a repetition; optionally, further clarification can be in square brackets:

*[for each ShopProduct]
write()

You can interpret Figure 6-20 from top to bottom. First, a Report object acquires a list of ShopProduct 
objects from a ProductStore object. It passes these to a ShopProductWriter object, which stores 
references to them (though we can only infer this from the diagram). The ShopProductWriter object calls 
ShopProduct::getSummaryLine() for every ShopProduct object it references, adding the result to its output.

As you can see, sequence diagrams can model processes, freezing slices of dynamic interaction and 
presenting them with surprising clarity.

■■ Note   Look at Figures 6-16 and 6-20. Notice how the class diagram illustrates polymorphism, showing the 
classes derived from ShopProductWriter and ShopProduct. Now notice how this detail becomes transparent 
when we model the communication among objects. Where possible, we want objects to work with the most 
general types available, so that we can hide the details of implementation.

Summary
In this chapter, I went beyond the nuts and bolts of object-oriented programming to look at some key design 
issues. I examined features such as encapsulation, loose coupling, and cohesion that are essential aspects of 
a flexible and reusable object-oriented system. I went on to look at the UML, laying groundwork that will be 
essential in working with patterns later in the book.



PART II

Patterns



157© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_7

CHAPTER 7

What Are Design Patterns? Why 
Use Them?

Most problems we encounter as programmers have been handled time and again by others in our 
community. Design patterns can provide us with the means to mine that wisdom. Once a pattern becomes 
a common currency, it enriches our language, making it easy to share design ideas and their consequences. 
Design patterns simply distill common problems, define tested solutions, and describe likely outcomes. Many 
books and articles focus on the details of computer languages, such as the available functions, classes and 
methods, and so on. Pattern catalogs concentrate instead on how you can move on from these basics (the 
“what”) to an understanding of the problems and potential solutions in your projects (the “why” and “how”).

In this chapter, I introduce you to design patterns and look at some of the reasons for their popularity.
This chapter will cover the following:

•	 Pattern basics: What are design patterns?

•	 Pattern structure: What are the key elements of a design pattern?

•	 Pattern benefits: Why are patterns worth your time?

What Are Design Patterns?

In the world of software, a pattern is a tangible manifestation of an organization’s tribal 
memory.

—Grady Booch in Core J2EE Patterns

[A pattern is] a solution to a problem in a context.

—The Gang of Four, Design Patterns: Elements of Reusable Object-Oriented Software

As these quotations imply, a design pattern is a problem analyzed with good practice for its solution 
explained.

Problems tend to recur, and as web programmers we must solve them time and time again. How 
should we handle an incoming request? How can we translate this data into instructions for our system? 
How should we acquire data? Present results? Over time, we answer these questions with a greater or lesser 
degree of elegance and evolve an informal set of techniques that we use and reuse in our projects. These 
techniques are patterns of design.



Chapter 7 ■ What Are Design Patterns? Why Use Them?

158

Design patterns inscribe and formalize these problems and solutions, making hard-won experience 
available to the wider programming community. Patterns are (or should be) essentially bottom-up and not 
top-down. They are rooted in practice and not theory. That is not to say that there isn’t a strong theoretical 
element to design patterns (as we will see in the next chapter), but patterns are based on real-world 
techniques used by real programmers. Renowned pattern-hatcher Martin Fowler says that he discovers 
patterns, he does not invent them. For this reason, many patterns will engender a sense of déjà vu as you 
recognize techniques you have used yourself.

A catalog of patterns is not a cookbook. Recipes can be followed slavishly; code can be copied and 
slotted into a project with minor changes. You do not always need even to understand all the code used in a 
recipe. Design patterns inscribe approaches to particular problems. The details of implementation may vary 
enormously according to the wider context. This context might include the programming language you are 
using, the nature of your application, the size of your project, and the specifics of the problem.

Let’s say, for example, that your project requires that you create a templating system. Given the name of 
a template file, you must parse it and build a tree of objects to represent the tags you encounter.

You start off with a default parser that scans the text for trigger tokens. When it finds a match, it hands 
off responsibility for the hunt to another parser object, which is specialized for reading the internals of tags. 
This continues examining template data until it either fails, finishes, or finds another trigger. If it finds a 
trigger, it, too, must hand off responsibility to a specialist—perhaps an argument parser. Collectively, these 
components form what is known as a recursive descent parser.

So these are your participants: a MainParser, a TagParser, and an ArgumentParser. You create a 
ParserFactory class to create and return these objects.

Of course, nothing is easy, and you’re informed late in the game that you must support more than 
one syntax in your templates. Now, you need to create a parallel set of parsers according to syntax: an 
OtherTagParser, an OtherArgumentParser, and so on.

This is your problem: you need to generate a different set of objects according to the circumstance, and you 
want this to be more or less transparent to other components in the system. It just so happens that the Gang of 
Four define the following problem in their book’s summary page for the pattern Abstract Factory, “Provide an 
interface for creating families of related or dependent objects without specifying their concrete classes.”

That fits nicely. It is the nature of our problem that determines and shapes our use of this pattern. There is 
nothing cut and paste about the solution either, as you can see in Chapter 9, in which I cover Abstract Factory.

The very act of naming a pattern is valuable; it contributes to the kind of common vocabulary that has 
arisen naturally over the years in older crafts and professions. Such shorthand greatly aids collaborative 
design as alternative approaches and their various consequences are weighed and tested. When you discuss 
your alternative parser families, for example, you can simply tell colleagues that the system creates each 
set of objects using the Abstract Factory pattern. They will nod sagely, either immediately enlightened or 
making a mental note to look it up later. The point is that this bundle of concepts and consequences has a 
handle, which makes for a useful shorthand, as I’ll illustrate later in this chapter.

Finally, it is illegal, according to international law, to write about patterns without quoting Christopher 
Alexander, an architecture academic whose work heavily influenced the original object-oriented pattern 
advocates. He states in A Pattern Language (Oxford University Press, 1977):

Each pattern describes a problem which occurs over and over again in our environment, 
and then describes the core of the solution to that problem, in such a way that you can use 
this solution a million times over, without ever doing it the same way twice.

It is significant that this definition (which applies to architectural problems and solutions) begins with 
the problem and its wider setting, and then proceeds to a solution. There has been some criticism in recent 
years that design patterns have been overused, especially by inexperienced programmers. This is often a 
sign that solutions have been applied where the problem and context are not present. Patterns are more than 
a particular organization of classes and objects, cooperating in a particular way. Patterns are structured to 
define the conditions in which solutions should be applied and to discuss the effects of the solution.

http://dx.doi.org/10.1007/978-1-4842-1996-6_9


Chapter 7 ■ What Are Design Patterns? Why Use Them?

159

In this book, I will focus on a particularly influential strand in the patterns field: the form described 
in Design Patterns: Elements of Reusable Object-Oriented Software by the Gang of Four (Addison-Wesley 
Professional, 1995). It concentrates on patterns in object-oriented software development and inscribes some 
of the classic patterns that are present in most modern object-oriented projects.

The Gang of Four book is important because it inscribes key patterns, but also because it describes the 
design principles that inform and motivate these patterns. We will look at some of these principles in the 
next chapter.

■■ Note   The patterns described by the Gang of Four and in this book are really instances of a pattern 
language. A pattern language is a catalog of problems and solutions organized together so that they 
complement one another, forming an interrelated whole. There are pattern languages for other problem spaces, 
such as visual design and project management (and architecture, of course). When I discuss design patterns 
here, I refer to problems and solutions in object-oriented software development.

A Design Pattern Overview
At heart, a design pattern consists of four parts: the name, the problem, the solution, and the consequences.

Name
Names matter. They enrich the language of programmers; a few short words can stand in for quite complex 
problems and solutions. They must balance brevity and description. The Gang of Four claims, “Finding good 
names has been one of the hardest parts of developing our catalog.”

Martin Fowler agrees: “Pattern names are crucial, because part of the purpose of patterns is to create 
a vocabulary that allows developers to communicate more effectively” (Patterns of Enterprise Application 
Architecture, Addison-Wesley Professional, 2002).

In Patterns of Enterprise Application Architecture, Martin Fowler refines a database access pattern I 
first encountered in Core J2EE Patterns by Deepak Alur, Dan Malks, and John Crupi (Prentice Hall, 2001). 
Fowler defines two patterns that describe specializations of the older pattern. The logic of his approach is 
clearly correct (one of the new patterns models domain objects, while the other models database tables, a 
distinction that was vague in the earlier work). Nonetheless, it was hard to train myself to think in terms of 
the new patterns. I had been using the name of the original in design sessions and documents for so long 
that it had become part of my language.

The Problem
No matter how elegant the solution (and some are very elegant indeed), the problem and its context are the 
grounds of a pattern. Recognizing a problem is harder than applying any one of the solutions in a pattern 
catalog. This is one reason that some pattern solutions can be misapplied or overused.

Patterns describe a problem space with great care. The problem is described in brief and then 
contextualized, often with a typical example and one or more diagrams. It is broken down into its specifics, 
its various manifestations. Any warning signs that might help in identifying the problem are described.

The Solution
The solution is summarized initially in conjunction with the problem. It is also described in detail, often 
using UML class and interaction diagrams. The pattern usually includes a code example.



Chapter 7 ■ What Are Design Patterns? Why Use Them?

160

Although code may be presented, the solution is never cut-and-paste. The pattern describes an 
approach to a problem. There may be hundreds of nuances in its implementation. Think about instructions 
for sowing a food crop. If you simply follow a set of steps blindly, you are likely to go hungry come harvest 
time. More useful would be a pattern-based approach that covers the various conditions that may apply. The 
basic solution to the problem (making your crop grow) will always be the same (prepare soil, plant seeds, 
irrigate, harvest crop), but the actual steps you take will depend on all sorts of factors, such as your soil type, 
your location, the orientation of your land, local pests, and so on.

Martin Fowler refers to solutions in patterns as “half-baked.” That is, the coder must take away the 
concept and finish it for himself.

Consequences
Every design decision you make will have wider consequences. This should include the satisfactory 
resolution of the problem in question, of course. A solution, once deployed, may be ideally suited to work 
with other patterns. There may also be dangers to watch for.

The Gang of Four Format
As I write, I have five pattern catalogs on the desk in front of me. A quick look at the patterns in each 
confirms that none of them use the same structure. Some are formal; some are fine-grained, with many 
subsections; and others are discursive.

There are a number of well-defined pattern structures, including the original form developed by 
Christopher Alexander (the Alexandrian form), and the narrative approach favored by the Portland Pattern 
Repository (the Portland form). Because the Gang of Four book is so influential, and because we will cover 
many of the patterns they describe, let’s examine a few of the sections they include in their patterns:

•	 Intent: A brief statement of the pattern’s purpose. You should be able to see the point 
of the pattern at a glance.

•	 Motivation: The problem described, often in terms of a typical situation. The 
anecdotal approach can help make the pattern easy to grasp.

•	 Applicability: An examination of the different situations in which you might apply 
the pattern. While the motivation describes a typical problem, this section defines 
specific situations and weighs the merits of the solution in the context of each.

•	 Structure/Interaction: These sections may contain UML class and interaction 
diagrams describing the relationships among classes and objects in the solution.

•	 Implementation: This section looks at the details of the solution. It examines 
any issues that may come up when applying the technique and provides tips for 
deployment.

•	 Sample Code: I always skip ahead to this section. I find that a simple code example 
often provides a way into a pattern. The example is often chopped down to the basics 
in order to lay the solution bare. It could be in any object-oriented language. Of 
course, in this book, it will always be PHP.

•	 Known Uses: These describe real systems in which the pattern (problem, context, 
and solution) occurs. Some people say that for a pattern to be genuine, it must be 
found in at least three publicly available contexts. This is sometimes called the “rule 
of three.”



Chapter 7 ■ What Are Design Patterns? Why Use Them?

161

•	 Related Patterns: Some patterns imply others. In applying one solution, you can 
create the context in which another becomes useful. This section examines these 
synergies. It may also discuss patterns that have similarities to the problem or the 
solution, as well as any antecedents (i.e., patterns defined elsewhere on which the 
current pattern builds).

Why Use Design Patterns?
So what benefits can patterns bring? Given that a pattern is a problem defined and a solution described, the 
answer should be obvious. Patterns can help you to solve common problems. There is more to patterns, of course.

A Design Pattern Defines a Problem
How many times have you reached a stage in a project and found that there is no going forward? Chances 
are you must backtrack some way before starting out again.

By defining common problems, patterns can help you to improve your design. Sometimes, the first step 
to a solution is recognizing that you have a problem.

A Design Pattern Defines a Solution
Having defined and recognized the problem (and made certain that it is the right problem), a pattern gives 
you access to a solution, together with an analysis of the consequences of its use. Although a pattern does 
not absolve you of the responsibility to consider the implications of a design decision, you can at least be 
certain that you are using a tried-and-tested technique.

Design Patterns Are Language Independent
Patterns define objects and solutions in object-oriented terms. This means that many patterns apply equally 
in more than one language. When I first started using patterns, I read code examples in C++ and Smalltalk, 
and then deployed my solutions in Java. Others transfer with modifications to the pattern’s applicability or 
consequences, but remain valid. Either way, patterns can help you as you move between languages. Equally, 
an application that is built on good object-oriented design principles can be relatively easy to port between 
languages (although there are always issues that must be addressed).

Patterns Define a Vocabulary
By providing developers with names for techniques, patterns make communication richer. Imagine a design 
meeting. I have already described my Abstract Factory solution, and now I need to describe my strategy for 
managing the data the system compiles. I describe my plans to Bob:

Me: I’m thinking of using a Composite.

Bob: I don’t think you’ve thought that through.

Okay, Bob didn’t agree with me. He never does. But he knew what I was talking about, and therefore 
why my idea sucked. Let’s play that scene through again without a design vocabulary.

Me: I intend to use a tree of objects that share the same type. The type’s interface 
will provide methods for adding child objects of its own type. In this way, we can 
build up complex combinations of implementing objects at runtime.

Bob: Huh?



Chapter 7 ■ What Are Design Patterns? Why Use Them?

162

Patterns, or the techniques they describe, tend to interoperate. The Composite pattern lends itself to 
collaboration with the Visitor pattern, for example:

Me: And then we can use Visitors to summarize the data.

Bob: You’re missing the point.

Ignore Bob. I won’t describe the tortuous nonpattern version of this; I will cover Composite in Chapter 
10 and Visitor in Chapter 11.

The point is that, without a pattern language, we would still use these techniques. They precede their 
naming and organization. If patterns did not exist, they would evolve on their own, anyway. Any tool that is 
used sufficiently will eventually acquire a name.

Patterns Are Tried and Tested
So if patterns document good practice, is naming the only truly original thing about pattern catalogs? In 
some senses, that would seem to be true. Patterns represent best practice in an object-oriented context. To 
some highly experienced programmers, this may seem an exercise in repackaging the obvious. To the rest of 
us, patterns provide access to problems and solutions we would otherwise have to discover the hard way.

Patterns make design accessible. As pattern catalogs emerge for more and more specializations, even 
the highly experienced can find benefits as they move into new aspects of their fields. A GUI programmer 
can gain fast access to common problems and solutions in enterprise programming, for example. A web 
programmer can quickly chart strategies for avoiding the pitfalls that lurk in tablet and smart phone projects.

Patterns Are Designed for Collaboration
By their nature, patterns should be generative and composable. This means that you should be able to apply 
one pattern and thereby create conditions suitable for the application of another. In other words, in using a 
pattern you may find other doors opened for you.

Pattern catalogs are usually designed with this kind of collaboration in mind, and the potential for 
pattern composition is always documented in the pattern itself.

Design Patterns Promote Good Design
Design patterns demonstrate and apply principles of object-oriented design. So, a study of design patterns 
can yield more than a specific solution in a context. You can come away with a new perspective on the ways 
that objects and classes can be combined to achieve an objective.

Design Patterns are Used By Popular Frameworks
This book is primarily about designing from the ground up. The patterns and principles covered here should 
enable you to design your own core frameworks with the needs of your projects in mind. However, laziness 
is also a virtue, and you may wish to work with (or you may inherit code that already uses) a framework such 
as Zend, Laravel, or Symfony. A good understanding of core design patterns will help you as you engage with 
these framework APIs.

PHP and Design Patterns
There is little in this chapter that is specific to PHP, which is characteristic of our topic to some extent. Many 
patterns apply to many object-capable languages with few or no implementation issues.

http://dx.doi.org/10.1007/978-1-4842-1996-6_10
http://dx.doi.org/10.1007/978-1-4842-1996-6_11


Chapter 7 ■ What Are Design Patterns? Why Use Them?

163

This is not always the case, of course. Some enterprise patterns work well in languages in which an 
application process continues to run between server requests. PHP does not work that way. A new script 
execution is kicked off for every request. This means that some patterns need to be treated with more 
care. Front Controller, for example, often requires some serious initialization time. This is fine when the 
initialization takes place once at application startup, but it’s more of an issue when it must take place for 
every request. That is not to say that we can’t use the pattern; I have deployed it with very good results in the 
past. We must simply ensure that we take account of PHP-related issues when we discuss the pattern. PHP 
forms the context for all the patterns that this book examines.

I referred to object-capable languages earlier in this section. You could code in PHP without defining 
any classes at all. With a few notable exceptions, however, objects and object-oriented design lie at the heart 
of most PHP projects and libraries.

Summary
In this chapter, I introduced design patterns, showed you their structure (using the Gang of Four form), and 
suggested some reasons why you might want to use design patterns in your scripts.

It is important to remember that design patterns are not snap-on solutions that can be combined like 
components to build a project. They are suggested approaches to common problems. These solutions 
embody some key design principles. It is these that we will examine in the next chapter.



165© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_8

CHAPTER 8

Some Pattern Principles

Although design patterns simply describe solutions to problems, they tend to emphasize solutions that 
promote reusability and flexibility. To achieve this, they manifest some key object-oriented design principles. 
We will encounter some of them in this chapter and in more detail throughout the rest of the book.

This chapter will cover the following topics:

•	 Composition: How to use object aggregation to achieve greater flexibility than you 
could with inheritance alone

•	 Decoupling: How to reduce dependency between elements in a system

•	 The power of the interface: Patterns and polymorphism

•	 Pattern categories: The types of patterns that this book will cover

The Pattern Revelation
I first started working with objects in the Java language. As you might expect, it took a while before some 
concepts clicked. When it did happen, though, it happened very fast, almost with the force of revelation. 
The elegance of inheritance and encapsulation bowled me over. I could sense that this was a different way 
of defining and building systems. I got polymorphism, working with a type and switching implementations 
at runtime. It seemed to me that this understanding would solve most of my design problems, and help me 
design beautiful and elegant systems.

All the books on my desk at the time focused on language features and the very many APIs available to 
the Java programmer. Beyond a brief definition of polymorphism, there was little attempt to examine design 
strategies.

Language features alone do not engender object-oriented design. Although my projects fulfilled their 
functional requirements, the kind of design that inheritance, encapsulation and polymorphism had seemed 
to offer continued to elude me.

My inheritance hierarchies grew wider and deeper as I attempted to build a new class for every 
eventuality. The structure of my systems made it hard to convey messages from one tier to another without 
giving intermediate classes too much awareness of their surroundings, binding them into the application 
and making them unusable in new contexts.

It wasn’t until I discovered Design Patterns: Elements of Reusable Object-Oriented Software (Addison-
Wesley Professional, 1995), otherwise known as the Gang of Four book, that I realized I had missed an entire 
design dimension. By that time, I had already discovered some of the core patterns for myself, but others 
contributed to a new way of thinking.

I found that I had over-privileged inheritance in my designs, trying to build too much functionality into 
my classes. But where else can functionality go in an object-oriented system?



Chapter 8 ■ Some Pattern Principles

166

I found the answer in composition. Software components can be defined at runtime by combining 
objects in flexible relationships. The Gang of Four boiled this down into a principle: “favor composition over 
inheritance.” The patterns described ways in which objects could be combined at runtime to achieve a level 
of flexibility impossible in an inheritance tree alone.

Composition and Inheritance
Inheritance is a powerful way of designing for changing circumstances or contexts. It can limit flexibility, 
however, especially when classes take on multiple responsibilities.

The Problem
As you know, child classes inherit the methods and properties of their parents (as long as they are protected 
or public elements). You can use this fact to design child classes that provide specialized functionality.

Figure 8-1 presents a simple example using the UML.
The abstract Lesson class in Figure 8-1 models a lesson in a college. It defines abstract cost() 

and chargeType() methods. The diagram shows two implementing classes, FixedPriceLesson and 
TimedPriceLesson, which provide distinct charging mechanisms for lessons.

Using this inheritance scheme, I can switch between lesson implementations. Client code will know 
only that it is dealing with a Lesson object, so the details of cost will be transparent.

What happens, though, if I introduce a new set of specializations? I need to handle lectures and 
seminars. Because these organize enrollment and lesson notes in different ways, they require separate 
classes. Now I have two forces that operate upon my design. I need to handle pricing strategies, and separate 
lectures and seminars.

Figure 8-2 shows a brute-force solution.

Figure 8-1.  A parent class and two child classes



Chapter 8 ■ Some Pattern Principles

167

Figure 8-2 shows a hierarchy that is clearly faulty. I can no longer use the inheritance tree to manage my 
pricing mechanisms without duplicating great swathes of functionality. The pricing strategies are mirrored 
across the Lecture and Seminar class families.

At this stage, I might consider using conditional statements in the Lesson super class, removing those 
unfortunate duplications. Essentially, I remove the pricing logic from the inheritance tree altogether, moving 
it up into the super class. This is the reverse of the usual refactoring, where you replace a conditional with 
polymorphism. Here is an amended Lesson class:

// listing 08.01
abstract class Lesson
{
    protected $duration;
    const     FIXED = 1;
    const     TIMED = 2;
    private   $costtype;

    public function __construct(int $duration, int $costtype = 1)
    {
        $this->duration = $duration;
        $this->costtype = $costtype;
    }

    public function cost(): int
    {
        switch ($this->costtype) {
            case self::TIMED:
                return (5 * $this->duration);
                break;
            case self::FIXED:
                return 30;
                break;

Figure 8-2.  A poor inheritance structure



Chapter 8 ■ Some Pattern Principles

168

            default:
                $this->costtype = self::FIXED;
                return 30;
        }
    }

    public function chargeType(): string
    {
        switch ($this->costtype) {
            case self::TIMED:
                return "hourly rate";
                break;
            case self::FIXED:
                return "fixed rate";
                break;
            default:
                $this->costtype = self::FIXED;
                return "fixed rate";
        }
    }

    // more lesson methods...
}

// listing 08.02
class Lecture extends Lesson
{
    // Lecture-specific implementations ...
}

// listing 08.03
class Seminar extends Lesson
{
    // Seminar-specific implementations ...
}

Here’s how I might work with these classes:

// listing 08.04
$lecture = new Lecture(5, Lesson::FIXED);
print "{$lecture->cost()} ({$lecture->chargeType()})\n";

$seminar = new Seminar(3, Lesson::TIMED);
print "{$seminar->cost()} ({$seminar->chargeType()})\n";

And here’s the output:

30 (fixed rate)
15 (hourly rate)

You can see the new class diagram in Figure 8-3.



Chapter 8 ■ Some Pattern Principles

169

I have made the class structure much more manageable, but at a cost. Using conditionals in this code 
is a retrograde step. Usually, you would try to replace a conditional statement with polymorphism. Here, I 
have done the opposite. As you can see, this has forced me to duplicate the conditional statement across the 
chargeType() and cost() methods.

I seem doomed to duplicate code.

Using Composition
I can use the Strategy pattern to compose my way out of trouble. Strategy is used to move a set of 
algorithms into a separate type. By moving cost calculations, I can simplify the Lesson type. You can see 
this in Figure 8-4.

I create an abstract class, CostStrategy, which defines the abstract methods, cost() and chargeType(). 
The cost() method requires an instance of Lesson, which it will use to generate cost data. I provide two 
implementations for CostStrategy. Lesson objects work only with the CostStrategy type, not a specific 
implementation, so I can add new cost algorithms at any time by subclassing CostStrategy. This would 
require no changes at all to any Lesson classes.

Figure 8-3.  Inheritance hierarchy improved by removing cost calculations from subclasses

Figure 8-4.  Moving algorithms into a separate type



Chapter 8 ■ Some Pattern Principles

170

Here’s a simplified version of the new Lesson class illustrated in Figure 8-4:

// listing 08.05
abstract class Lesson
{
    private $duration;
    private $costStrategy;

    public function __construct(int $duration, CostStrategy $strategy)
    {
        $this->duration = $duration;
        $this->costStrategy = $strategy;
    }

    public function cost(): int
    {
        return $this->costStrategy->cost($this);
    }

    public function chargeType(): string
    {
        return $this->costStrategy->chargeType();
    }

    public function getDuration(): int
    {
        return $this->duration;
    }

    // more lesson methods...
}

// listing 08.06
class Lecture extends Lesson
{
    // Lecture-specific implementations ...
}

// listing 08.07
class Seminar extends Lesson
{
    // Seminar-specific implementations ...
}

The Lesson class requires a CostStrategy object, which it stores as a property. The Lesson::cost() 
method simply invokes CostStrategy::cost(). Equally, Lesson::chargeType() invokes 
CostStrategy::chargeType(). This explicit invocation of another object’s method in order to fulfill a 
request is known as delegation. In my example, the CostStrategy object is the delegate of Lesson. The 
Lesson class washes its hands of responsibility for cost calculations and passes on the task to a CostStrategy 
implementation. Here, it is caught in the act of delegation:



Chapter 8 ■ Some Pattern Principles

171

    public function cost(): int
    {
        return $this->costStrategy->cost($this);
    }

Here is the CostStrategy class, together with its implementing children:

// listing 08.08
abstract class CostStrategy
{
    abstract public function cost(Lesson $lesson): int;
    abstract public function chargeType(): string;
}

// listing 08.09
class TimedCostStrategy extends CostStrategy
{
    public function cost(Lesson $lesson): int
    {
        return ($lesson->getDuration() * 5);
    }

    public function chargeType(): string
    {
        return "hourly rate";
    }
}

// listing 08.10
class FixedCostStrategy extends CostStrategy
{
    public function cost(Lesson $lesson): int
    {
        return 30;
    }

    public function chargeType(): string
    {
        return "fixed rate";
    }
}

I can change the way that any Lesson object calculates cost by passing it a different CostStrategy object 
at runtime. This approach then makes for highly flexible code. Rather than building functionality into my 
code structures statically, I can combine and recombine objects dynamically:

// listing 08.11
$lessons[] = new Seminar(4, new TimedCostStrategy());
$lessons[] = new Lecture(4, new FixedCostStrategy());

foreach ($lessons as $lesson) {



Chapter 8 ■ Some Pattern Principles

172

    print "lesson charge {$lesson->cost()}. ";
    print "Charge type: {$lesson->chargeType()}\n";
}

lesson charge 20. Charge type: hourly rate
lesson charge 30. Charge type: fixed rate

As you can see, one effect of this structure is that I have focused the responsibilities of my classes. 
CostStrategy objects are responsible solely for calculating cost, and Lesson objects manage lesson data.

So, composition can make your code more flexible because objects can be combined to handle tasks 
dynamically in many more ways than you can anticipate in an inheritance hierarchy alone. There can 
be a penalty with regard to readability, though. Because composition tends to result in more types, with 
relationships that aren’t fixed with the same predictability as they are in inheritance relationships, it can be 
slightly harder to digest the relationships in a system.

Decoupling
You saw in Chapter 6 that it makes sense to build independent components. A system with highly 
interdependent classes can be hard to maintain. A change in one location can require a cascade of related 
changes across the system.

The Problem
Reusability is one of the key objectives of object-oriented design, and tight coupling is its enemy. You can 
diagnose tight coupling when you see that a change to one component of a system necessitates many 
changes elsewhere. You should aspire to create independent components, so that you can make changes 
without a domino effect of unintended consequences. When you alter a component, the extent to which it is 
independent is related to the likelihood that your changes will cause other parts of your system to fail.

You saw an example of tight coupling in Figure 8-2. Because the cost logic was mirrored across the 
Lecture and Seminar types, a change to TimedPriceLecture would necessitate a parallel change to the same 
logic in TimedPriceSeminar. By updating one class and not the other, I would break my system—without 
any warning from the PHP engine. My first solution, using a conditional statement, produced a similar 
dependency between the cost() and chargeType() methods.

By applying the Strategy pattern, I distilled my cost algorithms into the CostStrategy type, locating 
them behind a common interface and implementing each only once.

Coupling of another sort can occur when many classes in a system are embedded explicitly into a 
platform or environment. Let’s say that you are building a system that works with a MySQL database, for 
example. You might use methods such as mysqli::query() to speak to the database server.

Should you be required to deploy the system on a server that does not support MySQL, you could 
convert your entire project to use SQLite. You would be forced to make changes throughout your code, 
though, and face the prospect of maintaining two parallel versions of your application.

The problem here is not the system’s dependency on an external platform. Such a dependency is 
inevitable. You need to work with code that speaks to a database. The problem comes when such code is 
scattered throughout a project. Talking to databases is not the primary responsibility of most classes in a 
system, so the best strategy is to extract such code and group it together behind a common interface. In this 
way, you promote the independence of your classes. At the same time, by concentrating your gateway code 
in one place, you make it much easier to switch to a new platform without disturbing your wider system. This 
process, the hiding of implementation behind a clean interface, is known as encapsulation. The Doctrine 
database library solves this problem with the DBAL (database abstraction layer) project. This provides a single 
point of access for multiple databases.

http://dx.doi.org/10.1007/978-1-4842-1996-6_6


Chapter 8 ■ Some Pattern Principles

173

The DriverManager class provides a static method called getConnection() that accepts a parameters 
array. According to the makeup of this array, it returns a particular implementation of an interface called 
Doctrine\DBAL\Driver. You can see the class structure in Figure 8-5.

The DBAL package, then, lets you decouple your application code from the specifics of your database 
platform. You should be able to run a single system with MySQL, SQLite, MSSQL, and others without 
changing a line of code (apart from your configuring parameters, of course).

Loosening Your Coupling
To handle database code flexibly, you should decouple the application logic from the specifics of the 
database platform it uses. You will see lots of opportunities for this kind of separation of components in your 
own projects.

Imagine, for example, that the Lesson system must incorporate a registration component to add new 
lessons to the system. As part of the registration procedure, an administrator should be notified when a 
lesson is added. The system’s users can’t agree whether this notification should be sent by mail or by text 
message. In fact, they’re so argumentative that you suspect they might want to switch to a new mode of 
communication in the future. What’s more, they want to be notified of all sorts of things, so that a change to 
the notification mode in one place will mean a similar alteration in many other places.

If you’ve hard-coded calls to a Mailer class or a Texter class, then your system is tightly coupled to 
a particular notification mode, just as it would be tightly coupled to a database platform by the use of a 
specialized database API.

Here is some code that hides the implementation details of a notifier from the system that uses it:

// listing 08.12
class RegistrationMgr
{
    public function register(Lesson $lesson)
    {
        // do something with this Lesson

        // now tell someone
        $notifier = Notifier::getNotifier();
        $notifier->inform("new lesson: cost ({$lesson->cost()})");
    }
}

Figure 8-5.  The DBAL package decouples client code from database objects



Chapter 8 ■ Some Pattern Principles

174

// listing 08.13
abstract class Notifier
{
    public static function getNotifier(): Notifier
    {
        // acquire concrete class according to
        // configuration or other logic

        if (rand(1, 2) === 1) {
            return new MailNotifier();
        } else {
            return new TextNotifier();
        }
    }

    abstract public function inform($message);
}

// listing 08.14
class MailNotifier extends Notifier
{
    public function inform($message)
    {
        print "MAIL notification: {$message}\n";
    }
}

// listing 08.15
class TextNotifier extends Notifier
{
    public function inform($message)
    {
        print "TEXT notification: {$message}\n";
    }
}

I create RegistrationMgr, a sample client for my Notifier classes. The Notifier class is abstract, but it 
does implement a static method, getNotifier(), which fetches a concrete Notifier object (TextNotifier or 
MailNotifier). In a real project, the choice of Notifier would be determined by a flexible mechanism, such as 
a configuration file. Here, I cheat and make the choice randomly. MailNotifier and TextNotifier do nothing 
more than print out the message they are passed along with an identifier to show which one has been called.

Notice how the knowledge of which concrete Notifier should be used has been focused in the 
Notifier::getNotifier() method. I could send notifier messages from a hundred different parts of my 
system, and a change in Notifier would only have to be made in that one method.

Here is some code that calls the RegistrationMgr:

// listing 08.16
$lessons1 = new Seminar(4, new TimedCostStrategy());
$lessons2 = new Lecture(4, new FixedCostStrategy());
$mgr = new RegistrationMgr();
$mgr->register($lessons1);
$mgr->register($lessons2);



Chapter 8 ■ Some Pattern Principles

175

And here’s the output from a typical run:

TEXT notification: new lesson: cost (20)
MAIL notification: new lesson: cost (30)

Figure 8-6 shows these classes.
Notice how similar the structure in Figure 8-6 is to that formed by the Doctrine components shown in 

Figure 8-5.

Code to an Interface, Not to an Implementation
This principle is one of the all-pervading themes of this book. You saw in Chapter 6 (and in the last section) 
that you can hide different implementations behind the common interface defined in a superclass. 
Client code can then require an object of the superclass’s type rather than that of an implementing class, 
unconcerned by the specific implementation it is actually getting.

Parallel conditional statements, like the ones I rooted out from Lesson::cost() and 
Lesson::chargeType(), are a common sign that polymorphism is needed. They make code hard to maintain 
because a change in one conditional expression necessitates a change in its siblings. Conditional statements 
are occasionally said to implement a “simulated inheritance.”

By placing the cost algorithms in separate classes that implement CostStrategy, I remove duplication. I 
also make it much easier should I need to add new cost strategies in the future.

From the perspective of client code, it is often a good idea to require abstract or general types in your 
methods’ parameters. By requiring more specific types, you could limit the flexibility of your code at runtime.

Having said that, of course, the level of generality you choose in your argument hints is a matter of 
judgment. Make your choice too general, and your method may become less safe. If you require the specific 
functionality of a subtype, then accepting a differently equipped sibling into a method could be risky.

Still, make your choice of argument hint too restricted, and you lose the benefits of polymorphism. Take 
a look at this altered extract from the Lesson class:

// listing 08.17
    public function __construct(int $duration, FixedCostStrategy $strategy)
    {
        $this->duration = $duration;
        $this->costStrategy = $strategy;
    }

Figure 8-6.  The Notifier class separates client code from Notifier implementations

http://dx.doi.org/10.1007/978-1-4842-1996-6_6


Chapter 8 ■ Some Pattern Principles

176

There are two issues arising from the design decision in this example. First, the Lesson object is now 
tied to a specific cost strategy, which closes down my ability to compose dynamic components. Second, the 
explicit reference to the FixedPriceStrategy class forces me to maintain that particular implementation.

By requiring a common interface, I can combine a Lesson object with any CostStrategy 
implementation:

// listing 08.18
    public function __construct(int $duration, CostStrategy $strategy)
    {
        $this->duration = $duration;
        $this->costStrategy = $strategy;
    }

I have, in other words, decoupled my Lesson class from the specifics of cost calculation. All that matters 
is the interface and the guarantee that the provided object will honor it.

Of course, coding to an interface can often simply defer the question of how to instantiate your objects. 
When I say that a Lesson object can be combined with any CostStrategy interface at runtime, I beg the 
question, “But where does the CostStrategy object come from?”

When you create an abstract superclass, there is always the issue of how its children should be 
instantiated. Which child do you choose and according to which condition? This subject forms a category of 
its own in the Gang of Four pattern catalog, and I will examine this further in the next chapter.

The Concept that Varies
It’s easy to interpret a design decision once it has been made, but how do you decide where to start?

The Gang of Four recommend that you “encapsulate the concept that varies.” In terms of my lesson 
example, the varying concept is the cost algorithm. Not only is the cost calculation one of two possible 
strategies in the example, but it is obviously a candidate for expansion: special offers, overseas student rates, 
introductory discounts-all sorts of possibilities present themselves.

I quickly established that subclassing for this variation was inappropriate, and I resorted to a 
conditional statement. By bringing my variation into the same class, I underlined its suitability for 
encapsulation.

The Gang of Four recommend that you actively seek varying elements in your classes and assess their 
suitability for encapsulation in a new type. Each alternative in a suspect conditional may be extracted to 
form a class that extends a common abstract parent. This new type can then be used by the class or classes 
from which it was extracted. This has the following effects:

•	 Focusing responsibility

•	 Promoting flexibility through composition

•	 Making inheritance hierarchies more compact and focused

•	 Reducing duplication

So how do you spot variation? One sign is the misuse of inheritance. This might include inheritance 
deployed according to multiple forces at one time (e.g., lecture/seminar and fixed/timed cost). It might also 
include subclassing on an algorithm where the algorithm is incidental to the core responsibility of the type. 
The other sign of variation suitable for encapsulation is, as you have seen, a conditional expression.



Chapter 8 ■ Some Pattern Principles

177

Patternitis
One problem for which there is no pattern is the unnecessary or inappropriate use of patterns. This has 
earned patterns a bad name in some quarters. Because pattern solutions are neat, it is tempting to apply 
them wherever you see a fit, whether they truly fulfill a need or not.

The eXtreme Programming (XP) methodology offers a couple of principles that might apply here. The 
first is, “You aren’t going to need it” (often abbreviated to YAGNI). This is generally applied to application 
features, but it also makes sense for patterns.

When I build large environments in PHP, I tend to split my application into layers, separating 
application logic from presentation and persistence layers. I use all sorts of core and enterprise patterns in 
conjunction with one another.

When I am asked to build a feedback form for a small business web site, however, I may simply use 
procedural code in a single page script. I do not need enormous amounts of flexibility; I won’t be building on 
the initial release. I don’t need to use patterns that address problems in larger systems. Instead, I apply the 
second XP principle: “Do the simplest thing that works.”

When you work with a pattern catalog, the structure and process of the solution are what stick in the 
mind, consolidated by the code example. Before applying a pattern, though, pay close attention to the 
problem, or “when to use it,” section, and then read up on the pattern’s consequences. In some contexts, the 
cure may be worse than the disease.

The Patterns
This book is not a pattern catalog. Nevertheless, in the coming chapters, I will introduce a few of the key 
patterns in use at the moment, providing PHP implementations and discussing them in the broad context of 
PHP programming.

The patterns described will be drawn from key catalogs, including Design Patterns: Elements of Reusable 
Object-Oriented Software, Patterns of Enterprise Application Architecture by Martin Fowler (Addison-Wesley 
Professional, 2002) and Core J2EE Patterns: Best Practices and Design Strategies (Prentice Hall, 2001) by Alur, 
et al. I use the Gang of Four’s categorization as a starting point, dividing patterns into five categories, as 
follows.

Patterns for Generating Objects
These patterns are concerned with the instantiation of objects. This is an important category given the 
principle, “Code to an interface.” If you are working with abstract parent classes in your design, then you 
must develop strategies for instantiating objects from concrete subclasses. It is these objects that will be 
passed around your system.

Patterns for Organizing Objects and Classes
These patterns help you to organize the compositional relationships of your objects. More simply, these 
patterns show how you combine objects and classes.

Task-Oriented Patterns
These patterns describe the mechanisms by which classes and objects cooperate to achieve objectives.



Chapter 8 ■ Some Pattern Principles

178

Enterprise Patterns
I look at some patterns that describe typical Internet programming problems and solutions. Drawn largely 
from Patterns of Enterprise Application Architecture and Core J2EE Patterns: Best Practices and Design 
Strategies, the patterns deal with presentation and application logic.

Database Patterns
An examination of patterns that help with storing and retrieving data, and with mapping objects to and from 
databases.

Summary
In this chapter, I examined some of the principles that underpin many design patterns. I looked at the use 
of composition to enable object combination and recombination at runtime, resulting in more flexible 
structures than would be available using inheritance alone. I also introduced you to decoupling, the practice 
of extracting software components from their context to make them more generally applicable. Finally, I 
reviewed the importance of interface as a means of decoupling clients from the details of implementation.

In the coming chapters, I will examine some design patterns in detail.



179© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_9

CHAPTER 9

Generating Objects

Creating objects is a messy business. So, many object-oriented designs deal with nice, clean abstract 
classes, taking advantage of the impressive flexibility afforded by polymorphism (the switching of concrete 
implementations at runtime). To achieve this flexibility, though, I must devise strategies for object 
generation. This is the topic I will look at in this chapter.

This chapter will cover the following patterns:

•	 The Singleton pattern: A special class that generates one—and only one—object 
instance

•	 The Factory Method pattern: Building an inheritance hierarchy of creator classes

•	 The Abstract Factory pattern: Grouping the creation of functionally related products

•	 The Prototype pattern: Using clone to generate objects

•	 The Service Locator pattern: Asking your system for objects

•	 The Dependency Injection pattern: Letting your system give you objects

Problems and Solutions in Generating Objects
Object creation can be a weak point in object-oriented design. In the previous chapter, you saw the principle, 
“Code to an interface, not to an implementation.” To this end, you are encouraged to work with abstract 
supertypes in your classes. This makes code more flexible, allowing you to use objects instantiated from 
different concrete subclasses at runtime. This has the side effect that object instantiation is deferred.

Here’s a class that accepts a name string and instantiates a particular object:

// listing 09.01

abstract class Employee
{
    protected $name;

    public function __construct(string $name)
    {
        $this->name = $name;
    }

    abstract public function fire();
}



Chapter 9 ■ Generating Objects

180

// listing 09.02

class Minion extends Employee
{
    public function fire()
    {
        print "{$this->name}: I'll clear my desk\n";
    }
}

// listing 09.03

class NastyBoss
{
    private $employees = [];

    public function addEmployee(string $employeeName)
    {
        $this->employees[] = new Minion($employeeName);
    }

    public function projectFails()
    {
        if (count($this->employees) > 0) {
            $emp = array_pop($this->employees);
            $emp->fire();
        }
    }
}

// listing 09.04

$boss = new NastyBoss();
$boss->addEmployee("harry");
$boss->addEmployee("bob");
$boss->addEmployee("mary");
$boss->projectFails();

mary: I'll clear my desk

As you can see, I define an abstract base class, Employee, with a downtrodden implementation, Minion. 
Given a name string, the NastyBoss::addEmployee() method instantiates a new Minion object. Whenever 
a NastyBoss object runs into trouble (via the NastyBoss::projectFails() method), it looks for a Minion to 
fire.

By instantiating a Minion object directly in the NastyBoss class, we limit flexibility. If a NastyBoss 
object could work with any instance of the Employee type, we could make our code amenable to variation at 
runtime as we add more Employee specializations. You should find the polymorphism in Figure 9-1 familiar.



Chapter 9 ■ Generating Objects

181

If the NastyBoss class does not instantiate a Minion object, where does it come from? Authors often 
duck out of this problem by constraining an argument type in a method declaration, and then conveniently 
omitting to show the instantiation in anything other than a test context:

// listing 09.05

class NastyBoss
{
    private $employees = [];

    public function addEmployee(Employee $employee)
    {
        $this->employees[] = $employee;
    }

    public function projectFails()
    {
        if (count($this->employees)) {
            $emp = array_pop($this->employees);
            $emp->fire();
        }
    }
}

// listing 09.06

// new Employee class...

class CluedUp extends Employee
{
    public function fire()
    {

Figure 9-1.  Working with an abstract type enables polymorphism



Chapter 9 ■ Generating Objects

182

        print "{$this->name}: I'll call my lawyer\n";
    }
}

// listing 09.07

$boss = new NastyBoss();
$boss->addEmployee(new Minion("harry"));
$boss->addEmployee(new CluedUp("bob"));
$boss->addEmployee(new Minion("mary"));
$boss->projectFails();
$boss->projectFails();
$boss->projectFails();

mary: I'll clear my desk
bob: I'll call my lawyer
harry: I'll clear my desk

Although this version of the NastyBoss class works with the Employee type, and therefore benefits from 
polymorphism, I still haven’t defined a strategy for object creation. Instantiating objects is a dirty business, 
but it has to be done. This chapter is about classes and objects that work with concrete classes, so that the 
rest of your classes do not have to.

If there is a principle to be found here, it is “delegate object instantiation.” I did this implicitly in the previous 
example by demanding that an Employee object be passed to the NastyBoss::addEmployee() method. I could, 
however, equally delegate to a separate class or method that takes responsibility for generating Employee objects. 
Here I add a static method to the Employee class that implements a strategy for object creation:

// listing 09.08
abstract class Employee
{
    protected $name;
    private static $types = ['Minion', 'CluedUp', 'WellConnected'];

    public static function recruit(string $name)
    {
        $num = rand(1, count(self::$types)) - 1;
        $class = __NAMESPACE__ . "\\".self::$types[$num];
        return new $class($name);
    }

    public function __construct(string $name)
    {
        $this->name = $name;
    }

    abstract public function fire();
}

// listing 09.09

// new Employee class...



Chapter 9 ■ Generating Objects

183

class WellConnected extends Employee
{
    public function fire()
    {
        print "{$this->name}: I'll call my dad\n";
    }
}

As you can see, this takes a name string and uses it to instantiate a particular Employee subtype at 
random. I can now delegate the details of instantiation to the Employee class’s recruit() method:

// listing 09.10

$boss = new NastyBoss();
$boss->addEmployee(Employee::recruit("harry"));
$boss->addEmployee(Employee::recruit("bob"));
$boss->addEmployee(Employee::recruit("mary"));

You saw a simple example of such a class in Chapter 4. I placed a static method in the ShopProduct class 
called getInstance().

■■ Note   I use the term “factory” frequently in this chapter. A factory is a class or method with responsibility 
for generating objects.

getInstance() is responsible for generating the correct ShopProduct subclass based on a database 
query. The ShopProduct class, therefore, has a dual role. It defines the ShopProduct type, but it also acts as a 
factory for concrete ShopProduct objects:

    public static function getInstance(int $id, PDO $pdo): ShopProduct
    {
        $stmt = $pdo->prepare("select * from products where id=?");
        $result = $stmt->execute([$id]);

        $row = $stmt->fetch();
        if (empty($row)) {
            return null;
        }
        if ($row['type'] == "book") {
            // instantiate a BookProduct object
        } elseif ($row['type'] == "cd") {
            // instantiate a CdProduct object
        } else {
            // instantiate a ShopProduct object
        }
        $product->setId($row['id']);
        $product->setDiscount($row['discount']);
        return $product;
    }

http://dx.doi.org/10.1007/978-1-4842-1996-6_4


Chapter 9 ■ Generating Objects

184

The getInstance() method uses a large if/else statement to determine which subclass to instantiate. 
Conditionals like this are quite common in factory code. Although you should attempt to excise large 
conditional statements from your projects, doing so often has the effect of pushing the conditional back to 
the moment at which an object is generated. This is not generally a serious problem because you remove 
parallel conditionals from your code in pushing the decision-making back to this point.

In this chapter, then, I will examine some of the key Gang of Four patterns for generating objects.

The Singleton Pattern
The global variable is one of the great bugbears of the object-oriented programmer. The reasons should 
be familiar to you by now. Global variables tie classes into their context, undermining encapsulation (see 
Chapter 6, “Objects and Design,” and Chapter 8, “Some Pattern Principles,” for more on this). A class that 
relies on global variables becomes impossible to pull out of one application and use in another, without first 
ensuring that the new application itself defines the same global variables.

Although this is undesirable, the unprotected nature of global variables can be a greater problem. Once 
you start relying on global variables, it is perhaps just a matter of time before one of your libraries declares 
a global that clashes with another declared elsewhere. You have seen already that, if you are not using 
namespaces, PHP is vulnerable to class name clashes. But this is much worse. PHP will not warn you when 
globals collide. The first you will know about it is when your script begins to behave oddly. Worse still, you 
may not notice any issues at all in your development environment. By using globals, though, you potentially 
leave your users exposed to new and interesting conflicts when they attempt to deploy your library alongside 
others.

Globals remain a temptation, however. This is because there are times when the sin inherent in global 
access seems a price worth paying in order to give all of your classes access to an object.

As I hinted, namespaces provide some protection from this. You can at least scope variables to a 
package, which means that third-party libraries are less likely to clash with your own system. Even so, the 
risk of collision exists within the namespace itself.

The Problem
Well-designed systems generally pass object instances around via method calls. Each class retains its 
independence from the wider context, collaborating with other parts of the system via clear lines of 
communication. Sometimes, though, you find that this forces you to use some classes as conduits for objects 
that do not concern them, introducing dependencies in the name of good design.

Imagine a Preferences class that holds application-level information. We might use a Preferences 
object to store data such as DSN strings (Data Source Names hold table and user information about a 
database), URL roots, file paths, and so on. This is the sort of information that will vary from installation to 
installation. The object may also be used as a notice board, a central location for messages that could be set 
or retrieved by otherwise unrelated objects in a system.

Passing a Preferences object around from object to object may not always be a good idea. Many classes 
that do not otherwise use the object could be forced to accept it simply so that they could pass it on to the 
objects that they work with. This is just another kind of coupling.

You also need to be sure that all objects in your system are working with the same Preferences object. 
You do not want objects setting values on one object, while others read from an entirely different one.

Let’s distill the forces in this problem:

•	 A Preferences object should be available to any object in your system.

http://dx.doi.org/10.1007/978-1-4842-1996-6_6
http://dx.doi.org/10.1007/978-1-4842-1996-6_8


Chapter 9 ■ Generating Objects

185

•	 A Preferences object should not be stored in a global variable, which can be 
overwritten.

•	 There should be no more than one Preferences object in play in the system. This 
means that object Y can set a property in the Preferences object, and object Z can 
retrieve the same property, without either one talking to the other directly (assuming 
both have access to the Preferences object).

Implementation
To address this problem, I can start by asserting control over object instantiation. Here, I create a class that 
cannot be instantiated from outside of itself. That may sound difficult, but it’s simply a matter of defining a 
private constructor:

class Preferences
{
    private $props = [];

    private function __construct()
    {
    }

    public function setProperty(string $key, string $val)
    {
        $this->props[$key] = $val;
    }

    public function getProperty(string $key): string
    {
        return $this->props[$key];
    }
}

Of course, at this point, the Preferences class is entirely unusable. I have taken access restriction to an 
absurd level. Because the constructor is declared private, no client code can instantiate an object from it. 
The setProperty() and getProperty() methods are therefore redundant.

I can use a static method and a static property to mediate object instantiation:

// listing 09.11

class Preferences
{
    private $props = [];
    private static $instance;

    private function __construct()
    {
    }

    public static function getInstance()
    {



Chapter 9 ■ Generating Objects

186

        if (empty(self::$instance)) {
            self::$instance = new Preferences();
        }
        return self::$instance;
    }

    public function setProperty(string $key, string $val)
    {
        $this->props[$key] = $val;
    }

    public function getProperty(string $key): string
    {
        return $this->props[$key];
    }
}

The $instance property is private and static, so it cannot be accessed from outside the class. The 
getInstance() method has access, though. Because getInstance() is public and static, it can be called via 
the class from anywhere in a script:

// listing 09.12

$pref = Preferences::getInstance();
$pref->setProperty("name", "matt");
unset($pref); // remove the reference
$pref2 = Preferences::getInstance();
print $pref2->getProperty("name") ."\n"; // demonstrate value is not lost

The output is the single value we added to the Preferences object initially, available through a separate 
access:

matt

A static method cannot access object properties because it is, by definition, invoked in a class and 
not an object context. It can, however, access a static property. When getInstance() is called, I check the 
Preferences::$instance property. If it is empty, then I create an instance of the Preferences class and 
store it in the property. Then I return the instance to the calling code. Because the static getInstance() 
method is part of the Preferences class, I have no problem instantiating a Preferences object, even though 
the constructor is private.

Figure 9-2 shows the Singleton pattern.



Chapter 9 ■ Generating Objects

187

Consequences
So, how does the Singleton approach compare to using a global variable? First, the bad news. Both 
Singletons and global variables are prone to misuse. Because Singletons can be accessed from anywhere 
in a system, they can serve to create dependencies that can be hard to debug. Change a Singleton, and 
classes that use it may be affected. Dependencies are not a problem in themselves. After all, we create a 
dependency every time we declare that a method requires an argument of a particular type. The problem 
is that the global nature of the Singleton lets a programmer bypass the lines of communication defined by 
class interfaces. When a Singleton is used, the dependency is hidden away inside a method and not declared 
in its signature. This can make it harder to trace the relationships within a system. Singleton classes should 
therefore be deployed sparingly and with care.

Nevertheless, I think that moderate use of the Singleton pattern can improve the design of a system, 
saving you from horrible contortions as you pass objects unnecessarily around your system.

Singletons represent an improvement over global variables in an object-oriented context. You cannot 
overwrite a Singleton with the wrong kind of data.

Factory Method Pattern
Object-oriented design emphasizes the abstract class over the implementation. That is, it works with 
generalizations rather than specializations. The Factory Method pattern addresses the problem of how to 
create object instances when your code focuses on abstract types. The answer? Let specialist classes handle 
instantiation.

Figure 9-2.  An example of the Singleton pattern



Chapter 9 ■ Generating Objects

188

The Problem
Imagine a personal organizer project that manages Appointment objects, among other object types. Your 
business group has forged a relationship with another company, and you must communicate appointment 
data to it using a format called BloggsCal. The business group warns you that you may face yet more formats 
as time wears on, though.

Staying at the level of interface alone, you can identify two participants right away. You need a data 
encoder that converts your Appointment objects into a proprietary format. Let’s call that class ApptEncoder. 
You need a manager class that will retrieve an encoder and maybe work with it to communicate with a third 
party. You might call that CommsManager. Using the terminology of the pattern, the CommsManager is the 
creator, and the ApptEncoder is the product. You can see this structure in Figure 9-3.

How do you get your hands on a real concrete ApptEncoder, though?
You could demand that an ApptEncoder be passed to the CommsManager, but that simply defers your 

problem, and you want the buck to stop about here. Here I instantiate a BloggsApptEncoder object directly 
within the CommsManager class:

// listing 09.13

abstract class ApptEncoder
{
    abstract public function encode(): string;
}

// listing 09.14

class BloggsApptEncoder extends ApptEncoder
{
    public function encode(): string
    {
        return "Appointment data encoded in BloggsCal format\n";
    }
}

// listing 09.15

class MegaApptEncoder extends ApptEncoder
{
    public function encode(): string
    {
        return "Appointment data encoded in MegaCal format\n";
    }
}

Figure 9-3.  Abstract creator and product classes



Chapter 9 ■ Generating Objects

189

// listing 09.16

class CommsManager
{
    public function getApptEncoder(): ApptEncoder
    {
        return new BloggsApptEncoder();
    }
}

The CommsManager class is responsible for generating BloggsApptEncoder objects. When the sands 
of corporate allegiance inevitably shift, and we are asked to convert our system to work with a new format 
called MegaCal, we can simply add a conditional into the CommsManager::getApptEncoder() method. This 
is the strategy we have used in the past, after all. Let’s build a new implementation of CommsManager that 
handles both BloggsCal and MegaCal formats:

// listing 09.17

class CommsManager
{
    const BLOGGS = 1;
    const MEGA = 2;
    private $mode;

    public function __construct(int $mode)
    {
        $this->mode = $mode;
    }

    public function getApptEncoder(): ApptEncoder
    {
        switch ($this->mode) {
            case (self::MEGA):
                return new MegaApptEncoder();
            default:
                return new BloggsApptEncoder();
        }
    }
}

// listing 09.18

$man = new CommsManager(CommsManager::MEGA);
print (get_class($man->getApptEncoder())) . "\n";
$man = new CommsManager(CommsManager::BLOGGS);
print (get_class($man->getApptEncoder())) . "\n";

I use constant flags to define two modes in which the script might be run: MEGA and BLOGGS. I use 
a switch statement in the getApptEncoder() method to test the $mode property and instantiate the 
appropriate implementation of ApptEncoder.



Chapter 9 ■ Generating Objects

190

There is little wrong with this approach. Conditionals are sometimes considered examples of bad 
“code smells,” but object creation often requires a conditional at some point. You should be less sanguine if 
you see duplicate conditionals creeping into your code. The CommsManager class provides functionality for 
communicating calendar data. Imagine that the protocols you work with require you to provide header and 
footer data to delineate each appointment. I can extend the previous example to support a getHeaderText() 
method:

// listing 09.19

class CommsManager
{
    const BLOGGS = 1;
    const MEGA = 2;
    private $mode;

    public function __construct(int $mode)
    {
        $this->mode = $mode;
    }

    public function getApptEncoder(): ApptEncoder
    {
        switch ($this->mode) {
            case (self::MEGA):
                return new MegaApptEncoder();
            default:
                return new BloggsApptEncoder();
        }
    }

    public function getHeaderText(): string
    {
        switch ($this->mode) {
            case (self::MEGA):
                return "MegaCal header\n";
            default:
                return "BloggsCal header\n";
        }
    }
}

As you can see, the need to support header output has forced me to duplicate the protocol conditional 
test. This will become unwieldy as I add new protocols, especially if I also add a getFooterText() method.

So, let’s summarize the problem so far:

•	 I do not know until runtime the kind of object I need to produce 
(BloggsApptEncoder or MegaApptEncoder)

•	 I need to be able to add new product types with relative ease (SyncML support is just 
a new business deal away!)

•	 Each product type is associated with a context that requires other customized 
operations (e.g., getHeaderText(), getFooterText())



Chapter 9 ■ Generating Objects

191

Additionally, I am using conditional statements, and you have seen already that these are naturally 
replaceable by polymorphism. The Factory Method pattern enables you to use inheritance and 
polymorphism to encapsulate the creation of concrete products. In other words, you create a CommsManager 
subclass for each protocol, each one implementing the getApptEncoder() method.

Implementation
The Factory Method pattern splits creator classes from the products they are designed to generate. The 
creator is a factory class that defines a method for generating a product object. If no default implementation 
is provided, it is left to creator child classes to perform the instantiation. Typically, each creator subclass 
instantiates a parallel product child class.

I can redesignate CommsManager as an abstract class. That way, I keep a flexible superclass and put all my 
protocol-specific code in the concrete subclasses. You can see this alteration in Figure 9-4.

Here’s some simplified code:

// listing 09.20

abstract class ApptEncoder
{
    abstract public function encode(): string;
}

// listing 09.21

class BloggsApptEncoder extends ApptEncoder
{
    public function encode(): string

Figure 9-4.  Concrete creator and product classes



Chapter 9 ■ Generating Objects

192

    {
        return "Appointment data encode in BloggsCal format\n";
    }
}

// listing 09.22

abstract class CommsManager
{
    abstract public function getHeaderText(): string;
    abstract public function getApptEncoder(): ApptEncoder;
    abstract public function getFooterText(): string;
}

// listing 09.23

class BloggsCommsManager extends CommsManager
{
    public function getHeaderText(): string
    {
        return "BloggsCal header\n";
    }

    public function getApptEncoder(): ApptEncoder
    {
        return new BloggsApptEncoder();
    }

    public function getFooterText(): string
    {
        return "BloggsCal footer\n";
    }
}

// listing 09.24

$mgr = new BloggsCommsManager();
print $mgr->getHeaderText();
print $mgr->getApptEncoder()->encode();
print $mgr->getFooterText();

BloggsCal header
Appointment data encode in BloggsCal format
BloggsCal footer

So, when I am required to implement MegaCal, supporting it is simply a matter of writing a new 
implementation for my abstract classes. Figure 9-5 shows the MegaCal classes.



Chapter 9 ■ Generating Objects

193

Consequences
Notice that the creator classes mirror the product hierarchy. This is a common consequence of the Factory 
Method pattern and disliked by some as a special kind of code duplication. Another issue is the possibility 
that the pattern could encourage unnecessary subclassing. If your only reason for subclassing a creator is 
to deploy the Factory Method pattern, you may need to think again (that’s why I introduced the header and 
footer constraints to the example here).

I have focused only on appointments in my example. If I extend it somewhat to include to-do items and 
contacts, I face a new problem. I need a structure that will handle sets of related implementations at one 
time. The Factory Method pattern is often used with the Abstract Factory pattern, as you will see in the next 
section.

Abstract Factory Pattern
In large applications, you may need factories that produce related sets of classes. The Abstract Factory 
pattern addresses this problem.

Figure 9-5.  Extending the design to support a new protocol



Chapter 9 ■ Generating Objects

194

The Problem
Let’s look again at the organizer example. I manage encoding in two formats, BloggsCal and MegaCal. I can 
grow this structure horizontally by adding more encoding formats, but how can I grow vertically, adding 
encoders for different types of PIM objects? In fact, I have been working toward this pattern already.

In Figure 9-6, you can see the parallel families with which I will want to work. These are appointments 
(Appt), things to do (Ttd), and contacts (Contact).

The BloggsCal classes are unrelated to one another by inheritance (although they could implement 
a common interface), but they are functionally parallel. If the system is currently working with 
BloggsTtdEncoder, it should also be working with BloggsContactEncoder.

To see how I enforce this, you can begin with the interface, as I did with the Factory Method pattern (see 
Figure 9-7).

Figure 9-6.  Three product families



Chapter 9 ■ Generating Objects

195

Implementation
The abstract CommsManager class defines the interface for generating each of the three products 
(ApptEncoder, TtdEncoder, and ContactEncoder). You need to implement a concrete creator in order to 
actually generate the concrete products for a particular family. I illustrate that for the BloggsCal format in 
Figure 9-8.

Figure 9-7.  An abstract creator and its abstract products

Figure 9-8.  Adding a concrete creator and some concrete products



Chapter 9 ■ Generating Objects

196

Here is a code version of CommsManager and BloggsCommsManager:

// listing 09.25

abstract class CommsManager
{
    abstract public function getHeaderText(): string;
    abstract public function getApptEncoder(): ApptEncoder;
    abstract public function getTtdEncoder(): TtdEncoder;
    abstract public function getContactEncoder(): ContactEncoder;
    abstract public function getFooterText(): string;
}

// listing 09.26

class BloggsCommsManager extends CommsManager
{

    public function getHeaderText(): string
    {
        return "BloggsCal header\n";
    }

    public function getApptEncoder(): ApptEncoder
    {
        return new BloggsApptEncoder();
    }

    public function getTtdEncoder(): TtdEncoder
    {
        return new BloggsTtdEncoder();
    }

    public function getContactEncoder(): ContactEncoder
    {
        return new BloggsContactEncoder();
    }

    public function getFooterText(): string
    {
        return "BloggsCal footer\n";
    }
}

Notice that I use the Factory Method pattern in this example. getContactEncoder() is abstract in 
CommsManager and implemented in BloggsCommsManager. Design patterns tend to work together in this way, 
one pattern creating the context that lends itself to another. In Figure 9-9, I add support for the MegaCal 
format.



Chapter 9 ■ Generating Objects

197

Consequences
So, let’s look at what this pattern buys:

•	 First, I decouple my system from the details of implementation. I can add or remove 
any number of encoding formats in my example without causing a knock-on effect.

•	 I enforce the grouping of functionally related elements of my system. So, by using 
BloggsCommsManager, I am guaranteed that I will work only with BloggsCal-related 
classes.

•	 Adding new products can be a pain. Not only do I have to create concrete 
implementations of the new product, but I also have to amend the abstract creator 
and every one of its concrete implementers in order to support it.

Many implementations of the Abstract Factory pattern use the Factory Method pattern. This may be 
because most examples are written in Java or C++. PHP, however, does not have to enforce a return type for a 
method (though it now can), which affords us some flexibility that we might leverage.

Rather than create separate methods for each Factory Method, you can create a single make() method 
that uses a flag argument to determine which object to return:

// listing 09.27

interface Encoder
{
    public function encode(): string;
}

Figure 9-9.  Adding concrete creators and some concrete products



Chapter 9 ■ Generating Objects

198

// listing 09.28

abstract class CommsManager
{
    const APPT    = 1;
    const TTD     = 2;
    const CONTACT = 3;
    abstract public function getHeaderText(): string;
    abstract public function make(int $flag_int): Encoder;
    abstract public function getFooterText(): string;
}

// listing 09.29

class BloggsCommsManager extends CommsManager
{
    public function getHeaderText(): string
    {
        return "BloggsCal header\n";
    }

    public function make(int $flag_int): Encoder
    {
        switch ($flag_int) {
            case self::APPT:
                return new BloggsApptEncoder();
            case self::CONTACT:
                return new BloggsContactEncoder();
            case self::TTD:
                return new BloggsTtdEncoder();
        }
    }

    public function getFooterText(): string
    {
        return "BloggsCal footer\n";
    }
}

As you can see, I have made the class interface more compact. I’ve done this at a considerable cost, 
though. In using a factory method, I define a clear interface and force all concrete factory objects to honor it. 
In using a single make() method, I must remember to support all product objects in all the concrete creators. 
I also introduce parallel conditionals, as each concrete creator must implement the same flag tests. A client 
class cannot be certain that concrete creators generate all the products because the internals of make() are a 
matter of choice in each case.

On the other hand, I can build more flexible creators. The base creator class can provide a make() 
method that guarantees a default implementation of each product family. Concrete children could then 
modify this behavior selectively. It would be up to implementing creator classes to call the default make() 
method after providing their own implementation.

You will see another variation on the Abstract Factory pattern in the next section.



Chapter 9 ■ Generating Objects

199

Prototype
The emergence of parallel inheritance hierarchies can be a problem with the Factory Method pattern. 
This is a kind of coupling that makes some programmers uncomfortable. Every time you add a product 
family, you are forced to create an associated concrete creator (the BloggsCal encoders are matched by 
BloggsCommsManager, for example). In a system that grows fast enough to encompass many products, 
maintaining this kind of relationship can quickly become tiresome.

One way of avoiding this dependency is to use PHP’s clone keyword to duplicate existing concrete 
products. The concrete product classes themselves then become the basis of their own generation. This is 
the Prototype pattern. It enables you to replace inheritance with composition. This in turn promotes runtime 
flexibility and reduces the number of classes you must create.

The Problem
Imagine a Civilization-style web game in which units operate on a grid of tiles. Each tile can represent sea, 
plains, or forests. The terrain type constrains the movement and combat abilities of units occupying the tile. 
You might have a TerrainFactory object that serves up Sea, Forest, and Plains objects. You decide that 
you will allow the user to choose among radically different environments, so the Sea object is an abstract 
superclass implemented by MarsSea and EarthSea. Forest and Plains objects are similarly implemented. 
The forces here lend themselves to the Abstract Factory pattern. You have distinct product hierarchies (Sea, 
Plains, Forests), with strong family relationships cutting across inheritance (Earth, Mars). Figure 9-10 
presents a class diagram that shows how you might deploy the Abstract Factory and Factory Method patterns 
to work with these products.

Figure 9-10.  Handling terrains with the Abstract Factory method



Chapter 9 ■ Generating Objects

200

As you can see, I rely on inheritance to group the terrain family for the products that a factory will 
generate. This is a workable solution, but it requires a large inheritance hierarchy, and it is relatively 
inflexible. When you do not want parallel inheritance hierarchies, and when you need to maximize runtime 
flexibility, the Prototype pattern can be used in a powerful variation on the Abstract Factory pattern.

Implementation
When you work with the Abstract Factory/Factory Method patterns, you must decide, at some point, which 
concrete creator you wish to use, probably by checking some kind of preference flag. As you must do this 
anyway, why not simply create a factory class that stores concrete products, and then populate this during 
initialization? You can cut down on a couple of classes this way and, as you shall see, take advantage of other 
benefits. Here’s some simple code that uses the Prototype pattern in a factory:

// listing 09.30

class Sea
{
}

class EarthSea extends Sea
{
}

class MarsSea extends Sea
{
}

class Plains
{
}

class EarthPlains extends Plains
{
}

class MarsPlains extends Plains
{
}

class Forest
{
}

class EarthForest extends Forest
{
}

class MarsForest extends Forest
{
}



Chapter 9 ■ Generating Objects

201

// listing 09.31

class TerrainFactory
{
    private $sea;
    private $forest;
    private $plains;

    public function __construct(Sea $sea, Plains $plains, Forest $forest)
    {
        $this->sea = $sea;
        $this->plains = $plains;
        $this->forest = $forest;
    }

    public function getSea(): Sea
    {
        return clone $this->sea;
    }

    public function getPlains(): Plains
    {
        return clone $this->plains;
    }

    public function getForest(): Forest
    {
        return clone $this->forest;
    }
}

// listing 09.32

$factory = new TerrainFactory(
    new EarthSea(),
    new EarthPlains(),
    new EarthForest()
);
print_r($factory->getSea());
print_r($factory->getPlains());
print_r($factory->getForest());

popp\ch09\batch11\EarthSea Object
(
)
popp\ch09\batch11\EarthPlains Object
(
)
popp\ch09\batch11\EarthForest Object
(
)



Chapter 9 ■ Generating Objects

202

As you can see, I load up a concrete TerrainFactory with instances of product objects. When a client 
calls getSea(), I return a clone of the Sea object that I cached during initialization. This structure buys 
me additional flexibility. Want to play a game on a new planet with Earth-like seas and forests, but Mars-
like plains? No need to write a new creator class—you can simply change the mix of classes you add to 
TerrainFactory:

$factory = new TerrainFactory(
    new EarthSea(),
    new MarsPlains(),
    new EarthForest()
);

So the Prototype pattern allows you to take advantage of the flexibility afforded by composition. We get 
more than that, though. Because you are storing and cloning objects at runtime, you reproduce object state 
when you generate new products. Imagine that Sea objects have a $navigability property. The property 
influences the amount of movement energy a sea tile saps from a vessel and can be set to adjust the difficulty 
level of a game:

// listing 09.33

class Sea
{
    private $navigability = 0;

    public function __construct(int $navigability)
    {
        $this->navigability = $navigability;
    }
}

Now when I initialize the TerrainFactory object, I can add a Sea object with a navigability modifier. 
This will then hold true for all Sea objects served by TerrainFactory:

// listing 09.34

$factory = new TerrainFactory(
    new EarthSea(-1),
    new EarthPlains(),
    new EarthForest()
);

This flexibility is also apparent when the object you wish to generate is composed of other objects.

■■ Note   I covered object cloning in Chapter 4. The clone keyword generates a shallow copy of any object to 
which it is applied. This means that the product object will have the same properties as the source. If any of the 
source’s properties are objects, then these will not be copied into the product. Instead, the product will reference 
the same object properties. It is up to you to change this default and to customize object copying in any other way, 
by implementing a __clone() method. This is called automatically when the clone keyword is used.

http://dx.doi.org/10.1007/978-1-4842-1996-6_4


Chapter 9 ■ Generating Objects

203

Perhaps all Sea objects can contain Resource objects (FishResource, OilResource, etc.). According to 
a preference flag, we might give all Sea objects a FishResource by default. Remember that if your products 
reference other objects, you should implement a __clone() method to ensure that you make a deep copy:

class Contained
{
}

class Container
{
    public $contained;

    function __construct()
    {
        $this->contained = new Contained();
    }

    function __clone()
   {
        // Ensure that cloned object holds a
        // clone of self::$contained and not
        // a reference to it
        $this->contained = clone $this->contained;
    }
}

Pushing to the Edge: Service Locator
I promised that this chapter would deal with the logic of object creation, doing away with the sneaky buck-
passing of many object-oriented examples. Yet some patterns here have slyly dodged the decision-making 
part of object creation, if not the creation itself.

The Singleton pattern is not guilty. The logic for object creation is built-in and unambiguous. The 
Abstract Factory pattern groups the creation of product families into distinct concrete creators. How do we 
decide which concrete creator to use, though? The Prototype pattern presents us with a similar problem. 
Both these patterns handle the creation of objects, but they defer the decision as to which object or group of 
objects should be created.

The particular concrete creator that a system chooses is often decided according to the value of a 
configuration switch of some kind. This could be located in a database, a configuration file, or a server file 
(such as Apache’s directory-level configuration file, usually called .htaccess), or it could even be hard-
coded as a PHP variable or property. Because PHP applications must be reconfigured for every request, you 
need script initialization to be as painless as possible. For this reason, I often opt to hard-code configuration 
flags in PHP code. This can be done by hand or by writing a script that autogenerates a class file. Here’s a 
crude class that includes a flag for calendar protocol types:

// listing 09.35
class Settings
{
    static $COMMSTYPE = 'Bloggs';
}



Chapter 9 ■ Generating Objects

204

Now that I have a flag (however inelegant), I can create a class that uses it to decide which CommsManager 
to serve on request. It is quite common to see a Singleton used in conjunction with the Abstract Factory 
pattern, so let’s do that:

// listing 09.36

class AppConfig
{
    private static $instance;
    private $commsManager;

    private function __construct()
    {
        // will run once only
        $this->init();
    }

    private function init()
    {
        switch (Settings::$COMMSTYPE) {
            case 'Mega':
                $this->commsManager = new MegaCommsManager();
                break;
            default:
                $this->commsManager = new BloggsCommsManager();
        }
    }

    public static function getInstance(): AppConfig
    {
        if (empty(self::$instance)) {
            self::$instance = new self();
        }
        return self::$instance;
    }

    public function getCommsManager(): CommsManager
    {
        return $this->commsManager;
    }
}

The AppConfig class is a standard Singleton. For that reason, I can get an AppConfig instance anywhere 
in the system, and I will always get the same one. The init() method is invoked by the class’s constructor 
and is therefore only run once in a process. It tests the Settings::$COMMSTYPE property, instantiating a 
concrete CommsManager object according to its value. Now my script can get a CommsManager object and work 
with it without ever knowing about its concrete implementations or the concrete classes it generates:

$commsMgr = AppConfig::getInstance()->getCommsManager();
$commsMgr->getApptEncoder()->encode();



Chapter 9 ■ Generating Objects

205

Because AppConfig manages the work of finding and creating components for us, it is an instance of 
what’s known as the Service Locator pattern. It’s neat (and we’ll see it again in more detail in Chapter 12), 
but it does introduce a more benign dependency than direct instantiation. Any classes using its service 
must explicitly invoke this monolith, binding them to the wider system. For this reason, some prefer another 
approach.

Splendid Isolation: Dependency Injection
In the previous section, I used a flag and a conditional statement within a factory to determine which of two 
CommsManager classes to serve up. The solution was not as flexible as it might have been. The classes on offer 
were hard-coded within a single locator, with a choice of two components built-in to a conditional. That 
inflexibility was a facet of my demonstration code, though, rather than a problem with Service Locator, per 
se. I could have used any number of strategies to locate, instantiate, and return objects on behalf of client 
code. The real reason Service Locator is often treated with suspicion, however, is the fact that a component 
must explicitly invoke the locator. This feels a little, well, global. And object-oriented developers are rightly 
suspicious of all things global.

The Problem
Whenever you use the new operator, you close down the possibility of polymorphism within that scope. 
Imagine a method that deploys a hard-coded BloggsApptEncoder object, for example:

// listing 09.37

class AppointmentMaker
{
    public function makeAppointment()
    {
        $encoder = new BloggsApptEncoder();
        return $encoder->encode();
    }
}

This might work for our initial needs, but it will not allow any other ApptEncoder implementation 
to be switched in at runtime. That limits the ways in which the class can be used, and it makes the class 
harder to test. Much of this chapter addresses precisely this kind of inflexibility. But, as I pointed out in the 
previous section, I have skated over the fact that, even if we use the Prototype or Abstract Factory patterns, 
instantiation has to happen somewhere. Here again is a fragment of code that creates a Prototype object:

// listing 09.32

$factory = new TerrainFactory(
    new EarthSea(),
    new EarthPlains(),
    new EarthForest()
);

http://dx.doi.org/10.1007/978-1-4842-1996-6_12


Chapter 9 ■ Generating Objects

206

The Prototype TerrainFactory class called here is a step in the right direction—it demands generic 
types: Sea, Plains, and Forest. The class leaves it up to the client code to determine which implementations 
should be provided. But how is this done?

Implementation
Much of our code calls out to factories. As we have seen, this model is known as the Service Locator 
pattern. A method delegates responsibility to a provider which it trusts to find and serve up an instance 
of the desired type. The Prototype example inverts this; it simply expects the instantiating code to 
provide implementations at call time. There’s no magic here—it’s simply a matter of requiring types in a 
constructor’s signature, instead of creating them directly within the method. A variation on this is to provide 
setter methods, so that clients can pass in objects before invoking a method that uses them.

So let’s fix up AppointmentMaker in this way:

// listing 09.38

class AppointmentMaker2
{
    private $encoder;

    public function __construct(ApptEncoder $encoder) {
        $this->encoder = $encoder;
    }

    public function makeAppointment()
    {
        return $this->encoder->encode();
    }
}

AppointmentMaker2 has given up control—it no longer creates the BloggsApptEncoder, and we have 
gained flexibility. What about the logic for the actual creation of objects, though? Where do the dreaded 
new statements live? We need an assembler component to take on the job. Typically, this approach uses a 
configuration file to figure out which implementations should be instantiated. There are tools to help us with 
this, but this book is all about doing it ourselves, so let’s build a very naive implementation. I’ll start with a 
crude XML format which describes the relationships between classes in our system and the concrete types 
that should be passed to their constructors:

<objects>
    <class name="\popp\ch09\batch11\TerrainFactory">
        <arg num="0" inst="\popp\ch09\batch11\EarthSea" />
        <arg num="1" inst="\popp\ch09\batch11\MarsPlains" />
        <arg num="2" inst="\popp\ch09\batch11\EarthForest" />
    </class>

    <class name="\popp\ch09\batch14\AppointmentMaker2">
        <arg num="0" inst="\popp\ch09\batch06\BloggsApptEncoder" />
    </class>
</objects>



Chapter 9 ■ Generating Objects

207

I’ve described two classes from this chapter: TerrainFactory and AppointmentMaker2. I want 
TerrainFactory to be instantiated with an EarthSea object, a MarsPlains object, and an EarthForest 
object. I would also like AppointmentMaker2 to be passed a BloggsApptEncoder object.

Here’s a very simple assembler class that reads this configuration data and instantiates objects on 
demand:

// listing 09.39
class ObjectAssembler
{
    private $components = [];

    public function __construct(string $conf)
    {
        $this->configure($conf);
    }

    private function configure(string $conf)
    {
        $data = simplexml:load_file($conf);
        foreach ($data->class as $class) {
            $args = [];
            $name = (string)$class['name'];
            foreach ($class->arg as $arg) {
                $argclass = (string)$arg['inst'];
                $args[(int)$arg['num']] = $argclass;
            }
            ksort($args);
            $this->components[$name] = function () use ($name, $args) {
                $expandedargs = [];
                foreach ($args as $arg) {
                    $expandedargs[] = new $arg();
                }
                $rclass = new \ReflectionClass($name);
                return $rclass->newInstanceArgs($expandedargs);
            };
        }
    }

    public function getComponent(string $class)
    {
        if (! isset($this->components[$class])) {
            throw new \Exception("unknown component '$class'");
        }
        $ret = $this->components[$class]();
        return $ret;
    }
}

This is pretty crude, and it is a little dense at first reading, so let’s work through it briefly. Most of the 
real action takes place in configure(). The method accepts a path which is passed on from the constructor. 
It uses the simplexml extension to parse the configuration XML. In a real project, of course, we’d add more 
error handling here and throughout. For now, I’m pretty trusting of the XML I’m parsing. For every <class> 



Chapter 9 ■ Generating Objects

208

element, I extract the fully qualified class name and store it in the $name variable. Then I acquire all the 
<arg> subelements, all of which have their own class names. I store the arguments in an array named $args, 
ordered according to the XML num argument. I pack all of this in an anonymous function which I store in the 
$components property. This function, which instantiates a requested class and all its required objects, is only 
invoked when getComponent() is called with the correct class name. In this way the ObjectAssembler can 
maintain a pretty small footprint. Note the use of a closure here. The anonymous function has access to the 
$name and $args variables declared in the scope of its creation, thanks to the use keyword.

Of course, this is really toy code. In addition to improved error checking, a robust implementation 
would need to handle the possibility that the objects to be injected into a component might themselves 
require arguments. We might also want to address issues around caching. For example, should a contained 
object be instantiated for every call, or only once?

■■ Note   If you are considering building a Dependency Injection assembler/container, you should look at a 
couple of options: Pimple (notwithstanding its unpleasant name) and Symfony DI. You can find out more about 
Pimple at http://pimple.sensiolabs.org/; you can learn more about the Symfony DI component at http://
symfony.com/doc/current/components/dependency_injection/introduction.html.

Nevertheless, we can now maintain the flexibility of our components and handle instantiation 
dynamically. Let’s try out the ObjectAssembler:

// listing 09.40
$assembler = new ObjectAssembler("src/ch09/batch14/objects.xml");
$apptmaker = $assembler->getComponent("\\popp\\ch09\\batch14\\AppointmentMaker2");
$out = $apptmaker->makeAppointment();
print $out;

Once we have an ObjectAssembler, object acquisition takes up a single statement. The 
AppointmentMaker2 class is free of its previous hard-coded dependency on an ApptEncoder instance. A 
developer can now use the configuration file to control what classes are used at runtime, as well as to test 
AppointmentMaker2 in isolation from the wider system.

Consequences
So, now we’ve seen two options for object creation. The AppConfig class was an instance of Service Locator 
(i.e., a class with the ability to find components or services on behalf of its client). Using dependency 
injection certainly makes for more elegant client code. The AppointmentMaker2 class is blissfully unaware of 
strategies for object creation. It simply does its job. This is the ideal for a class, of course. We want to design 
classes that can focus on their responsibilities, isolated as far as possible from the wider system. However, 
this purity does come at a price. The object assembler component hides a lot of magic. We must treat it as a 
black box and trust it to conjure up objects on our behalf. This is fine, so long as the magic works. Unexpected 
behavior can be hard to debug.

The Service Locator pattern, on the other hand, is simpler, though it embeds your components into 
a wider system. It is not the case that, used well, a Service Locator makes testing harder. Nor does it make 
a system inflexible. A Service Locator can be configured to serve up arbitrary components for testing or 
according to configuration. But a hard-coded call to a service locator makes a component dependent upon 
it. Because the call is made from within the body of a method, the relationship between the client and the 
target component (which is provided by the Service Locator) is also somewhat obscured. This relationship 
is made explicit in the Dependency Injection example because it is declared in the constructor method’s 
signature.

http://pimple.sensiolabs.org/
http://symfony.com/doc/current/components/dependency_injection/introduction.html
http://symfony.com/doc/current/components/dependency_injection/introduction.html


Chapter 9 ■ Generating Objects

209

So, which approach should we choose? To some extent it’s a matter of preference. For my own part, I 
tend to prefer to start with the simplest solution, and then to refactor to greater complexity, if needed. For 
that reason, I usually opt for Service Locator. I can create a Registry class in a few lines of code, and increase 
its flexibility according to the requirements. My components are a little more knowing than I would like, but 
since I rarely move classes from one system to another, I have not suffered too much from the embedding 
effect. When I have moved a system-based class into a standalone library, I have not found it particularly 
hard to refactor the Service Locator dependency away.

Dependency Injection offers purity, but it requires another kind of embedding. You must buy in to the 
magic of the assembler. If you are already working within a framework which offers this functionality, there is 
no reason not to avail yourself of it. The Symfony  DependencyInjection component, for example, provides a 
hybrid solution of Service Locator (known as the “service container”) and Dependency Injection. The service 
container manages the instantiation of objects according to the configuration (or code, if you prefer) and 
provides a simple interface for clients to obtain those objects. The service container even allows the use of 
factories for object creation. On the other hand, if you are rolling your own, or using components from various 
frameworks, you may wish to keep things simple at the cost of some elegance.

Summary
This chapter covered some of the tricks that you can use to generate objects. I began by examining the 
Singleton pattern, which provides global access to a single instance. Next, I looked at the Factory Method 
pattern, which applies the principle of polymorphism to object generation. And I combined Factory 
Method with the Abstract Factory pattern to generate creator classes that instantiate sets of related objects. 
I also looked at the Prototype pattern and saw how object cloning can allow composition to be used in 
object generation. Finally, I examined two strategies for object creation: Service Locator and Dependency 
Injection.



211© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_10

CHAPTER 10

Patterns for Flexible Object 
Programming

With strategies for generating objects covered, we’re free now to look at some strategies for structuring 
classes and objects. I will focus in particular on the principle that composition provides greater flexibility 
than inheritance. The patterns I examine in this chapter are once again drawn from the Gang of Four catalog.

This chapter will cover a trio of patterns:

•	 The Composite pattern: Composing structures in which groups of objects can be used 
as if they were individual objects

•	 The Decorator pattern: A flexible mechanism for combining objects at runtime to 
extend functionality

•	 The Facade pattern: Creating a simple interface to complex or variable systems

Structuring Classes to Allow Flexible Objects
Way back in Chapter 4, I said that beginners often confuse objects and classes. This was only half true. In 
fact, most of the rest of us occasionally scratch our heads over UML class diagrams, attempting to reconcile 
the static inheritance structures they show with the dynamic object relationships their objects will enter into 
off the page.

Remember the pattern principle, “Favor composition over inheritance”? This principle distills this 
tension between the organization of classes and objects. In order to build flexibility into our projects, we 
structure our classes so that their objects can be composed into useful structures at runtime.

This is a common theme running through the first two patterns of this chapter. Inheritance is an 
important feature in both, but part of its importance lies in providing the mechanism by which composition 
can be used to represent structures and extend functionality.

The Composite Pattern
The Composite pattern is perhaps the most extreme example of inheritance deployed in the service of 
composition. It is a simple and yet breathtakingly elegant design. It is also fantastically useful. Be warned, 
though; it is so neat, you might be tempted to overuse this strategy.

http://dx.doi.org/10.1007/978-1-4842-1996-6_4


Chapter 10 ■ Patterns for Flexible Object Programming

212

The Composite pattern is a simple way of aggregating and then managing groups of similar objects so 
that an individual object is indistinguishable to a client from a collection of objects. The pattern is, in fact, 
very simple, but it is also often confusing. One reason for this is the similarity in structure of the classes in 
the pattern to the organization of its objects. Inheritance hierarchies are trees, beginning with the super class 
at the root, and branching out into specialized subclasses. The inheritance tree of classes laid down by the 
Composite pattern is designed to allow the easy generation and traversal of a tree of objects.

If you are not already familiar with this pattern, you have every right to feel confused at this point. Let’s 
try an analogy to illustrate the way that single entities can be treated in the same way as collections of things. 
Given broadly irreducible ingredients such as cereals and meat (or soya if you prefer), we can make a food 
product—a sausage, for example. We then act on the result as a single entity. Just as we eat, cook, buy, or sell 
meat, we can eat, cook, buy, or sell the sausage that the meat in part composes. We might take the sausage 
and combine it with the other composite ingredients to make a pie, thereby rolling a composite into a larger 
composite. We behave in the same way to the collection as we do to the parts. The Composite pattern helps 
us to model this relationship between collections and components in our code.

The Problem
Managing groups of objects can be quite a complex task, especially if the objects in question might also 
contain objects of their own. This kind of problem is very common in coding. Think of invoices, with line 
items that summarize additional products or services, or things-to-do lists with items that themselves 
contain multiple subtasks. In content management, we can’t move for trees of sections, pages, articles, or 
media components. Managing these structures from the outside can quickly become daunting.

Let’s return to a previous scenario. I am designing a system based on a game called Civilization. A player 
can move units around hundreds of tiles that make up a map. Individual counters can be grouped together 
to move, fight, and defend themselves as a unit. Here I define a couple of unit types:

// listing 10.01

abstract class Unit
{
    abstract public function bombardStrength(): int;
}

class Archer extends Unit
{
    public function bombardStrength(): int
    {
        return 4;
    }
}

class LaserCannonUnit extends Unit
{
    public function bombardStrength(): int
    {
        return 44;
    }
}



Chapter 10 ■ Patterns for Flexible Object Programming

213

The Unit class defines an abstract bombardStrength() method, which sets the attack strength of a 
unit bombarding an adjacent tile. I implement this in both the Archer and LaserCannonUnit classes. These 
classes would also contain information about movement and defensive capabilities, but I’ll keep things 
simple. I could define a separate class to group units together, like this:

// listing 10.02

class Army
{
    private $units = [];

    public function addUnit(Unit $unit)
    {
        array_push($this->units, $unit);
    }

    public function bombardStrength(): int
    {
        $ret = 0;
        foreach ($this->units as $unit) {
            $ret += $unit->bombardStrength();
        }
        return $ret;
    }
}

// listing 10.03
$unit1 = new Archer();
$unit2 = new LaserCannonUnit();
$army = new Army();
$army->addUnit($unit1);
$army->addUnit($unit2);
print $army->bombardStrength();

The Army class has an addUnit() method that accepts a Unit object. Unit objects are stored in an array 
property called $units. I calculate the combined strength of my army in the bombardStrength() method. 
This simply iterates through the aggregated Unit objects, calling the bombardStrength() method of  
each one.

This model is perfectly acceptable, as long as the problem remains as simple as this. What happens, 
though, if I were to add some new requirements? Let’s say that an army should be able to combine with 
other armies. Each army should retain its own identity so that it can disentangle itself from the whole at a 
later date. The Arch Duke’s brave forces might share common cause today with General Soames’s assault 
upon the exposed flank of the enemy, but a domestic rebellion may send his army scurrying home at any 
time. For this reason, I can’t just decant the units from each army into a new force.



Chapter 10 ■ Patterns for Flexible Object Programming

214

I could amend the Army class to accept Army objects as well as Unit objects:

// listing 10.04

    public function addArmy(Army $army)
    {
        array_push($this->armies, $army);
    }

Then I’d need to amend the bombardStrength() method to iterate through all armies as well as units:

// listing 10.05
    public function bombardStrength(): int
    {
        $ret = 0;
        foreach ($this->units as $unit) {
            $ret += $unit->bombardStrength();
        }
        foreach ($this->armies as $army) {
            $ret += $army->bombardStrength();
        }
        return $ret;
    }

This additional complexity is not too problematic at the moment. Remember, though, I would need to 
do something similar in methods like defensiveStrength(), movementRange(), and so on. My game is going 
to be richly featured. Already the business group is calling for troop carriers that can hold up to ten units 
to improve their movement range on certain terrains. Clearly, a troop carrier is similar to an army in that it 
groups units. It also has its own characteristics. I could further amend the Army class to handle TroopCarrier 
objects, but I know that there will be a need for still more unit groupings. It is clear that I need a more flexible 
model.

Let’s look again at the model I have been building. All the classes I created shared the need for a 
bombardStrength() method. In effect, a client does not need to distinguish between an army, a unit, or a 
troop carrier. They are functionally identical. They need to move, attack, and defend. Those objects that 
contain others need to provide methods for adding and removing them. These similarities lead us to an 
inevitable conclusion. Because container objects share an interface with the objects that they contain, they 
are naturally suited to share a type family.

Implementation
The Composite pattern defines a single inheritance hierarchy that lays down two distinct sets of 
responsibilities. We have already seen both of these in our example. Classes in the pattern must support 
a common set of operations as their primary responsibility. For us, that means the bombardStrength() 
method. Classes must also support methods for adding and removing child objects.

Figure 10-1 shows a class diagram that illustrates the Composite pattern as applied to our problem.



Chapter 10 ■ Patterns for Flexible Object Programming

215

As you can see, all the units in this model extend the Unit class. A client can be sure, then, that any Unit 
object will support the bombardStrength() method. So, an Army can be treated in exactly the same way as an 
Archer.

The Army and TroopCarrier classes are composites: they are designed to hold Unit objects. The Archer 
and LaserCannon classes are leaves, designed to support unit operations, but not to hold other Unit objects. 
There is actually an issue as to whether leaves should honor the same interface as composites, as they do in 
Figure 10-1. The diagram shows TroopCarrier and Army aggregating other units, even though the leaf classes 
are also bound to implement addUnit(). I will return to this question shortly. Here is the abstract Unit class:

// listing 10.06
abstract class Unit
{
    abstract public function addUnit(Unit $unit);
    abstract public function removeUnit(Unit $unit);
    abstract public function bombardStrength(): int;
}

As you can see, I lay down the basic functionality for all Unit objects here. Now, let’s see how a 
composite object might implement these abstract methods:

// listing 10.07

class Army extends Unit
{
    private $units = [];

    public function addUnit(Unit $unit)
    {
        if (in_array($unit, $this->units, true)) {
            return;
        }

Figure 10-1.  The Composite pattern



Chapter 10 ■ Patterns for Flexible Object Programming

216

        $this->units[] = $unit;
    }

    public function removeUnit(Unit $unit)
    {
        $idx = array_search($unit, $this->units, true);
        if (is_int($idx)) {
            array_splice($this->units, $idx, 1, []);
        }
    }

    public function bombardStrength(): int
    {
        $ret = 0;
        foreach ($this->units as $unit) {
            $ret += $unit->bombardStrength();
        }
        return $ret;
    }
}

The addUnit() method checks whether I have already added the same Unit object before storing it in 
the private $units array property. removeUnit() uses a similar check to remove a given Unit object from the 
property.

Army objects, then, can store Units of any kind, including other Army objects, or leaves such as 
Archer or LaserCannonUnit. Because all units are guaranteed to support bombardStrength(), our 
Army::bombardStrength() method simply iterates through all the child Unit objects stored in the $units 
property, calling the same method on each.

One problematic aspect of the Composite pattern is the implementation of add and remove 
functionality. The classic pattern places add() and remove() methods in the abstract super class. This 
ensures that all classes in the pattern share a common interface. As you can see here, though, it also means 
that leaf classes must provide an implementation:

// listing 10.08

class UnitException extends \Exception
{
}

// listing 10.09

class Archer extends Unit
{
    public function addUnit(Unit $unit)
    {
        throw new UnitException(get_class($this) . " is a leaf");
    }

    public function removeUnit(Unit $unit)
    {
        throw new UnitException(get_class($this) . " is a leaf");
    }



Chapter 10 ■ Patterns for Flexible Object Programming

217

    public function bombardStrength(): int
    {
        return 4;
    }
}

I do not want to make it possible to add a Unit object to an Archer object, so I throw exceptions 
if addUnit() or removeUnit() are called. I will need to do this for all leaf objects, so I could perhaps 
improve my design by replacing the abstract addUnit()/removeUnit() methods in Unit with default 
implementations like the one in the preceding example:

// listing 10.10

abstract class Unit
{
    public function addUnit(Unit $unit)
    {
        throw new UnitException(get_class($this) . " is a leaf");
    }

    public function removeUnit(Unit $unit)
    {
        throw new UnitException(get_class($this) . " is a leaf");
    }

    abstract public function bombardStrength(): int;
}

// listing 10.11

class Archer extends Unit
{
    public function bombardStrength(): int
    {
        return 4;
    }
}

This removes duplication in leaf classes, but has the drawback that a composite is not forced at compile time 
to provide an implementation of addUnit() and removeUnit(), which could cause problems down the line.

I will look in more detail at some of the problems presented by the Composite pattern in the next 
section. Let’s end this section by examining some of its benefits:

•	 Flexibility: Because everything in the Composite pattern shares a common 
supertype, it is very easy to add new composite or leaf objects to the design without 
changing a program’s wider context.

•	 Simplicity: A client using a Composite structure has a straightforward interface. 
There is no need for a client to distinguish between an object that is composed 
of others and a leaf object (except when adding new components). A call to 
Army::bombardStrength() may cause a cascade of delegated calls behind the 
scenes; but to the client, the process and result are exactly equivalent to those 
associated with calling Archer::bombardStrength().



Chapter 10 ■ Patterns for Flexible Object Programming

218

•	 Implicit reach: Objects in the Composite pattern are organized in a tree. Each 
composite holds references to its children. An operation on a particular part of the 
tree, therefore, can have a wide effect. We might remove a single Army object from its 
Army parent and add it to another. This simple act is wrought on one object, but it has 
the effect of changing the status of the Army object’s referenced Unit objects and of 
their own children.

•	 Explicit reach: Tree structures are easy to traverse. They can be iterated in order 
to gain information or to perform transformations. We will look at a particularly 
powerful technique for this in the next chapter when we deal with the Visitor pattern.

Often, you really see the benefit of a pattern only from the client’s perspective, so here are a couple of 
armies:

// listing 10.12

// create an army
$main_army = new Army();

// add some units
$main_army->addUnit(new Archer());
$main_army->addUnit(new LaserCannonUnit());

// create a new army
$sub_army = new Army();

// add some units
$sub_army->addUnit(new Archer());
$sub_army->addUnit(new Archer());
$sub_army->addUnit(new Archer());

// add the second army to the first
$main_army->addUnit($sub_army);

// all the calculations handled behind the scenes
print "attacking with strength: {$main_army->bombardStrength()}\n";

I create a new Army object and add some primitive Unit objects. I repeat the process for a second Army 
object that I then add to the first. When I call Unit::bombardStrength() on the first Army object, all the 
complexity of the structure that I have built up is entirely hidden.

Consequences
If you’re anything like me, you would have heard alarm bells ringing when you saw the code extract for the 
Archer class. Why do we put up with these redundant addUnit() and removeUnit() methods in leaf classes 
that do not need to support them? An answer of sorts lies in the transparency of the Unit type.

If a client is passed a Unit object, it knows that the addUnit() method will be present. The Composite 
pattern principle that primitive (leaf) classes have the same interface as composites is upheld. This does not 
actually help you much because you still do not know how safe you might be calling addUnit() on any Unit 
object you might come across.



Chapter 10 ■ Patterns for Flexible Object Programming

219

If I move these add/remove methods down so that they are available only to composite classes, then 
passing a Unit object to a method leaves me with the problem that I do not know by default whether or not 
it supports addUnit(). Nevertheless, leaving booby-trapped methods lying around in leaf classes makes me 
uncomfortable. It adds no value and confuses a system’s design because the interface effectively lies about 
its own functionality.

You can split composite classes off into their own CompositeUnit subtype quite easily. First of all, I 
excise the add/remove behavior from Unit:

// listing 10.13

abstract class Unit
{
    public function getComposite()
    {
        return null;
    }

    abstract public function bombardStrength(): int;
}

Notice the new getComposite() method. I will return to this in a little while. Now, I need a new abstract 
class to hold addUnit() and removeUnit(). I can even provide default implementations:

// listing 10.14

abstract class CompositeUnit extends Unit
{
    private $units = [];

    public function getComposite(): CompositeUnit
    {
        return $this;
    }

    public function addUnit(Unit $unit)
    {
        if (in_array($unit, $this->units, true)) {
            return;
        }

        $this->units[] = $unit;
    }

    public function removeUnit(Unit $unit)
    {
        $idx = array_search($unit, $this->units, true);
        if (is_int($idx)) {
            array_splice($this->units, $idx, 1, []);
        }
    }



Chapter 10 ■ Patterns for Flexible Object Programming

220

    public function getUnits(): array
    {
        return $this->units;
    }
}

The CompositeUnit class is declared abstract, even though it does not itself declare an abstract method. 
It does, however, extend Unit, and it does not implement the abstract bombardStrength() method. Army 
(and any other composite classes) can now extend CompositeUnit. The classes in my example are now 
organized as in Figure 10-2.

The annoying, useless implementations of add/remove methods in the leaf classes are gone, but the 
client must still check to see whether it has a CompositeUnit before it can use addUnit().

This is where the getComposite() method comes into its own. By default, this method returns a null 
value. Only in a CompositeUnit class does it return CompositeUnit. So if a call to this method returns an 
object, we should be able to call addUnit() on it. Here’s a client that uses this technique:

// listing 10.15

class UnitScript
{
    public static function joinExisting(
        Unit $newUnit,
        Unit $occupyingUnit
    ): CompositeUnit {
        $comp = $occupyingUnit->getComposite();
        if (! is_null($comp)) {
            $comp->addUnit($newUnit);
        } else {
            $comp = new Army();

Figure 10-2.  Moving add/remove methods out of the base class



Chapter 10 ■ Patterns for Flexible Object Programming

221

            $comp->addUnit($occupyingUnit);
            $comp->addUnit($newUnit);
        }
        return $comp;
    }
}

The joinExisting() method accepts two Unit objects. The first is a newcomer to a tile, and the second 
is a prior occupier. If the second Unit is a CompositeUnit, then the first will attempt to join it. If not, then a 
new Army will be created to cover both units. I have no way of knowing at first whether the $occupyingUnit 
argument contains a CompositeUnit. A call to getComposite() settles the matter, though. If getComposite() 
returns an object, I can add the new Unit object to it directly. If not, I create the new Army object and add 
both.

I could simplify this model further by having the Unit::getComposite() method return an Army object 
prepopulated with the current Unit. Or I could return to the previous model (which did not distinguish 
structurally between composite and leaf objects) and have Unit::addUnit() do the same thing: create an 
Army object and add both Unit objects to it. This is neat, but it presupposes that you know in advance the 
type of composite you would like to use to aggregate your units. Your business logic will determine the kinds 
of assumptions you can make when you design methods like getComposite() and addUnit().

These contortions are symptomatic of a drawback to the Composite pattern. Simplicity is achieved by 
ensuring that all classes are derived from a common base. The benefit of simplicity is sometimes bought at a 
cost to type safety. The more complex your model becomes, the more manual type checking you are likely to 
have to do. Let’s say that I have a Cavalry object. If the rules of the game state that you cannot put a horse on 
a troop carrier, I have no automatic way of enforcing this with the Composite pattern:

// listing 10.16

class TroopCarrier extends CompositeUnit
{
    public function addUnit(Unit $unit)
    {
        if ($unit instanceof Cavalry) {
            throw new UnitException("Can't get a horse on the vehicle");
        }
        parent::addUnit($unit);
    }

    public function bombardStrength(): int
    {
        return 0;
    }
}

I am forced to use the instanceof operator to test the type of the object passed to addUnit(). If you 
have too many special cases of this kind, the drawbacks of the pattern begin to outweigh its benefits. 
Composite works best when most of the components are interchangeable.

Another issue to bear in mind is the cost of some Composite operations. The Army::bombardStrength() 
method is typical in that it sets off a cascade of calls to the same method down the tree. For a large tree with 
lots of subarmies, a single call can cause an avalanche behind the scenes. bombardStrength() is not itself 
very expensive, but what would happen if some leaves performed a complex calculation to arrive at their 
return values? One way around this problem is to cache the result of a method call of this sort in the parent 



Chapter 10 ■ Patterns for Flexible Object Programming

222

object, so that subsequent invocations are less expensive. You need to be careful, though, to ensure that the 
cached value does not grow stale. You should devise strategies to wipe any caches whenever any operations 
take place on the tree. This may require that you give child objects references to their parents.

Finally, a note about persistence. The Composite pattern is elegant, but it doesn’t lend itself neatly to 
storage in a relational database. This is because, by default, you access the entire structure only through a 
cascade of references. To construct a Composite structure from a database in the natural way, you would 
have to make multiple expensive queries. You can get around this problem by assigning an ID to the whole 
tree, so that all components can be drawn from the database in one go. Having acquired all the objects, 
however, you would still have the task of recreating the parent/child references, which themselves would 
have to be stored in the database. This is not difficult, but it is somewhat messy.

Although Composites sit uneasily with relational databases, they lend themselves very well indeed to 
storage in XML. This is because XML elements are often themselves composed of trees of subelements.

Composite in Summary
So the Composite pattern is useful when you need to treat a collection of things in the same way as you 
would an individual, either because the collection is intrinsically like a component (armies and archers), 
or because the context gives the collection the same characteristics as the component (line items in an 
invoice). Composites are arranged in trees, so an operation on the whole can affect the parts, and data from 
the parts is transparently available via the whole. The Composite pattern makes such operations and queries 
transparent to the client. Trees are easy to traverse (as we shall see in the next chapter). It is easy to add new 
component types to Composite structures.

On the downside, Composites rely on the similarity of their parts. As soon as we introduce complex 
rules as to which composite object can hold which set of components, our code can become hard to 
manage. Composites do not lend themselves well to storage in relational databases, but are well suited to 
XML persistence.

The Decorator Pattern
While the Composite pattern helps us to create a flexible representation of aggregated components, the 
Decorator pattern uses a similar structure to help us to modify the functionality of concrete components. 
Once again, the key to this pattern lies in the importance of composition at runtime. Inheritance is a neat 
way of building on characteristics laid down by a parent class. This neatness can lead you to hard-code 
variation into your inheritance hierarchies, often causing inflexibility.

The Problem
Building all your functionality into an inheritance structure can result in an explosion of classes in a system. 
Even worse, as you try to apply similar modifications to different branches of your inheritance tree, you are 
likely to see duplication emerge.

Let’s return to our game. Here, I define a Tile class and a derived type:

// listing 10.17

abstract class Tile
{
    abstract public function getWealthFactor(): int;
}



Chapter 10 ■ Patterns for Flexible Object Programming

223

// listing 10.18
class Plains extends Tile
{
    private $wealthfactor = 2;

    public function getWealthFactor(): int
    {
        return $this->wealthfactor;
    }
}

A tile represents a square on which my units might be found. Each tile has certain characteristics. In 
this example, I have defined a getWealthFactor() method that affects the revenue a particular square 
might generate if owned by a player. As you can see, Plains objects have a wealth factor of 2. Obviously, tiles 
manage other data. They might also hold a reference to image information, so that the board can be drawn. 
Once again, I’ll keep things simple here.

I need to modify the behavior of the Plains object to handle the effects of natural resources and human 
abuse. I wish to model the occurrence of diamonds on the landscape, and the damage caused by pollution. 
One approach might be to inherit from the Plains object:

// listing 10.19

class DiamondPlains extends Plains
{
    public function getWealthFactor(): int
    {
        return parent::getWealthFactor() + 2;
    }
}

// listing 10.20

class PollutedPlains extends Plains
{
    public function getWealthFactor(): int
    {
        return parent::getWealthFactor() - 4;
    }
}

I can now acquire a polluted tile very easily:

// listing 10.21

$tile = new PollutedPlains();
print $tile->getWealthFactor();

You can see the class diagram for this example in Figure 10-3.



Chapter 10 ■ Patterns for Flexible Object Programming

224

This structure is obviously inflexible. I can get plains with diamonds. I can get polluted plains. But can 
I get them both? Clearly not, unless I am willing to perpetrate the horror that is PollutedDiamondPlains. 
This situation can only get worse when I introduce the Forest class, which can also have diamonds and 
pollution.

This is an extreme example, of course, but the point is made. Relying entirely on inheritance to define 
your functionality can lead to a multiplicity of classes and a tendency toward duplication.

Let’s take a more commonplace example at this point. Serious web applications often have to perform a 
range of actions on a request before a task is initiated to form a response. You might need to authenticate the 
user, for example, and to log the request. Perhaps you should process the request to build a data structure 
from raw input. Finally, you must perform your core processing. You are presented with the same problem.

You can extend the functionality of a base ProcessRequest class with additional processing in a derived 
LogRequest class, in a StructureRequest class, and in an AuthenticateRequest class. You can see this class 
hierarchy in Figure 10-4.

Figure 10-3.  Building variation into an inheritance tree

Figure 10-4.  More hard-coded variations



Chapter 10 ■ Patterns for Flexible Object Programming

225

What happens, though, when you need to perform logging and authentication, but not data 
preparation? Do you create a LogAndAuthenticateProcessor class? Clearly, it is time to find a more flexible 
solution.

Implementation
Rather than use only inheritance to solve the problem of varying functionality, the Decorator pattern uses 
composition and delegation. In essence, Decorator classes hold an instance of another class of their own 
type. A Decorator will implement an operation so that it calls the same operation on the object to which it 
has a reference before (or after) performing its own actions. In this way, it is possible to build a pipeline of 
Decorator objects at runtime.

Let’s rewrite our game example to illustrate this:

abstract class Tile
{
    abstract public function getWealthFactor(): int;
}

class Plains extends Tile
{
    private $wealthfactor = 2;

    public function getWealthFactor(): int
    {
        return $this->wealthfactor;
    }
}

// listing 10.22

abstract class TileDecorator extends Tile
{
    protected $tile;

    public function __construct(Tile $tile)
    {
        $this->tile = $tile;
    }
}

Here, I have declared Tile and Plains classes as before, but I have also introduced a new class: 
TileDecorator. This does not implement getWealthFactor(), so it must be declared abstract. I define 
a constructor that requires a Tile object, which it stores in a property called $tile. I make this property 
protected so that child classes can gain access to it. Now I’ll redefine the Pollution and Diamond classes:

// listing 10.23

class DiamondDecorator extends TileDecorator
{
    public function getWealthFactor(): int
    {



Chapter 10 ■ Patterns for Flexible Object Programming

226

        return $this->tile->getWealthFactor() + 2;
    }
}

// listing 10.24

class PollutionDecorator extends TileDecorator
{
    public function getWealthFactor(): int
    {
        return $this->tile->getWealthFactor() - 4;
    }
}

Each of these classes extends TileDecorator. This means that they have a reference to a Tile object. 
When getWealthFactor() is invoked, each of these classes invokes the same method on its Tile reference 
before making its own adjustment.

By using composition and delegation like this, you make it easy to combine objects at runtime. 
Because all the objects in the pattern extend Tile, the client does not need to know which combination it is 
working with. It can be sure that a getWealthFactor() method is available for any Tile object, whether it is 
decorating another behind the scenes or not:

// listing 10.25

$tile = new Plains();
print $tile->getWealthFactor(); // 2

Plains is a component. It simply returns 2:

// listing 10.26

$tile = new DiamondDecorator(new Plains());
print $tile->getWealthFactor(); // 4

DiamondDecorator has a reference to a Plains object. It invokes getWealthFactor() before adding its 
own weighting of 2:

// listing 10.27

$tile = new PollutionDecorator(new DiamondDecorator(new Plains()));
print $tile->getWealthFactor(); // 0

PollutionDecorator has a reference to a DiamondDecorator object, which has its own Tile reference.
You can see the class diagram for this example in Figure 10-5.



Chapter 10 ■ Patterns for Flexible Object Programming

227

This model is very extensible. You can add new decorators and components very easily. With lots of 
decorators, you can build very flexible structures at runtime. The component class, Plains in this case, 
can be significantly modified in many ways without the need to build the totality of the modifications into 
the class hierarchy. In plain English, this means you can have a polluted Plains object that has diamonds, 
without having to create a PollutedDiamondPlains object.

The Decorator pattern builds up pipelines that are very useful for creating filters. The java.io package 
makes great use of decorator classes. The client coder can combine decorator objects with core components to 
add filtering, buffering, compression, and so on to core methods like read(). My web request example can also be 
developed into a configurable pipeline. Here’s a simple implementation that uses the Decorator pattern:

// listing 10.28

class RequestHelper
{
}

// listing 10.29

abstract class ProcessRequest
{
    abstract public function process(RequestHelper $req);
}

// listing 10.30

class MainProcess extends ProcessRequest
{
    public function process(RequestHelper $req)
    {
        print __CLASS__ . ": doing something useful with request\n";
    }
}

Figure 10-5.  The Decorator pattern



Chapter 10 ■ Patterns for Flexible Object Programming

228

// listing 10.31

abstract class DecorateProcess extends ProcessRequest
{
    protected $processrequest;

    public function __construct(ProcessRequest $pr)
    {
        $this->processrequest = $pr;
    }
}

As before, we define an abstract superclass (ProcessRequest), a concrete component (MainProcess), 
and an abstract decorator (DecorateProcess). MainProcess::process() does nothing but report that it 
has been called. DecorateProcess stores a ProcessRequest object on behalf of its children. Here are some 
simple concrete decorator classes:

// listing 10.32

class LogRequest extends DecorateProcess
{
    public function process(RequestHelper $req)
    {
        print __CLASS__ . ": logging request\n";
        $this->processrequest->process($req);
    }
}

// listing 10.33

class AuthenticateRequest extends DecorateProcess
{
    public function process(RequestHelper $req)
    {
        print __CLASS__ . ": authenticating request\n";
        $this->processrequest->process($req);
    }
}

// listing 10.34

class StructureRequest extends DecorateProcess
{
    public function process(RequestHelper $req)
    {
        print __CLASS__ . ": structuring request data\n";
        $this->processrequest->process($req);
    }
}

Each process() method outputs a message before calling the referenced ProcessRequest object’s own 
process() method. You can now combine objects instantiated from these classes at runtime to build filters 



Chapter 10 ■ Patterns for Flexible Object Programming

229

that perform different actions on a request, and in different orders. Here’s some code to combine objects 
from all these concrete classes into a single filter:

// listing 10.35

$process = new AuthenticateRequest(new StructureRequest(
    new LogRequest(
        new MainProcess()
    )
));
$process->process(new RequestHelper());

This code gives the following output:

popp\ch10\batch07\AuthenticateRequest: authenticating request
popp\ch10\batch07\StructureRequest: structuring request data
popp\ch10\batch07\LogRequest: logging request
popp\ch10\batch07\MainProcess: doing something useful with request

■■ Note   This example is, in fact, also an instance of an enterprise pattern called Intercepting Filter. 
Intercepting Filter is described in Core J2EE Patterns: Best Practices and Design Strategies (Prentice Hall, 2001) 
by Alur et al.

Consequences
Like the Composite pattern, Decorator can be confusing. It is important to remember that both composition 
and inheritance are coming into play at the same time. So LogRequest inherits its interface from 
ProcessRequest, but it is acting as a wrapper around another ProcessRequest object.

Because a decorator object forms a wrapper around a child object, it helps to keep the interface as 
sparse as possible. If you build a heavily featured base class, then decorators are forced to delegate to 
all public methods in their contained object. This can be done in the abstract decorator class, but it still 
introduces the kind of coupling that can lead to bugs.

Some programmers create decorators that do not share a common type with the objects they modify. 
As long as they fulfill the same interface as these objects, this strategy can work well. You get the benefit of 
being able to use the built-in interceptor methods to automate delegation (implementing __call() to catch 
calls to nonexistent methods and invoking the same method on the child object automatically). However, 
by doing this, you also lose the safety afforded by class type checking. In our examples so far, client code can 
demand a Tile or a ProcessRequest object in its argument list and be certain of its interface, whether or not 
the object in question is heavily decorated.

The Facade Pattern
You may have had occasion to stitch third-party systems into your own projects in the past. Whether or not 
the code is object oriented, it will often be daunting, large, and complex. Your own code, too, may become a 
challenge to the client programmer who needs only to access a few features. The Facade pattern is a way of 
providing a simple, clear interface to complex systems.



Chapter 10 ■ Patterns for Flexible Object Programming

230

The Problem
Systems tend to evolve large amounts of code that is really only useful within the system itself. Just as classes 
define clear public interfaces and hide their guts away from the rest of the world, so should well-designed 
systems. However, it is not always clear which parts of a system are designed to be used by client code and 
which are best hidden.

As you work with subsystems (like web forums or gallery applications), you may find yourself making 
calls deep into the logic of the code. If the subsystem code is subject to change over time, and your code 
interacts with it at many different points, you may find yourself with a serious maintenance problem as the 
subsystem evolves.

Similarly, when you build your own systems, it is a good idea to organize distinct parts into separate 
tiers. Typically, you may have a tier responsible for application logic, another for database interaction, 
another for presentation, and so on. You should aspire to keep these tiers as independent of one another as 
you can, so that a change in one area of your project will have minimal repercussions elsewhere. If code from 
one tier is tightly integrated into code from another, then this objective is hard to meet.

Here is some deliberately confusing procedural code that makes a song-and-dance routine of the 
simple process of getting log information from a file and turning it into object data:

// listing 10.36

function getProductFileLines($file)
{
    return file($file);
}

function getProductObjectFromId($id, $productname)
{
    // some kind of database lookup
    return new Product($id, $productname);
}

function getNameFromLine($line)
{
    if (preg_match("/.*-(.*)\s\d+/", $line, $array)) {
        return str_replace('_', ' ', $array[1]);
    }
    return '';
}

function getIDFromLine($line)
{
    if (preg_match("/^(\d{1,3})-/", $line, $array)) {
        return $array[1];
    }
    return -1;
}

class Product
{
    public $id;
    public $name;



Chapter 10 ■ Patterns for Flexible Object Programming

231

    public function __construct($id, $name)
    {
        $this->id = $id;
        $this->name = $name;
    }
}

Let’s imagine that the internals of this code are more complicated than they actually are, and that I 
am stuck with using it rather than rewriting it from scratch. For example, assume I have to turn a file that 
contains lines like these into an array of objects:

234-ladies_jumper 55
532-gents_hat 44

To do so, I must call all of these functions (note that, for the sake of brevity, I don’t extract the final 
number, which represents a price):

// listing 10.37

$lines = getProductFileLines(__DIR__ . '/test2.txt');
$objects = [];
foreach ($lines as $line) {
    $id = getIDFromLine($line);
    $name = getNameFromLine($line);
    $objects[$id] = getProductObjectFromID($id, $name);
}

If I call these functions directly like this throughout my project, my code will become tightly wound into 
the subsystem it is using. This could cause problems if the subsystem changes, or if I decide to switch it out 
entirely. I really need to introduce a gateway between the system and the rest of our code.

Implementation
Here is a simple class that provides an interface to the procedural code you encountered in the previous 
section:

// listing 10.38

class ProductFacade
{
    private $products = [];

    public function __construct(string $file)
    {
        $this->file = $file;
        $this->compile();
    }

    private function compile()
    {
        $lines = getProductFileLines($this->file);



Chapter 10 ■ Patterns for Flexible Object Programming

232

        foreach ($lines as $line) {
            $id = getIDFromLine($line);
            $name = getNameFromLine($line);
            $this->products[$id] = getProductObjectFromID($id, $name);
        }
    }

    public function getProducts(): array
    {
        return $this->products;
    }

    public function getProduct(string $id): \Product
    {
        if (isset($this->products[$id])) {
            return $this->products[$id];
        }
        return null;
    }
}

From the point of view of the client code, access to Product objects from a log file is much simplified:

// listing 10.39

$facade = new ProductFacade(__DIR__ . '/test2.txt');
$object = $facade->getProduct("234");

Consequences
A Facade is really a very simple concept. It is just a matter of creating a single point of entry for a tier or 
subsystem. This has a number of benefits. It helps to decouple distinct areas in a project from one another. 
It is useful and convenient for client coders to have access to simple methods that achieve clear ends. It 
reduces errors by focusing the use of a subsystem in one place; changes to the subsystem should cause 
failure in a predictable location. Errors are also minimized by Facade classes in complex subsystems where 
client code might otherwise use internal functions incorrectly.

Despite the simplicity of the Facade pattern, it is all too easy to forget to use it, especially if you are 
familiar with the subsystem you are working with. There is a balance to be struck, of course. On the one 
hand, the benefit of creating simple interfaces to complex systems should be clear. On the other hand, 
one could abstract systems with reckless abandon, and then abstract the abstractions. If you are making 
significant simplifications for the clear benefit of client code, and/or shielding it from systems that might 
change, then you are probably right to implement the Facade pattern.



Chapter 10 ■ Patterns for Flexible Object Programming

233

Summary
In this chapter, I looked at a few of the ways that classes and objects can be organized in a system. In 
particular, I focused on the principle that composition can be used to engender flexibility where inheritance 
fails. In both the Composite and Decorator patterns, inheritance is used to promote composition and to 
define a common interface that provides guarantees for client code.

You also saw delegation used effectively in these patterns. Finally, I looked at the simple but powerful 
Facade pattern. Facade is one of those patterns that many people have been using for years without having 
a name to give it. Facade lets you provide a clean point of entry to a tier or subsystem. In PHP, the Facade 
pattern is also used to create object wrappers that encapsulate blocks of procedural code.



235© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_11

CHAPTER 11

Performing and Representing 
Tasks

In this chapter, we get active. I look at patterns that help you to get things done, whether interpreting a mini-
language or encapsulating an algorithm.

This chapter will walk you through several patterns:

•	 The Interpreter pattern: Building a mini-language interpreter that can be used to 
create scriptable applications

•	 The Strategy pattern: Identifying algorithms in a system and encapsulating them into 
their own types

•	 The Observer pattern: Creating hooks for alerting disparate objects about system 
events

•	 The Visitor pattern: Applying an operation to all the nodes in a tree of objects

•	 The Command pattern: Creating command objects that can be saved and passed 
around

•	 The Null Object pattern: Using non-operational objects in place of null values.

The Interpreter Pattern
Languages are written in other languages (at least at first). PHP itself, for example, is written in C.  
By the same token, odd as it may sound, you can define and run your own languages using PHP. Of course, 
any language you might create will be slow and somewhat limited. Nonetheless, mini-languages can be  
very useful, as you will see in this chapter.

The Problem
When you create web (or command-line) interfaces in PHP, you give the user access to functionality. The 
trade-off in interface design is between power and ease-of-use. As a rule, the more power you give your 
user, the more cluttered and confusing your interface becomes. Good interface design can help a lot here, 
of course. But if 90 percent of users are using the same 30 percent of your features, the costs of piling on the 
functionality may outweigh the benefits. You may wish to consider simplifying your system for most users. 
But what of the power users, that ten percent who use your system’s advanced features? Perhaps you can 
accommodate them in a different way. By offering such users a domain language (often called a  
DSL—Domain Specific Language), you might actually extend the power of your application.



Chapter 11 ■ Performing and Representing Tasks

236

Of course, you have a programming language at hand right away. It’s called PHP. Here’s how you could 
allow your users to script your system:

$form_input = $_REQUEST['form_input'];
// contains: "print file_get_contents('/etc/passwd');"
eval($form_input);

This approach to making an application scriptable is clearly insane. Just in case the reasons are not 
blatantly obvious, they boil down to two issues: security and complexity. The security issue is well addressed 
in the example. By allowing users to execute PHP via your script, you are effectively giving them access to the 
server the script runs on. The complexity issue is just as big a drawback. No matter how clear your code is, 
the average user is unlikely to extend it easily and certainly not from the browser window.

A mini-language, though, can address both these problems. You can design flexibility into the language, 
reduce the possibility that the user can do damage, and keep things focused.

Imagine an application for authoring quizzes. Producers design questions and establish rules for 
marking the answers submitted by contestants. It is a requirement that quizzes must be marked without 
human intervention, even though some answers can be typed into a text field by users.

Here’s a Question:

How many members in the Design Patterns gang?

You can accept “four” or “4” as correct answers. You might create a web interface that allows a producer 
to use a regular Expression for marking responses:

^4|four$

Most producers are not hired for their knowledge of regular expressions, however. To make everyone’s 
life easier, you might implement a more user-friendly mechanism for marking responses:

$input equals "4" or $input equals "four"

You propose a language that supports variables, an operator called equals, and Boolean logic (or and 
and). Programmers love naming things, so let’s call it MarkLogic. It should be easy to extend, as you envisage 
lots of requests for richer features. Let’s leave aside the issue of parsing input for now and concentrate on 
a mechanism for plugging these elements together at runtime to produce an answer. This, as you might 
expect, is where the Interpreter pattern comes in.

Implementation
A language is made up of expressions (that is, things that resolve to a value). As you can see in Table 11-1, 
even a tiny language like MarkLogic needs to keep track of a lot of elements.



Chapter 11 ■ Performing and Representing Tasks

237

Table 11-1 lists EBNF names. So what is EBNF all about? It’s a notation that you can use to describe 
a language grammar. EBNF stands for Extended Backus-Naur Form. It consists of a series of lines (called 
productions), each one consisting of a name and a description that takes the form of references to other 
productions and to terminals (that is, elements that are not themselves made up of references to other 
productions). Here is one way of describing my grammar using EBNF:

expr     = operand { orExpr | andExpr }
operand  = ( '(' expr ')' | ? string literal ? | variable ) { eqExpr }
orExpr   = 'or' operand
andExpr  = 'and' operand
eqExpr   = 'equals' operand
variable = '$' , ? word ?

Some symbols have special meanings (that should be familiar from regular Expression notation): | 
means or, for example. You can group elements using brackets. So in the example, an Expression (expr) 
consists of an operand followed by zero or more of either orExpr or andExpr. An operand can be a bracketed 
Expression, a quoted string (I have omitted the production for this), or a variable followed by zero or more 
instances of eqExpr. Once you get the hang of referring from one production to another, EBNF becomes 
quite easy to read.

In Figure 11-1, I represent the elements of my grammar as classes.

Table 11-1.  Elements of the MarkLogic Grammar

Description EBNF Name Class Name Example

Variable variable VariableExpression $input

String literal <stringLiteral> LiteralExpression "four"

Boolean and andExpr BooleanAndExpression $input equals '4' and $other 
equals '6'

Boolean or orExpr BooleanOrExpression $input equals '4' or $other 
equals '6'

Equality test eqExpr EqualsExpression $input equals '4'



Chapter 11 ■ Performing and Representing Tasks

238

As you can see, BooleanAndExpression and its siblings inherit from OperatorExpression. This is 
because these classes all perform their operations upon other Expression objects. VariableExpression and 
LiteralExpression work directly with values.

All Expression objects implement an interpret() method that is defined in the abstract base class, 
Expression. The interpret() method expects an InterpreterContext object that is used as a shared data 
store. Each Expression object can store data in the InterpreterContext object. The InterpreterContext 
will then be passed along to other Expression objects. So that data can be retrieved easily from the 
InterpreterContext, the Expression base class implements a getKey() method that returns a unique 
handle. Let’s see how this works in practice with an implementation of Expression:

// listing 11.01

abstract class Expression
{
    private static $keycount = 0;
    private $key;

    abstract public function interpret(InterpreterContext $context);

    public function getKey()
    {
        if (! isset($this->key)) {
            self::$keycount++;
            $this->key = self::$keycount;
        }

Figure 11-1.  The Interpreter classes that make up the MarkLogic language



Chapter 11 ■ Performing and Representing Tasks

239

        return $this->key;
    }
}

// listing 11.02

class LiteralExpression extends Expression
{
    private $value;

    public function __construct($value)
    {
        $this->value = $value;
    }

    public function interpret(InterpreterContext $context)
    {
        $context->replace($this, $this->value);
    }
}

// listing 11.03

class InterpreterContext
{
    private $expressionstore = [];

    public function replace(Expression $exp, $value)
    {
        $this->expressionstore[$exp->getKey()] = $value;
    }

    public function lookup(Expression $exp)
    {
        return $this->expressionstore[$exp->getKey()];
    }
}

// listing 11.04

$context = new InterpreterContext();
$literal = new LiteralExpression('four');
$literal->interpret($context);
print $context->lookup($literal) . "\n";

Here’s the output:

four



Chapter 11 ■ Performing and Representing Tasks

240

I’ll begin with the InterpreterContext class. As you can see, it is really only a front end for an 
associative array, $expressionstore, which I use to hold data. The replace() method accepts an 
Expression object as key and a value of any type, and then adds the pair to $expressionstore. It also 
provides a lookup() method for retrieving data.

The Expression class defines the abstract interpret() method and a concrete getKey() method that 
uses a static counter value to generate, store, and return an identifier.

This method is used by InterpreterContext::lookup() and InterpreterContext::replace() to 
index data.

The LiteralExpression class defines a constructor that accepts a value argument. The interpret() 
method requires a InterpreterContext object. I simply call replace(), using getKey() to define the key for 
retrieval and the $value property. This will become a familiar pattern as you examine the other Expression 
classes. The interpret() method always inscribes its results upon the InterpreterContext object.

I include some client code as well, instantiating both an InterpreterContext object and a 
LiteralExpression object (with a value of "four"). I pass the InterpreterContext object to  
LiteralExpression::interpret(). The interpret() method stores the key/value pair in 
InterpreterContext, from where I retrieve the value by calling lookup().

Here’s the remaining terminal class. VariableExpression is a little more complicated:

// listing 11.05

class VariableExpression extends Expression
{
    private $name;
    private $val;

    public function __construct($name, $val = null)
    {
        $this->name = $name;
        $this->val = $val;
    }

    public function interpret(InterpreterContext $context)
    {
        if (! is_null($this->val)) {
            $context->replace($this, $this->val);
            $this->val = null;
        }
    }

    public function setValue($value)
    {
        $this->val = $value;
    }

    public function getKey()
    {
        return $this->name;
    }
}



Chapter 11 ■ Performing and Representing Tasks

241

// listing 11.06

$context = new InterpreterContext();
$myvar = new VariableExpression('input', 'four');
$myvar->interpret($context);
print $context->lookup($myvar) . "\n";
// output: four

$newvar = new VariableExpression('input');
$newvar->interpret($context);
print $context->lookup($newvar) . "\n";
// output: four

$myvar->setValue("five");
$myvar->interpret($context);
print $context->lookup($myvar) . "\n";
// output: five

print $context->lookup($newvar) . "\n";
// output: five

The VariableExpression class accepts both name and value arguments for storage in property 
variables. I provide the setValue() method, so that client code can change the value at any time.

The interpret() method checks whether or not the $val property has a nonnull value. If the $val 
property has a value, it sets it on the InterpreterContext. I then set the $val property to null. This is in 
case interpret() is called again after another identically named instance of VariableExpression has 
changed the value in the InterpreterContext object. This is quite a limited variable, accepting only string 
values. If you intend to extend your language, you should consider having it work with other Expression 
objects, so that it can contain the results of tests and operations. For now, though, VariableExpression 
will do the work I need of it. Notice that I have overridden the getKey() method, so that variable values are 
linked to the variable name and not to an arbitrary static ID.

Operator expressions in the language all work with two other Expression objects in order to 
get their job done. It makes sense, therefore, to have them extend a common superclass. Here is the 
OperatorExpression class:

// listing 11.07

abstract class OperatorExpression extends Expression
{
    protected $l_op;
    protected $r_op;

    public function __construct(Expression $l_op, Expression $r_op)
    {
        $this->l_op = $l_op;
        $this->r_op = $r_op;
    }

    public function interpret(InterpreterContext $context)
    {
        $this->l_op->interpret($context);
        $this->r_op->interpret($context);
        $result_l = $context->lookup($this->l_op);



Chapter 11 ■ Performing and Representing Tasks

242

        $result_r = $context->lookup($this->r_op);
        $this->doInterpret($context, $result_l, $result_r);
    }

    abstract protected function doInterpret(
        InterpreterContext $context,
        $result_l,
        $result_r
    );
}

OperatorExpression is an abstract class. It implements interpret(), but it also defines the abstract 
dointerpret() method.

The constructor demands two Expression objects, $l_op and $r_op, which it stores in properties.
The interpret() method begins by invoking interpret() on both its operand properties (if you have 

read the previous chapter, you might notice that I am creating an instance of the Composite pattern here). 
Once the operands have been run, interpret() still needs to acquire the values that this yields. It does this 
by calling InterpreterContext::lookup() for each property. It then calls dointerpret(), leaving it up to 
child classes to decide what to do with the results of these operations.

■■ Note   dointerpret() is an instance of the Template Method pattern. In this pattern, a parent class both 
defines and calls an abstract method, leaving it up to child classes to provide an implementation. This can 
streamline the development of concrete classes, as shared functionality is handled by the superclass, leaving 
the children to concentrate on clean, narrow objectives.

Here’s the EqualsExpression class, which tests two Expression objects for equality:

// listing 11.08

class EqualsExpression extends OperatorExpression
{
    protected function doInterpret(
        InterpreterContext $context,
        $result_l,
        $result_r
    ) {
            $context->replace($this, $result_l == $result_r);
    }
}

EqualsExpression only implements the dointerpret() method, which tests the equality 
of the operand results it has been passed by the interpret() method, placing the result in the 
InterpreterContext object.

To wrap up the Expression classes, here are BooleanOrExpression and BooleanAndExpression:

// listing 11.09

class BooleanOrExpression extends OperatorExpression
{



Chapter 11 ■ Performing and Representing Tasks

243

    protected function doInterpret(
        InterpreterContext $context,
        $result_l,
        $result_r
    ) {
        $context->replace($this, $result_l || $result_r);
    }
}

// listing 11.10
class BooleanAndExpression extends OperatorExpression
{
    protected function doInterpret(
        InterpreterContext $context,
        $result_l,
        $result_r
    ) {
        $context->replace($this, $result_l && $result_r);
    }
}

Instead of testing for equality, the BooleanOrExpression class applies a logical or operation and stores 
the result of that via the InterpreterContext::replace() method. BooleanAndExpression, of course, 
applies a logical and operation.

I now have enough code to execute the mini-language fragment I quoted earlier. Here it is again:

$input equals "4" or $input equals "four"

Here’s how I can build this statement up with my Expression classes:

// listing 11.11

$context = new InterpreterContext();
$input = new VariableExpression('input');
$statement = new BooleanOrExpression(
    new EqualsExpression($input, new LiteralExpression('four')),
    new EqualsExpression($input, new LiteralExpression('4'))
);

I instantiate a variable called "input" but hold off on providing a value for it. I then create a 
BooleanOrExpression object that will compare the results from two EqualsExpression objects. The first 
of these objects compares the VariableExpression object stored in $input with a LiteralExpression 
containing the string "four"; the second compares $input with a LiteralExpression object containing the 
string "4".

Now, with my statement prepared, I am ready to provide a value for the input variable and run the code:

// listing 11.12

foreach (["four", "4", "52"] as $val) {
    $input->setValue($val);
    print "$val:\n";



Chapter 11 ■ Performing and Representing Tasks

244

    $statement->interpret($context);
    if ($context->lookup($statement)) {
        print "top marks\n\n";
    } else {
        print "dunce hat on\n\n";
    }
}

In fact, I run the code three times, with three different values. The first time through, I set the temporary 
variable $val to "four", assigning it to the input VariableExpression object using its setValue() method. 
I then call interpret() on the topmost Expression object (the BooleanOrExpression object that contains 
references to all other expressions in the statement). Here are the internals of this invocation, step-by-step:

•	 $statement calls interpret() on its $l_op property (the first EqualsExpression 
object).

•	 The first EqualsExpression object calls interpret() on its $l_op property (a 
reference to the input VariableExpression object, which is currently set to "four").

•	 The input VariableExpression object writes its current value to the provided 
InterpreterContext object by calling InterpreterContext::replace().

•	 The first EqualsExpression object calls interpret() on its $r_op property (a 
LiteralExpression object charged with the value "four").

•	 The LiteralExpression object registers its key and its value with 
InterpreterContext.

•	 The first EqualsExpression object retrieves the values for $l_op ("four") and $r_op 
("four") from the InterpreterContext object.

•	 The first EqualsExpression object compares these two values for equality, and then 
registers the result (true) and its key with the InterpreterContext object.

•	 Back at the top of the tree, the $statement object (BooleanOrExpression) calls 
interpret() on its $r_op property. This resolves to a value (false, in this case) in 
the same way the $l_op property did.

•	 The $statement object retrieves values for each of its operands from the 
InterpreterContext object and compares them using ||. It is comparing true and 
false, so the result is true. This final result is stored in the InterpreterContext 
object.

And all that is only for the first iteration through the loop. Here is the final output:

four:
top marks

4:
top marks

52:
dunce hat on



Chapter 11 ■ Performing and Representing Tasks

245

You may need to read through this section a few times before the process clicks. The old issue of object 
versus class trees might confuse you, here. Expression classes are arranged in an inheritance hierarchy, just 
as Expression objects are composed into a tree at runtime. As you read back through the code, keep this 
distinction in mind.

Figure 11-2 shows the complete class diagram for the example.

Interpreter Issues
Once you set up the core classes for an Interpreter pattern implementation, it becomes easy to extend. The 
price you pay is in the sheer number of classes you could end up creating. For this reason, Interpreter is 
best applied to relatively small languages. If you have a need for a full programming language, you would do 
better to look for a third-party tool to use.

Because Interpreter classes often perform very similar tasks, it is worth keeping an eye on the classes 
you create with a view to factoring out duplication.

Many people approaching the Interpreter pattern for the first time are disappointed, after some initial 
excitement, to discover that it does not address parsing. This means that you are not yet in a position to 
offer your users a nice, friendly language. Chapter 24 contains some rough code to illustrate one strategy for 
parsing a mini-language.

The Strategy Pattern
Classes often try to do too much. It’s understandable: you create a class that performs a few related actions; 
and, as you code, some of these actions need to be varied according to the circumstances. At the same 
time, your class needs to be split into subclasses. Before you know it, your design is being pulled apart by 
competing forces.

Figure 11-2.  The Interpreter pattern deployed

http://dx.doi.org/10.1007/978-1-4842-1996-6_24


Chapter 11 ■ Performing and Representing Tasks

246

The Problem
Since I have recently built a marking language, I’m sticking with the quiz example. Quizzes need questions, 
so you build a Question class, giving it a mark() method. All is well until you need to support different 
marking mechanisms.

Imagine that you are asked to support the simple MarkLogic language, marking by straight match and 
regular Expression. Your first thought might be to subclass for these differences, as in Figure 11-3.

This would serve you well, as long as marking remains the only aspect of the class that varies. Imagine, 
though, that you are called on to support different kinds of questions: those that are text-based and those 
that support rich media. This presents you with a problem when it comes to incorporating these forces in 
one inheritance tree, as you can see in Figure 11-4.

Figure 11-3.  Defining subclasses according to marking strategies

Figure 11-4.  Defining subclasses according to two forces



Chapter 11 ■ Performing and Representing Tasks

247

Not only have the number of classes in the hierarchy ballooned, but you also necessarily introduce 
repetition. Your marking logic is reproduced across each branch of the inheritance hierarchy.

Whenever you find yourself repeating an algorithm across siblings in an inheritance tree (whether 
through subclassing or repeated conditional statements), consider abstracting these behaviors into their 
own type.

Implementation
As with all the best patterns, Strategy is simple and powerful. When classes must support multiple 
implementations of an interface (e.g., multiple marking mechanisms), the best approach is often to extract 
these implementations and place them in their own type, rather than to extend the original class to handle 
them.

So, in the example, your approach to marking might be placed in a Marker type. Figure 11-5 shows the 
new structure.

Remember the Gang of Four principle, “Favor composition over inheritance”? This is an excellent 
example. By defining and encapsulating the marking algorithms, you reduce subclassing and increase 
flexibility. You can add new marking strategies at any time without the need to change the Question 
classes at all. All Question classes know is that they have an instance of a Marker at their disposal, and that 
it is guaranteed by its interface to support a mark() method. The details of implementation are entirely 
somebody else’s problem.

Here are the Question classes rendered as code:

// listing 11.13

abstract class Question
{
    protected $prompt;
    protected $marker;

    public function __construct(string $prompt, Marker $marker)

Figure 11-5.  Extracting algorithms into their own type



Chapter 11 ■ Performing and Representing Tasks

248

    {
        $this->prompt = $prompt;
        $this->marker = $marker;
    }

    public function mark(string $response): bool
    {
        return $this->marker->mark($response);
    }
}

// listing 11.14

class TextQuestion extends Question
{
    // do text question specific things
}

// listing 11.15

class AVQuestion extends Question
{
    // do audiovisual question specific things
}

As you can see, I have left the exact nature of the difference between TextQuestion and AVQuestion to 
the imagination. The Question base class provides all the real functionality, storing a prompt property and 
a Marker object. When Question::mark() is called with a response from the end user, the method simply 
delegates the problem solving to its Marker object.

Now it’s time to define some simple Marker objects:

// listing 11.16

abstract class Marker
{
    protected $test;

    public function __construct(string $test)
    {
        $this->test = $test;
    }

    abstract public function mark(string $response): bool;
}

// listing 11.17

class MarkLogicMarker extends Marker
{
    private $engine;



Chapter 11 ■ Performing and Representing Tasks

249

    public function __construct(string $test)
    {
        parent::__construct($test);
        $this->engine = new MarkParse($test);
    }

    public function mark(string $response): bool
    {
        return $this->engine->evaluate($response);
    }
}

// listing 11.18

class MatchMarker extends Marker
{
    public function mark(string $response): bool
    {
        return ($this->test == $response);
    }
}

// listing 11.19

class RegexpMarker extends Marker
{
    public function mark(string $response): bool
    {
        return (preg_match("$this->test", $response) === 1);
    }
}

There should be little, if anything, that is particularly surprising about the Marker classes themselves. 
Note that the MarkParse object is designed to work with the simple parser developed in Chapter 24. The key 
here is in the structure that I have defined, rather than in the detail of the strategies themselves. I can swap 
RegexpMarker for MatchMarker, with no impact on the Question class.

Of course, you must still decide what method to use to choose between concrete Marker objects. I have 
seen two real-world approaches to this problem. In the first, producers used radio buttons to select the 
preferred marking strategy. In the second, the structure of the marking condition itself was used; that is, a 
match statement was left plain:

five

A MarkLogic statement was preceded by a colon:

:$input equals 'five'

And a regular Expression used forward slashes:

/f.ve/

http://dx.doi.org/10.1007/978-1-4842-1996-6_24


Chapter 11 ■ Performing and Representing Tasks

250

Here is some code to run the classes through their paces:

// listing 11.20

$markers = [  
    new RegexpMarker("/f.ve/"),
    new MatchMarker("five"),
    new MarkLogicMarker('$input equals "five"')
];

foreach ($markers as $marker) {
    print get_class($marker)."\n";
    $question = new TextQuestion("how many beans make five", $marker);

    foreach (["five", "four"] as $response) {
        print "    response: $response: ";
        if ($question->mark($response)) {
            print "well done\n";
        } else {
            print "never mind\n";
        }
    }
}

I construct three strategy objects, using each in turn to help construct a TextQuestion object. The 
TextQuestion object is then tried against two sample responses.

Here is the output (including namespaces):

popp\ch11\batch02\RegexpMarker
    response: five: well done
    response: four: never mind
popp\ch11\batch02\MatchMarker
    response: five: well done
    response: four: never mind
popp\ch11\batch02\MarkLogicMarker
    response: five: well done
    response: five: never mind

In the example, I passed specific data (the $response variable) from the client to the strategy object 
via the mark() method. Sometimes, you may encounter circumstances in which you don’t always know 
in advance how much information the strategy object will require when its operation is invoked. You can 
delegate the decision as to what data to acquire by passing the strategy an instance of the client itself. The 
strategy can then query the client in order to build the data it needs.

The Observer Pattern
Orthogonality is a virtue I have described before. One of our objectives as programmers should be to build 
components that can be altered or moved with minimal impact on other components. If every change we 
make to one component necessitates a ripple of changes elsewhere in the codebase, the task of development 
can quickly become a spiral of bug creation and elimination.



Chapter 11 ■ Performing and Representing Tasks

251

Of course, orthogonality is often just a dream. Elements in a system must have embedded references 
to other elements. You can, however, deploy various strategies to minimize this. You have seen various 
examples of polymorphism in which the client understands a component’s interface, but the actual 
component may vary at runtime.

In some circumstances, you may wish to drive an even greater wedge between components than this. 
Consider a class responsible for handling a user’s access to a system:

// listing 11.21

class Login
{
    const LOGIN_USER_UNKNOWN = 1;
    const LOGIN_WRONG_PASS = 2;
    const LOGIN_ACCESS = 3;

    private $status = [];

    public function handleLogin(string $user, string $pass, string $ip): bool
    {
        $isvalid=false;
        switch (rand(1, 3)) {
            case 1:
                $this->setStatus(self::LOGIN_ACCESS, $user, $ip);
                $isvalid = true;
                break;
            case 2:
                $this->setStatus(self::LOGIN_WRONG_PASS, $user, $ip);
                $isvalid = false;
                break;
            case 3:
                $this->setStatus(self::LOGIN_USER_UNKNOWN, $user, $ip);
                $isvalid = false;
                break;
        }

        print "returning ".(($isvalid)?"true":"false")."\n";

        return $isvalid;
    }

    private function setStatus(int $status, string $user, string $ip)
    {
        $this->status = [$status, $user, $ip];
    }

    public function getStatus(): array
    {
        return $this->status;
    }
}



Chapter 11 ■ Performing and Representing Tasks

252

In a real-world example, of course, the handleLogin() method would validate the user against a storage 
mechanism. As it is, this class fakes the login process using the rand() function. There are three potential 
outcomes of a call to handleLogin(). The status flag may be set to LOGIN_ACCESS, LOGIN_WRONG_PASS, or 
LOGIN_USER_UNKNOWN.

Because the Login class is a gateway guarding the treasures of your business team, it may excite much 
interest during development and in the months beyond. Marketing might call you up and ask that you keep 
a log of IP addresses. You can add a call to your system’s Logger class:

// listing 11.22

    public function handleLogin(string $user, string $pass, string $ip): bool
    {
        switch (rand(1, 3)) {
            case 1:
                $this->setStatus(self::LOGIN_ACCESS, $user, $ip);
                $isvalid = true;
                break;
            case 2:
                $this->setStatus(self::LOGIN_WRONG_PASS, $user, $ip);
                $isvalid = false;
                break;
            case 3:
                $this->setStatus(self::LOGIN_USER_UNKNOWN, $user, $ip);
                $isvalid = false;
                break;
        }

        Logger::logIP($user, $ip, $this->getStatus());

        return $isvalid;
    }

Worried about security, the system administrators might ask for notification of failed logins. Once again, 
you can return to the login method and add a new call:

// listing 11.23

        if (! $isvalid) {
            Notifier::mailWarning(
                $user,
                $ip,
                $this->getStatus()
            );
        }

The business development team might announce a tie-in with a particular ISP, asking that a cookie be 
set when particular users log in. And so on, and so on.

These are all easy enough requests to fulfill, but addressing them comes at a cost to your design. The 
Login class soon becomes very tightly embedded into this particular system. You cannot pull it out and drop 
it into another product without going through the code line-by-line and removing everything that is specific 
to the old system. This isn’t too hard, of course, but then you are off down the road of cut-and-paste coding. 



Chapter 11 ■ Performing and Representing Tasks

253

Now that you have two similar but distinct Login classes in your systems, you find that an improvement 
to one will necessitate the same changes in the other—until, inevitably and gracelessly, they fall out of 
alignment with one another.

So what can you do to save the Login class? The Observer pattern is a great fit here.

Implementation
At the core of the Observer pattern is the unhooking of client elements (the observers) from a central class 
(the subject). Observers need to be informed when events occur that the subject knows about. At the same 
time, you do not want the subject to have a hardcoded relationship with its observer classes.

To achieve this, you can allow observers to register themselves with the subject. You give the Login 
class three new methods, attach(), detach(), and notify(), and enforce this using an interface called 
Observable:

// listing 11.24

interface Observable
{
    public function attach(Observer $observer);
    public function detach(Observer $observer);
    public function notify();
}

// listing 11.25

class Login implements Observable
{
    private $observers = [];
    private $storage;

    const LOGIN_USER_UNKNOWN = 1;
    const LOGIN_WRONG_PASS   = 2;
    const LOGIN_ACCESS       = 3;

    public function attach(Observer $observer)
    {
        $this->observers[] = $observer;
    }

    public function detach(Observer $observer)
    {
        $this->observers = array_filter(
            $this->observers,
            function ($a) use ($observer) {
                return (! ($a === $observer ));
            }
        );
    }



Chapter 11 ■ Performing and Representing Tasks

254

    public function notify()
    {
        foreach ($this->observers as $obs) {
            $obs->update($this);
        }
    }
    // ...
}

So the Login class manages a list of observer objects. These can be added by a third party using 
the attach() method and removed via detach(). The notify() method is called to tell the observers 
that something of interest has happened. The method simply loops through the list of observers, calling 
update() on each one.

The Login class itself calls notify() from its handleLogin() method:

// listing 11.26

    public function handleLogin(string $user, string $pass, string $ip)
    {
        switch (rand(1, 3)) {
            case 1:
                $this->setStatus(self::LOGIN_ACCESS, $user, $ip);
                $isvalid = true;
                break;
            case 2:
                $this->setStatus(self::LOGIN_WRONG_PASS, $user, $ip);
                $isvalid = false;
                break;
            case 3:
                $this->setStatus(self::LOGIN_USER_UNKNOWN, $user, $ip);
                $isvalid = false;
                break;
        }

        $this->notify();

        return $isvalid;
    }

Here’s the interface for the Observer class:

// listing 11.27

interface Observer
{
    public function update(Observable $observable);
}

Any object that uses this interface can be added to the Login class via the attach() method. Here’s a 
concrete instance:



Chapter 11 ■ Performing and Representing Tasks

255

// listing 11.28

class LoginAnalytics implements Observer
{
    public function update(Observable $observable)
    {
        // not type safe!
        $status = $observable->getStatus();
        print __CLASS__ . ":    doing something with status info\n";
    }
}

Notice how the observer object uses the instance of Observable to get more information about the 
event. It is up to the subject class to provide methods that observers can query to learn about state. In this 
case, I have defined a method called getStatus() that observers can call to get a snapshot of the current 
state of play.

This addition also highlights a problem, though. By calling Login::getStatus(), the LoginAnalytics 
class assumes more knowledge than it safely can. It is making this call on an Observable object, but 
there’s no guarantee that this will also be a Login object. I have a couple of options here. I could extend 
the Observable interface to include a getStatus() declaration and perhaps rename it to something like 
ObservableLogin to signal that it is specific to the Login type.

Alternatively, I could keep the Observable interface generic and make the Observer classes responsible 
for ensuring that their subjects are of the correct type. They could even handle the chore of attaching 
themselves to their subject. Since there will be more than one type of Observer, and since I’m planning 
to perform some housekeeping that is common to all of them, here’s an abstract superclass to handle the 
donkey work:

// listing 11.29

abstract class LoginObserver implements Observer
{
    private $login;

    public function __construct(Login $login)
    {
        $this->login = $login;
        $login->attach($this);
    }

    public function update(Observable $observable)
    {
        if ($observable === $this->login) {
            $this->doUpdate($observable);
        }
    }

    abstract public function doUpdate(Login $login);
}

The LoginObserver class requires a Login object in its constructor. It stores a reference and calls 
Login::attach(). When update() is called, it checks that the provided Observable object is the correct 



Chapter 11 ■ Performing and Representing Tasks

256

reference. It then calls a Template Method: doUpdate(). I can now create a suite of LoginObserver objects, 
all of which can be secure they are working with a Login object and not just any old Observable:

// listing 11.30

class SecurityMonitor extends LoginObserver
{
    public function doUpdate(Login $login)
    {
        $status = $login->getStatus();
        if ($status[0] == Login::LOGIN_WRONG_PASS) {
            // send mail to sysadmin
            print __CLASS__ . ":    sending mail to sysadmin\n";
        }
    }
}

// listing 11.31

class GeneralLogger extends LoginObserver
{
    public function doUpdate(Login $login)
    {
        $status = $login->getStatus();
        // add login data to log
        print __CLASS__ . ":    add login data to log\n";
    }
}

// listing 11.32

class PartnershipTool extends LoginObserver
{
    public function doUpdate(Login $login)
    {
        $status = $login->getStatus();
        // check $ip address
        // set cookie if it matches a list
        print __CLASS__ . ":    set cookie if it matches a list\n";
    }
}

Creating and attaching LoginObserver classes is now achieved in one go at the time of instantiation:

$login = new Login();
new SecurityMonitor($login);
new GeneralLogger($login);
new PartnershipTool($login);

So now I have created a flexible association between the subject classes and the observers. You can see 
the class diagram for the example in Figure 11-6.



Chapter 11 ■ Performing and Representing Tasks

257

PHP provides built-in support for the Observer pattern through the bundled SPL (Standard PHP 
Library) extension. The SPL is a set of tools that help with common, largely object-oriented problems. The 
Observer aspect of this OO Swiss Army knife consists of three elements: SplObserver, SplSubject, and 
SplObjectStorage. SplObserver and SplSubject are interfaces and exactly parallel the Observer and 
Observable interfaces shown in this section’s example. SplObjectStorage is a utility class designed to 
provide improved storage and removal of objects. Here’s an edited version of the Observer implementation:

// listing 11.33

class Login implements \SplSubject
{
    private $storage;
    // ...

    public function __construct()
    {
        $this->storage = new \SplObjectStorage();
    }

Figure 11-6.  The Observer pattern



Chapter 11 ■ Performing and Representing Tasks

258

    public function attach(\SplObserver $observer)
    {
        $this->storage->attach($observer);
    }

    public function detach(\SplObserver $observer)
    {
        $this->storage->detach($observer);
    }

    public function notify()
    {
        foreach ($this->storage as $obs) {
            $obs->update($this);
        }
    }

    // ...
}

// listing 11.34
abstract class LoginObserver implements \SplObserver
{
    private $login;

    public function __construct(Login $login)
    {
        $this->login = $login;
        $login->attach($this);
    }

    public function update(\SplSubject $subject)
    {
        if ($subject === $this->login) {
            $this->doUpdate($subject);
        }
    }

    abstract public function doUpdate(Login $login);
}

There are no real differences, as far as SplObserver (which was Observer) and SplSubject (which was 
Observable) are concerned—except, of course, I no longer need to declare the interfaces, and I must alter 
my type hinting according to the new names. SplObjectStorage provides you with a really useful service, 
however. You may have noticed that, in my initial example, my implementation of Login::detach() applied 
array_filter (together with an anonymous function) to the $observers array, in order to find and remove 
the argument object. The SplObjectStorage class does this work for you under the hood. It implements 
attach() and detach() methods, and can be passed to foreach and iterated like an array.



Chapter 11 ■ Performing and Representing Tasks

259

■■ Note   You can read more about SPL in the PHP documentation at http://www.php.net/spl. In particular, 
you will find many iterator tools there. I cover PHP’s built-in Iterator interface in Chapter 13, “Database 
Patterns.”

Another approach to the problem of communicating between an Observable class and its Observer 
could be to pass specific state information via the update() method, rather than an instance of the subject 
class. For a quick-and-dirty solution, this is often the approach I would take initially. So in the example, 
update() would expect a status flag, the username, and IP address (probably in an array for portability), 
rather than an instance of Login. This saves you from having to write a state method in the Login class. On 
the other hand, where the subject class stores a lot of state, passing an instance of it to update() allows 
observers much more flexibility.

You could also lock down type completely, by making the Login class refuse to work with anything 
other than a specific type of observer class (LoginObserver, perhaps). If you want to do that, then you may 
consider some kind of runtime check on objects passed to the attach() method; otherwise, you may need 
to reconsider the Observable interface altogether.

Once again, I have used composition at runtime to build a flexible and extensible model. The Login 
class can be extracted from its context and dropped into an entirely different project without qualification. 
There, it might work with a different set of observers.

The Visitor Pattern
As you have seen, many patterns aim to build structures at runtime, following the principle that composition 
is more flexible than inheritance. The ubiquitous Composite pattern is an excellent example of this. When 
you work with collections of objects, you may need to apply various operations to the structure that involve 
working with each individual component. Such operations can be built into the components themselves. 
After all, components are often best placed to invoke one another.

This approach is not without issues. You do not always know about all the operations you may need to 
perform on a structure. If you add support for new operations to your classes on a case-by-case basis, you 
can bloat your interface with responsibilities that don’t really fit. As you might guess, the Visitor pattern 
addresses these issues.

The Problem
Think back to the Composite example from the previous chapter. For a game, I created an army of 
components such that the whole and its parts can be treated interchangeably. You saw that operations can 
be built into components. Typically, leaf objects perform an operation and composite objects call on their 
children to perform the operation:

// listing 11.35

class Army extends CompositeUnit
{
    public function bombardStrength(): int
    {
        $strength = 0;

http://www.php.net/spl
http://dx.doi.org/10.1007/978-1-4842-1996-6_13


Chapter 11 ■ Performing and Representing Tasks

260

        foreach ($this->units() as $unit) {
            $strength += $unit->bombardStrength();
        }

        return $strength;
    }
}

// listing 11.36

class LaserCanonUnit extends Unit
{
    public function bombardStrength(): int
    {
        return 44;
    }
}

Where this operation is integral to the responsibility of the composite class, there is no problem. There 
are more peripheral tasks, however, that may not sit so happily on the interface.

Here’s an operation that dumps textual information about leaf nodes. It could be added to the abstract 
Unit class:

// listing 11.37

abstract class Unit
{
    // ...
    public function textDump($num = 0): string
    {
        $txtout = "";
        $pad = 4*$num;
        $txtout .= sprintf("%{$pad}s", "");
        $txtout .= get_class($this).": ";
        $txtout .= "bombard: ".$this->bombardStrength()."\n";

        return $txtout;
    }
    // ...
}

This method can then be overridden in the CompositeUnit class:

// listing 11.38

abstract class CompositeUnit extends Unit
{
    // ...
    public function textDump($num = 0): string



Chapter 11 ■ Performing and Representing Tasks

261

    {
        $txtout = parent::textDump($num);
        foreach ($this->units as $unit) {
            $txtout .= $unit->textDump($num + 1);
        }

        return $txtout;
    }
}

I could go on to create methods for counting the number of units in the tree, for saving components to a 
database, and for calculating the food units consumed by an army.

Why would I want to include these methods in the composite’s interface? There is only one really 
compelling answer. I include these disparate operations here because this is where an operation can gain 
easy access to related nodes in the composite structure.

Although it is true that ease of traversal is part of the Composite pattern, it does not follow that every 
operation that needs to traverse the tree should therefore claim a place in the Composite’s interface.

So these are the forces at work: I want to take full advantage of the easy traversal afforded by my object 
structure, but I want to do this without bloating the interface.

Implementation
I’ll begin with the interfaces. In the abstract Unit class, I define an accept() method:

// listing 11.39

abstract class Unit
{
    // ...
    public function accept(ArmyVisitor $visitor)
    {
        $refthis = new \ReflectionClass(get_class($this));
        $method = "visit".$refthis->getShortName();
        $visitor->$method($this);
    }

    protected function setDepth($depth)
    {
        $this->depth=$depth;
    }

    public function getDepth()
    {
        return $this->depth;
    }
}

As you can see, the accept() method expects an ArmyVisitor object to be passed to it. PHP allows 
you dynamically to define the method on the ArmyVisitor you wish to call, so I construct a method name 
based on the name of the current class and invoke that method on the provided ArmyVisitor object. If the 
current class is Army, then I invoke ArmyVisitor::visitArmy(). If the current class is TroopCarrier, then 



Chapter 11 ■ Performing and Representing Tasks

262

I invoke ArmyVisitor::visitTroopCarrier(). And so on. This saves me from implementing accept() on 
every leaf node in my class hierarchy. While I was in the area, I also added two methods of convenience: 
getDepth() and setDepth(). These can be used to store and retrieve the depth of a unit in a tree. 
setDepth() is invoked by the unit’s parent when it adds it to the tree from CompositeUnit::addUnit():

// listing 11.40

abstract class CompositeUnit extends Unit
{
    // ...

    public function addUnit(Unit $unit)
    {
        foreach ($this->units as $thisunit) {
            if ($unit === $thisunit) {
                return;
            }
        }

        $unit->setDepth($this->depth+1);
        $this->units[] = $unit;
    }

    public function accept(ArmyVisitor $visitor)
    {
        parent::accept($visitor);

        foreach ($this->units as $thisunit) {
            $thisunit->accept($visitor);
        }
    }
}

I included an accept() method in this fragment. This calls Unit::accept() to invoke the relevant vist() 
method on the provided ArmyVisitor object. Then it loops through any child objects calling accept(). In 
fact, because accept() overrides its parent operation, the accept() method allows me to do two things:

•	 Invoke the correct visitor method for the current component

•	 Pass the visitor object to all the current element children via the accept() method 
(assuming the current component is composite)

I have yet to define the interface for ArmyVisitor. The accept() methods should give you some clue. 
The visitor class will define accept() methods for each of the concrete classes in the class hierarchy. This 
allows me to provide different functionality for different objects. In my version of this class, I also define a 
default visit() method that is automatically called if implementing classes choose not to provide specific 
handling for particular Unit classes:

// listing 11.41

abstract class ArmyVisitor
{
    abstract public function visit(Unit $node);



Chapter 11 ■ Performing and Representing Tasks

263

    public function visitArcher(Archer $node)
    {
        $this->visit($node);
    }

    public function visitCavalry(Cavalry $node)
    {
        $this->visit($node);
    }

    public function visitLaserCanonUnit(LaserCanonUnit $node)
    {
        $this->visit($node);
    }

    public function visitTroopCarrierUnit(TroopCarrierUnit $node)
    {
        $this->visit($node);
    }

    public function visitArmy(Army $node)
    {
        $this->visit($node);
    }
}

So now it’s just a matter of providing implementations of ArmyVisitor, and I am ready to go. Here is the 
simple text dump code reimplemented as an ArmyVisitor object:

// listing 11.42

class TextDumpArmyVisitor extends ArmyVisitor
{
    private $text = "";

    public function visit(Unit $node)
    {
        $txt = "";
        $pad = 4*$node->getDepth();
        $txt .= sprintf("%{$pad}s", "");
        $txt .= get_class($node).": ";
        $txt .= "bombard: ".$node->bombardStrength()."\n";
        $this->text .= $txt;
    }

    public function getText()
    {
        return $this->text;
    }
}



Chapter 11 ■ Performing and Representing Tasks

264

Let’s look at some client code, and then walk through the whole process:

// listing 11.43
$main_army = new Army();
$main_army->addUnit(new Archer());
$main_army->addUnit(new LaserCanonUnit());
$main_army->addUnit(new Cavalry());

$textdump = new TextDumpArmyVisitor();
$main_army->accept($textdump);
print $textdump->getText();

This code yields the following output:

Tax levied for popp\ch11\batch08\Army: 1
Tax levied for popp\ch11\batch08\Archer: 2
Tax levied for popp\ch11\batch08\LaserCanonUnit: 1
Tax levied for popp\ch11\batch08\Cavalry: 3
TOTAL: 7

I create an Army object. Because Army is composite, it has an addUnit() method, and I use this to add some 
more Unit objects. I then create the TextDumpArmyVisitor object, which I pass to Army::accept(). The accept() 
method constructs a method call and invokes TextDumpArmyVisitor::visitArmy(). In this case, I have provided 
no special handling for Army objects, so the call is passed on to the generic visit() method. visit() has been 
passed a reference to the Army object. It invokes its methods (including the newly added getDepth(), which tells 
anyone who needs to know how far down the object hierarchy the unit is) in order to generate summary data. 
The call to visitArmy() is complete, so the Army::accept() operation now calls accept() on its children in turn, 
passing the visitor along. In this way, the ArmyVisitor class visits every object in the tree.

With the addition of just a couple of methods, I have created a mechanism by which new functionality 
can be plugged into my composite classes without compromising their interface and without lots of 
duplicated traversal code.

On certain squares in the game, armies are subject to a tax. The tax collector visits the army and levies a 
fee for each unit it finds. Different units are taxable at different rates. Here’s where I can take advantage of the 
specialized methods in the visitor class:

// listing 11.44

class TaxCollectionVisitor extends ArmyVisitor
{
    private $due = 0;
    private $report = "";

    public function visit(Unit $node)
    {
        $this->levy($node, 1);
    }

    public function visitArcher(Archer $node)
    {
        $this->levy($node, 2);
    }



Chapter 11 ■ Performing and Representing Tasks

265

    public function visitCavalry(Cavalry $node)
    {
        $this->levy($node, 3);
    }

    public function visitTroopCarrierUnit(TroopCarrierUnit $node)
    {
        $this->levy($node, 5);
    }

    private function levy(Unit $unit, int $amount)
    {
        $this->report .= "Tax levied for " . get_class($unit);
        $this->report .= ": $amount\n";
        $this->due += $amount;
    }

    public function getReport()
    {
        return $this->report;
    }

    public function getTax()
    {
        return $this->due;
    }
}

In this simple example, I make no direct use of the Unit objects passed to the various visit methods. I 
do, however, use the specialized nature of these methods, levying different fees according to the specific type 
of the invoking Unit object.

Here’s some client code:

// listing 11.45

$main_army = new Army();
$main_army->addUnit(new Archer());
$main_army->addUnit(new LaserCanonUnit());
$main_army->addUnit(new Cavalry());

$taxcollector = new TaxCollectionVisitor();
$main_army->accept($taxcollector);
print $taxcollector->getReport();
print "TOTAL: ";
print $taxcollector->getTax() . "\n";

The TaxCollectionVisitor object is passed to the Army object’s accept() method, as before. Once 
again, Army passes a reference to itself to the visitArmy() method, before calling accept() on its children. 
The components are blissfully unaware of the operations performed by their visitor. They simply collaborate 
with its public interface, each one passing itself dutifully to the correct method for its type.



Chapter 11 ■ Performing and Representing Tasks

266

In addition to the methods defined in the ArmyVisitor class, TaxCollectionVisitor provides two 
summary methods, getReport() and getTax(). Invoking these provides the data you might expect:

Tax levied for popp\ch11\batch08\Army: 1
Tax levied for popp\ch11\batch08\Archer: 2
Tax levied for popp\ch11\batch08\LaserCanonUnit: 1
Tax levied for popp\ch11\batch08\Cavalry: 3
TOTAL: 7

Figure 11-7 shows the participants in this example.

Visitor Issues
The Visitor pattern, then, is another pattern that combines simplicity and power. There are a few things to 
bear in mind when deploying this pattern, however.

First, although it is perfectly suited to the Composite pattern, Visitor can, in fact, be used with any 
collection of objects. So, you might use it with a list of objects where each object stores a reference to its 
siblings, for example.

By externalizing operations, you may risk compromising encapsulation. That is, you may need to expose 
the guts of your visited objects in order to let visitors do anything useful with them. You saw, for example, 
that for the first Visitor example, I was forced to provide an additional method in the Unit interface in order 
to provide information for TextDumpArmyVisitor objects. You also saw this dilemma previously in the 
Observer pattern.

Because iteration is separated from the operations that visitor objects perform, you must relinquish a 
degree of control. For example, you cannot easily create a visit() method that does something both before 
and after child nodes are iterated. One way around this would be to move responsibility for iteration into 
the visitor objects. The trouble with this is that you may end up duplicating the traversal code from visitor to 
visitor.

By default, I prefer to keep traversal internal to the visited classes, but externalizing it provides you with 
one distinct advantage. You can vary the way that you work through the visited classes on a visitor-by-visitor 
basis.

Figure 11-7.  The Visitor pattern



Chapter 11 ■ Performing and Representing Tasks

267

The Command Pattern
In recent years, I have rarely completed a web project without deploying this pattern. Originally conceived 
in the context of graphical user interface design, command objects make for good enterprise application 
design, encouraging a separation between the controller (request and dispatch handling) and domain 
model (application logic) tiers. Put more simply, the Command pattern makes for systems that are well 
organized and easy to extend.

The Problem
All systems must make decisions about what to do in response to a user’s request. In PHP, that decision-
making process is often handled by a spread of point-of-contact pages. In selecting a page (feedback.php),  
the user clearly signals the functionality and interface she requires. Increasingly, PHP developers are 
opting for a single-point-of-contact approach (as I will discuss in the next chapter). In either case, however, 
the receiver of a request must delegate to a tier more concerned with application logic. This delegation is 
particularly important in cases where the user can make requests to different pages. Without it, duplication 
inevitably creeps into the project.

So, imagine you have a project with a range of tasks that need performing. In particular, the system 
must allow some users to log in and others to submit feedback. You could create login.php and feedback.
php pages that handle these tasks, instantiating specialist classes to get the job done. Unfortunately, user 
interface in a system rarely maps neatly to the tasks that the system is designed to complete. You may require 
login and feedback capabilities on every page, for example. If pages must handle many different tasks, then 
perhaps you should think of tasks as things that can be encapsulated. In doing this, you make it easy to 
add new tasks to your system, and you build a boundary between your system’s tiers. This brings us to the 
Command pattern.

Implementation
The interface for a command object could not get much simpler. It requires a single method: execute().

In Figure 11-8, I have represented Command as an abstract class. At this level of simplicity, it could be 
defined instead as an interface. I tend to use abstracts for this purpose because I often find that the base 
class can also provide useful common functionality for its derived objects.

There are up to three other participants in the Command pattern: the client, which instantiates the 
command object; the invoker, which deploys the object; and the receiver on which the command operates.

The receiver can be given to the command in its constructor by the client, or it can be acquired from a 
factory object of some kind. I like the latter approach, keeping the constructor method clear of arguments. 
All Command objects can then be instantiated in exactly the same way.

Here’s the abstract base class:

// listing 11.46

abstract class Command

Figure 11-8.  The Command class



Chapter 11 ■ Performing and Representing Tasks

268

{
    abstract public function execute(CommandContext $context): bool;
}

And here’s a concrete Command class:

// listing 11.47

class LoginCommand extends Command
{
    public function execute(CommandContext $context): bool
    {
        $manager = Registry::getAccessManager();
        $user = $context->get('username');
        $pass = $context->get('pass');
        $user_obj = $manager->login($user, $pass);

        if (is_null($user_obj)) {
            $context->setError($manager->getError());
            return false;
        }

        $context->addParam("user", $user_obj);

        return true;
    }
}

The LoginCommand is designed to work with an AccessManager object. AccessManager is an imaginary 
class that handles the nuts-and-bolts of logging users into the system. Notice that the Command::execute() 
method demands a CommandContext object—this is known as RequestHelper in Core J2EE Patterns: Best 
Practices and Design Strategies (Prentice Hall, 2001) by Alur et al. This is a mechanism by which request 
data can be passed to Command objects, and by which responses can be channeled back to the view layer. 
Using an object in this way is useful because I can pass different parameters to commands without breaking 
the interface. The CommandContext is essentially an object wrapper around an associative array variable, 
though it is frequently extended to perform additional helpful tasks. Here is a simple CommandContext 
implementation:

// listing 11.48

class CommandContext
{
    private $params = [];
    private $error = "";

    public function __construct()
    {
        $this->params = $_REQUEST;
    }



Chapter 11 ■ Performing and Representing Tasks

269

    public function addParam(string $key, $val)
    {
        $this->params[$key] = $val;
    }

    public function get(string $key): string
    {
        if (isset($this->params[$key])) {
            return $this->params[$key];
        }
        return null;
    }

    public function setError($error): string
    {
        $this->error = $error;
    }

    public function getError(): string
    {
        return $this->error;
    }
}

So, armed with a CommandContext object, the LoginCommand can access request data: the submitted 
username and password. I use Registry, a simple class with static methods for generating common objects, 
to return the AccessManager object with which LoginCommand needs to work. If AccessManager reports an 
error, the command lodges the error message with the CommandContext object for use by the presentation 
layer, and returns false. If all is well, LoginCommand simply returns true. Note that Command objects do not 
themselves perform much logic. They check input, handle error conditions, and cache data, as well as 
calling on other objects to perform operations. If you find that application logic creeps into your command 
classes, it is often a sign that you should consider refactoring. Such code invites duplication, as it is inevitably 
copied and pasted between commands. You should at least look at where such functionality belongs. It may 
be best moved down into your business objects, or possibly into a Facade layer. In my example, I am still 
missing the client, the class that generates command objects, and the invoker, the class that works with the 
generated command. The easiest way of selecting which command to instantiate in a web project is by using 
a parameter in the request itself. Here is a simplified client:

// listing 11.49

class CommandFactory
{
    private static $dir = 'commands';

    public static function getCommand(string $action = 'Default'): Command
    {
        if (preg_match('/\W/', $action)) {
            throw new Exception("illegal characters in action");
        }

        $class = __NAMESPACE__ . "\\commands\\" . UCFirst(strtolower($action)) . "Command";



Chapter 11 ■ Performing and Representing Tasks

270

        if (! class_exists($class)) {
            throw new CommandNotFoundException("no '$class' class located");
        }

        $cmd = new $class();

        return $cmd;
    }
}

The CommandFactory class simply looks for a particular class. A fully qualified class name is constructed 
using the CommandFactory class’s own namespace, the string '\commands\', and the CommandContext 
object’s $action parameter. The last item should have been passed to the system from the request. Thanks 
to Composer’s autoload magic, we don’t need to worry about explicitly requiring a class. If the class exists, 
then an object is instantiated and returned to the caller. I could add more error checking here, ensuring that 
the found class belongs to the Command family, and that the constructor expects no arguments; however, 
this version will do fine for my purposes. The strength of this approach is that you can create a discoverable 
Command object with the correct namespace at any time, and the system will immediately support it.

The invoker is now simplicity itself:

// listing 11.50

class Controller
{
    private $context;

    public function __construct()
    {
        $this->context = new CommandContext();
    }

    public function getContext(): CommandContext
    {
        return $this->context;
    }

    public function process()
    {
        $action = $this->context->get('action');
        $action = ( is_null($action) ) ? "default" : $action;
        $cmd = CommandFactory::getCommand($action);

        if (! $cmd->execute($this->context)) {
            // handle failure
        } else {
            // success
            // dispatch view
        }
    }
}



Chapter 11 ■ Performing and Representing Tasks

271

Here is some code to invoke the class:

// listing 11.51

$controller = new Controller();
$context = $controller->getContext();

$context->addParam('action', 'login' );
$context->addParam('username', 'bob' );
$context->addParam('pass', 'tiddles' );
$controller->process();

print $context->getError();

Before I call Controller::process(), I fake a web request by setting parameters on the CommandContext 
object instantiated in the controller’s constructor. The process() method acquires the "action" parameter 
(falling back to the string "default" if no action parameter is present). The method then delegates object 
instantiation to the CommandFactory object. It invokes execute() on the returned command. Notice how the 
controller has no idea about the command’s internals. It is this independence from the details of command 
execution that makes it possible for you to add new Command classes with a relatively small impact on this 
framework.

Here’s one more Command class:

// listing 11.52

class FeedbackCommand extends Command
{
    public function execute(CommandContext $context): bool
    {
        $msgSystem = Registry::getMessageSystem();
        $email = $context->get('email');
        $msg   = $context->get('msg');
        $topic = $context->get('topic');
        $result = $msgSystem->send($email, $msg, $topic);

        if (! $result) {
            $context->setError($msgSystem->getError());
            return false;
        }

        return true;
    }
}

■■ Note   I will return to the Command pattern in Chapter 12, with a fuller implementation of a Command factory 
class. The framework for running commands presented here is a simplified version of another pattern that you 
will encounter: the Front Controller.

http://dx.doi.org/10.1007/978-1-4842-1996-6_12


Chapter 11 ■ Performing and Representing Tasks

272

This class will be run in response to a "feedback" action string, without the need for any changes in the 
controller or CommandFactory classes.

Figure 11-9 shows the participants of the Command pattern.

Figure 11-9.  Command pattern participants

The Null Object Pattern
Half the problems that programmers face seem to be related to type. That’s one reason PHP has increasingly 
supported type checks for method declarations and returns. If dealing with a variable that contains the wrong 
type is a problem, dealing with one that contains no type at all is at least as bad. This happens all the time, 
since so many functions return null when they fail to generate a useful value. You can avoid inflicting this 
issue on yourself and others by using the Null Object pattern in your projects. As you will see, while the other 
patterns in this chapter try to get stuff done, Null Object is designed to do nothing as gracefully as possible.

The Problem
If your method has been charged with the task of finding an object, sometimes there is little to be done but to 
admit defeat. The information provided by the calling code may be stale or a resource may be unavailable. If 



Chapter 11 ■ Performing and Representing Tasks

273

the failure is catastrophic, you might choose to throw an exception. Often, though, you’ll want to be a little more 
forgiving. In such a case, returning a null value might seem like a good way of signaling failure to the client.

The problem here is that your method is breaking its contract. If it has committed to return an object 
with a certain method, then returning null forces the client code to adjust to unexpected circumstances.

Let’s return once again to our game. And let’s say that a class named TileForces keeps track of 
information about units on a particular tile. Our game maintains local saved information about the units in 
the system, and a component named UnitAcquisition is responsible for turning this metadata into an array 
of objects.

Here is the TileForces constructor:

// listing 11.53

class TileForces
{
    private $units = [];
    private $x;
    private $y;

    function __construct(int $x, int $y, UnitAcquisition $acq)
    {
        $this->x = $x;
        $this->y = $x;
        $this->units = $acq->getUnits($this->x, $this->y);
    }
    // ...
}

The TileForces object does little but delegate to the provided UnitAcquisition object to get an array of 
Unit objects. Let’s build a fake UnitAcquisition object:

// listing 11.54

class UnitAcquisition
{
    function getUnits(int $x, int $y): array
    {
        // 1. looks up x and y in local data and gets a list of unit ids
        // 2. goes off to a data source and gets full unit data
        // here's some fake data
        $army = new Army();
        $army->addUnit(new Archer());
        $found = [
            new Cavalry(),
            null,
            new LaserCanonUnit(),
            $army
        ];

        return $found;
    }
}



Chapter 11 ■ Performing and Representing Tasks

274

In this class, I hide the process of getting Unit data. Of course, in a real system, some actual look up 
would be performed here. I have contented myself with a few direct instantiations. Notice, though, that I 
embedded a sneaky null value in the $found array. This might happen, for example, if our network game 
client holds metadata that has fallen out of alignment with the state of data on a server.

Armed with its array of Unit objects, TileForces can provide some functionality:

// listing 11.55

    // TileForces
    public function firepower(): int
    {
        $power = 0;

        foreach($this->units as $unit) {
            $power += $unit->bombardStrength();
        }

        return $power;
    }

Let’s put the code through its paces:

// listing 11.56

$acquirer = new UnitAcquisition();
$tileforces = new TileForces(4, 2, $acquirer);
$power = $tileforces->firepower();
print "power is {$power}\n";

Thanks to that lurking null, this code causes an error:

Error: Call to a member function bombardStrength() on null

TileForces::firepower() cycles through its $units array, calling bombardStrength() on each Unit. 
The attempt to invoke a method on a null value, of course, causes an error.

The most obvious solution is to check each element of the array before working with it:

// listing 11.57

    // TileForces
    public function firepower(): int
    {
        $power = 0;

        foreach ($this->units as $unit) {
            if (! is_null($unit)) {
                $power += $unit->bombardStrength();
            }
        }

        return $power;
    }



Chapter 11 ■ Performing and Representing Tasks

275

On its own, this isn’t too much of a problem. But imagine a version of TileForces that performs all sorts 
of operations on the elements in its $units property. As soon as we begin to replicate the is_null() check 
in multiple places, we are presented once again with a particular code smell. Often, the answer to parallel 
chunks of client code is to replace multiple conditionals with polymorphism. We can do that here, too.

Implementation
The Null Object pattern allows us to delegate the doing of nothing to a class of an expected type. In this case, 
I will create a NullUnit class.

// listing 11.58

class NullUnit extends Unit
{
    public function bombardStrength(): int
    {
        return 0;
    }

    public function getHealth(): int
    {
        return 0;
    }

    public function getDepth(): int {
        return 0;
    }
}

This implementation of Unit respects the interface, but does precisely nothing. Now, I can amend 
UnitAcquisition to create a NullUnit rather than use a null:

// listing 11.59

    public function getUnits(int $x, int $y): array
    {
        $army = new Army();
        $army->addUnit(new Archer());

        $found = [
            new Cavalry(),
            new NullUnit(),
            new LaserCanonUnit(),
            $army
        ];

    return $found;
    }



Chapter 11 ■ Performing and Representing Tasks

276

The client code in TileForces can call any methods it likes on a NullUnit object without problem or 
error:

// listing 11.60

    // TileForces
    public function firepower(): int {
        $power = 0;

        foreach($this->units as $unit) {
            $power += $unit->bombardStrength();
        }

        return $power;
    }

Take a look at any substantial project and count up the number of inelegant checks that have been 
forced on its coders by methods that return null values. How many of those checks could be dispensed with 
if more of us used Null Object?

Of course, sometimes you will need to know that you are dealing with a null object. The most obvious 
way of doing this would be to test an object with the instanceof operator. That is even less elegant than the 
original is_null() call, however.

Perhaps the neatest solution is to add an isNull() method to both a base class (returning false) and to 
the Null Object (returning true):

// listing 11.61

if (! $unit->isNull()) {
    // do something
} else {
    print "null - no action\n";
}

That gives us the best of both worlds. Any method of a NullUnit object can be safely called. And any 
Unit object can be queried for null status.

Summary
In this chapter, I wrapped up my examination of the Gang of Four patterns, placing a strong emphasis on 
how to get things done. I began by showing you how to design a mini-language and build its engine with the 
Interpreter pattern.

In the Strategy pattern, you encountered another way of using composition to increase flexibility 
and reduce the need for repetitive subclassing. And with the Observer pattern, you learned how to solve 
the problem of notifying disparate and varying components about system events. You also revisited the 
Composite example; and with the Visitor pattern, learned how to pay a call on, and apply many operations 
to, every component in a tree. You even saw how the Command pattern can help you to build an extensible 
tiered system. Finally, you saved yourself a heap of checking for nulls with the Null Object pattern.

In the next chapter, I will step further beyond the Gang of Four to examine some patterns specifically 
oriented toward enterprise programming.



277© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_12

CHAPTER 12

Enterprise Patterns

PHP is, first and foremost, a language designed for the Web. And, because of its extensive support for 
objects, we can take advantage of patterns hatched in the context of other object-oriented languages, 
particularly Java.

I develop a single example in this chapter, using it to illustrate the patterns I cover. Remember, though, 
that by choosing to use one pattern, you are not committed to using all of the patterns that work well with it. 
Nor should you feel that the implementations presented here are the only way you might go about deploying 
these patterns. Rather, you should use the examples here to help you understand the thrust of the patterns 
described, feeling free to extract what you need for your projects.

Because of the amount of material to cover, this is one this book’s longest and most involved chapters, 
and it may be a challenge to traverse it in one sitting. It is divided into an introduction and two main parts. 
These dividing lines might make good break points.

I also describe the individual patterns in the “Architecture Overview” section. Although these are 
interdependent to some extent, you should be able to jump straight to any particular pattern and work 
through it independently, moving on to related patterns at your leisure.

This chapter will cover several key topics:

•	 Architecture overview: An introduction to the layers that typically comprise an 
enterprise application

•	 Registry pattern: Managing application data

•	 Presentation layer: Tools for managing and responding to requests and for presenting 
data to the user

•	 Business logic layer: Getting to the real purpose of your system, which is addressing 
business problems

Architecture Overview
With a lot of ground to cover, let’s kick off with an overview of the patterns to come, followed by an 
introduction to building layered, or tiered, applications.

The Patterns
I will explore several patterns in this chapter. You may read from start to finish or dip into those patterns that 
fit your needs or pique your interest:

•	 Registry: This pattern is useful for making data available to all classes in a process. 
Through careful use of serialization, it can also be used to store information across a 
session or even across instances of an application.



http://dx.doi.org/10.1007/978-1-4842-1996-6_11


Chapter 12 ■ Enterprise Patterns

279

The structure shown in Figure 12-1 is not written in stone: some of these tiers may be combined, 
and different strategies can be used for communication between them, depending on the complexity of 
your system. Nonetheless, Figure 12-1 illustrates a model that emphasizes flexibility and reuse, and many 
enterprise applications follow it to a large extent.

•	 The view layer contains the interface that a system’s users actually see and interact 
with. It is responsible for presenting the results of a user’s request and providing the 
mechanism by which the next request can be made to the system.

•	 The command and control layer processes the request from the user. Based on this 
analysis, it delegates to the business logic layer any processing required in order to 
fulfill the request. It then chooses which view is best suited to present the results 
to the user. In practice, this and the view layer are often combined into a single 
presentation layer. Even so, the role of display should be strictly separated from those 
of request handling and business logic invocation.

•	 The business logic layer is responsible for seeing to the business of a request. It 
performs any required calculations and marshals the resulting data.

•	 The data layer insulates the rest of the system from the mechanics of saving and 
acquiring persistent information. In some systems, the command and control layer 
uses the data layer to acquire the business objects with which it needs to work. In 
other systems, the data layer is hidden as much as possible.

So what is the point of dividing a system in this way? As with so much else in this book, the answer lies 
with decoupling. By keeping business logic independent of the view layer, you make it possible to add new 
interfaces to your system with little or no rewriting.

Imagine a system for managing event listings (this will be a very familiar example by the end of the 
chapter). The end user will naturally require a slick HTML interface. Administrators maintaining the system 
may require a command-line interface for building into automated systems. At the same time, you may be 
developing versions of the system to work with cell phones and other handheld devices. You may even begin 
to consider SOAP or a RESTful API.

If you originally combined the underlying logic of your system with the HTML view layer (which is 
still a common strategy), these requirements would trigger an instant rewrite. If, on the other hand, you 
had created a tiered system, you would be able to bolt on new presentation strategies without the need to 
reconsider your business logic and data layers.

By the same token, persistence strategies are subject to change. Once again, you should be able to 
switch between storage models with minimal impact on the other tiers in a system.

Testing is another good reason for creating systems with separate tiers. Web applications are 
notoriously hard to test. In an insufficiently tiered system, automated tests must negotiate the HTML 
interface at one end and risk triggering random queries to a database at the other, even when their focus 
is aimed at neither of these areas. Although any testing is better than none, such tests are necessarily 
haphazard. In a tiered system, on the other hand, the classes that face other tiers are often written so 
that they extend an abstract superclass or implement an interface. This supertype can then support 
polymorphism. In a test context, an entire tier can be replaced by a set of dummy objects (often called 
“stubs” or “mock” objects). In this way, you can test business logic using a fake data layer, for example. 
You can read more about testing in Chapter 18.

Layers are useful even if you think that testing is for wimps and your system will only ever have a single 
interface. By creating tiers with distinct responsibilities, you build a system whose constituent parts are 
easier to extend and debug. You limit duplication by keeping code with the same kinds of responsibility in 
one place (rather than lacing a system with database calls, for example, or with display strategies). Adding 
to such a system is relatively easy because your changes tend to be nicely vertical, as opposed to messily 
horizontal.

http://dx.doi.org/10.1007/978-1-4842-1996-6_18


Chapter 12 ■ Enterprise Patterns

280

A new feature, in a tiered system, might require a new interface component, additional request 
handling, some more business logic, and an amendment to your storage mechanism. That’s vertical change. 
In a nontiered system, you might add your feature and then remember that five separate pages reference 
your amended database table. Or was it six? There may be dozens of places where your new interface may 
potentially be invoked, so you need to work through your system, adding code for that. This is horizontal 
amendment.

In reality, of course, you never entirely escape from horizontal dependencies of this sort, especially 
when it comes to navigation elements in the interface. A tiered system can help to minimize the need for 
horizontal amendment, however.

■■ Note   While many of these patterns have been around for a while (patterns reflect well-tried practices, after 
all), the names and boundaries are drawn either from Martin Fowler’s key work on enterprise patterns, Patterns 
of Enterprise Application Architecture (Addison-Wesley Professional, 2002), or from the influential Core J2EE 
Patterns: Best Practices and Design Strategies (Prentice Hall, 2001) by Alur et al. For the sake of consistency,  
I have tended to use Fowler’s naming conventions where the two sources diverge.

All the examples in this chapter revolve around a fictional listings system with the whimsical-sounding 
name, “Woo,” which stands for something like “What’s On Outside.”

Participants of the system include venues (e.g., theaters, clubs, or cinemas), spaces (e.g., screen 1 or the 
stage upstairs) and events (e.g., The Long Good Friday or The Importance of Being Earnest).

The operations I will cover include creating a venue, adding a space to a venue, and listing all venues in 
the system.

Remember that the aim of this chapter is to illustrate key enterprise design patterns and not to build a 
working system. Reflecting the interdependent nature of design patterns, most of these examples overlap to 
a large extent with code examples, making good use of ground covered elsewhere in the chapter. As this code 
is mainly designed to demonstrate enterprise patterns, much of it does not fulfill all the criteria demanded 
by a production system. In particular, I omit error checking where it might stand in the way of clarity. 
You should approach the examples as a means of illustrating the patterns they implement, rather than as 
building blocks in a framework or application.

Cheating Before We Start
Most of the patterns in this book find a natural place in the layers of an enterprise architecture. But some 
patterns are so basic that they stand outside of this structure. The Registry pattern is a good example of this. 
In fact, Registry is a powerful way of breaking out of the constraints laid down by layering. It is the exception 
that allows for the smooth running of the rule.

Registry
The Registry pattern is all about providing system-wide access to objects. These days, it is almost an article 
of faith that globals are bad. Like other sins, though, global data is fatally attractive. This is so much the case 
that object-oriented architects have felt it necessary to reinvent globals under a new name. You encountered 
the Singleton pattern in Chapter 9, although it is true that singleton objects do not suffer from all the ills that 
beset global variables. In particular, you cannot overwrite a singleton by accident. Singletons, then, are  
low-fat globals. You should remain suspicious of singleton objects, though, because they invite you to 
anchor your classes into a system, thereby introducing coupling.

http://dx.doi.org/10.1007/978-1-4842-1996-6_9


Chapter 12 ■ Enterprise Patterns

281

Nevertheless, singletons are so useful at times that many programmers (including me) can’t bring 
themselves to give them up.

The Problem
As you have seen, many enterprise systems are divided into layers, with each layer communicating with 
its neighbors only through tightly defined conduits. This separation of tiers makes an application flexible. 
You can replace or otherwise develop each tier with the minimum impact on the rest of the system. What 
happens, though, when you acquire information in a tier that you later need in another noncontiguous 
layer?

Let’s say that I acquire configuration data in an ApplicationHelper class:

// listing 12.01
class ApplicationHelper
{
    public function getOptions(): array
    {
        $optionfile = __DIR__ . "/data/woo_options.xml";

        if (! file_exists($optionfile)) {
            throw new AppException("Could not find options file");
        }

        $options = simplexml:load_file($optionfile);
        $dsn = (string) $options->dsn;
        // what do we do with this now?
        // ...
    }
}

Acquiring the information is easy enough, but how would I get it to the data layer, where it is later used? 
And what about all the other configuration information I must disseminate throughout my system?

One answer would be to pass this information around the system from object to object: from a 
controller object responsible for handling requests; to objects in the business logic layer; and finally, to an 
object responsible for talking to the database.

This is entirely feasible. In fact, you could pass the ApplicationHelper object itself around or, 
alternatively, a more specialized Context object. Either way, contextual information is transmitted through 
the layers of your system to the object or objects that need it.

The tradeoff is that, in order to do this, you must alter the interface of all the objects that relay the 
context object, whether they need to use it or not. Clearly, this undermines loose coupling to some extent.

The Registry pattern provides an alternative that is not without its own consequences.
A registry is simply a class that provides access to data (usually, but not exclusively, objects) via static 

methods (or via instance methods on a singleton). Every object in a system, therefore, has access to these 
objects.

The term “Registry” is drawn from Fowler’s Patterns of Enterprise Application Architecture; but, as with 
all patterns, implementations pop up everywhere. In The Pragmatic Programmer: from Journeyman to 
Master (Addison-Wesley Professional, 1999), David Hunt and David Thomas liken a registry class to a police 
incident-notice board. Detectives on one shift leave evidence and sketches on the board, which are then 
picked up by new detectives on another shift. I have also seen the Registry pattern called Whiteboard and 
Blackboard.



Chapter 12 ■ Enterprise Patterns

282

Implementation
Figure 12-2 shows a Registry object that stores and serves Request objects.

Here is this class in code form:

// listing 12.02
class Registry
{
    private static $instance = null;
    private $request;

    private function __construct()
    {
    }

    public static function instance(): self
    {
        if (is_null(self::$instance)) {
            self::$instance = new self();
        }

        return self::$instance;
    }

    public function getRequest(): Request
    {
        if (is_null($this->request)) {
            $this->request = new Request();
        }

        return $this->request;
    }
}

// listing 12.03
class Request
{
}

Figure 12-2.  A simple registry



Chapter 12 ■ Enterprise Patterns

283

You can then access the same Request from any part of your system:

// listing 12.04
$reg = Registry::instance();
print_r($reg->getRequest());

As you can see, the Registry is simply a singleton (see Chapter 9 if you need a reminder about singleton 
classes). The code creates and returns a sole instance of the Registry class via the instance() method. This 
can then be used to retrieve a Request object.

I have been known to throw caution to the wind and use a key-based system, like this:

// listing 12.05
class Registry
{
    private static $instance=null;
    private $values = [];

    private function __construct()
    {
    }

    public static function instance(): self
    {
        if (is_null(self::$instance)) {
            self::$instance = new self();
        }

        return self::$instance;
    }

    public function get(string $key)
    {
        if (isset($this->values[$key])) {
            return $this->values[$key];
        }

        return null;
    }

    public function set(string $key, $value)
    {
        $this->values[$key] = $value;
    }
}

The benefit here is that you don’t need to create methods for every object you wish to store and serve. 
The downside, though, is that you reintroduce global variables by the back door. The use of arbitrary 
strings as keys for the objects you store means that there is nothing stopping one part of your system from 
overwriting a key/value pair when adding an object. I have found it useful to use this map-like structure 
during development, and then shift over to explicitly named methods when I’m clear about the data I am 
going to need to store and retrieve.

http://dx.doi.org/10.1007/978-1-4842-1996-6_9








Chapter 12 ■ Enterprise Patterns

288

        $resolver = new CommandResolver();
        $cmd = $resolver->getCommand($request);
        $cmd->execute($request);
    }
}

Simplified as this is, and bereft of error handling, there isn’t much more to the Controller class. A 
controller sits at the tip of a system, delegating to other classes. It is these other classes that do most of the 
work. run() is merely a convenience method that calls init() and handleRequest(). It is static, and the 
constructor is private, so the only option for client code is to kick off execution of the system. I usually do this 
in a file called index.php that contains only a few of lines of code:

// listing 12.10
require_once(__DIR__ . "/../../../vendor/autoload.php");

use \popp\ch12\batch05\Controller;

Controller::run();

Notice that nasty looking require statement. It is really only there so that the rest of the system can 
live in ignorance of the need for requiring files. The autoload.php script is automatically generated by 
Composer. It manages the logic for loading class files, as needed. If that meant nothing to you, don’t worry; 
we cover autoloading in much more detail in Chapter 16.

The distinction between the init() and handleRequest() methods is really one of category in PHP. In 
some languages, init() would be run only at application startup, and handleRequest() or an equivalent 
would be run for each user request. This class observes the same distinction between setup and request 
handling, even though init() is called for each request.

The init() method makes a call to a class called ApplicationHelper via the Registry class, which is 
referenced by the Controller’s $reg property. The ApplicationHelper class manages configuration data for 
the application as a whole. Controller::init() calls a method in ApplicationHelper, also called init(), 
which, as you will see, initializes data used by the application.

The handleRequest() method uses a CommandResolver to acquire a Command object, which it runs by 
calling Command::execute().

ApplicationHelper

The ApplicationHelper class is not essential to Front Controller. Most implementations must acquire basic 
configuration data, though, so I should develop a strategy for this. Here is a simple ApplicationHelper:

// listing 12.11
class ApplicationHelper
{
    private $config = __DIR__ . "/data/woo_options.ini";
    private $reg;

    public function __construct()
    {
        $this->reg = Registry::instance();
    }

http://dx.doi.org/10.1007/978-1-4842-1996-6_16


Chapter 12 ■ E

















Chapter 12 ■ Enterprise Patterns

297

native PHP approach, though, by creating a system that reads a configuration file and then builds PHP data 
structures, which it writes to a cache file. Once the native PHP cache has been created, the system will use it 
in preference to the configuration file until a change is made and the cache must be rebuilt.

On the plus side, Front Controller centralizes the presentation logic of your system. This means that you 
can exert control over the way that requests are processed and views are selected in one place (well, in one 
set of classes, anyway). This reduces duplication and decreases the likelihood of bugs.

Front Controller is also very extensible. Once you have a core up and running, you can add new Command 
classes and views very easily.

In this example, commands handled their own view dispatch. If you use the Front Controller pattern 
with an object that helps with view (and possibly command) selection, then the pattern allows for excellent 
control over navigation, which is harder to maintain elegantly when presentation control is distributed 
throughout a system. I cover such an object in the next section.

Application Controller
Allowing commands to invoke their own views is acceptable for smaller systems, but it is not ideal. It is 
preferable to decouple your commands from your view layer as much as possible.

An application controller takes responsibility for mapping requests to commands, and commands to 
views. This decoupling means that it becomes easier to switch in alternative sets of views without changing 
the codebase. It also allows the system owner to change the flow of the application, again without the need 
for touching any internals. By allowing for a logical system of Command resolution, the pattern also makes it 
easier for the same Command to be used in different contexts within a system.

The Problem
Remember the nature of the example problem. An administrator needs to be able to add a venue to the 
system and to associate a space with it. The system might, therefore, support the AddVenue and AddSpace 
commands. According to the examples so far, these commands would be selected using a direct map from a 
path (/addvenue) to a class (AddVenue).

Broadly speaking, a successful call to the AddVenue command should lead to an initial call to the 
AddSpace command. This relationship might be hard-coded into the classes themselves, with AddVenue 
invoking AddSpace on success. AddSpace might then include a view that contains the form for adding the 
space to the venue.

Both commands may be associated with at least two different views, a core view for presenting the 
input form and an error or “thank you” screen. According to the logic already discussed, the Command classes 
themselves would include those views (using conditional tests to decide which view to present in which 
circumstances).

This level of hard-coding is fine, as long as the commands will always be used in the same way. It begins 
to break down, though, if I want a special view for AddVenue in some circumstances, and if I want to alter 
the logic by which one command leads to another (perhaps one flow might include an additional screen 
between a successful venue addition and the start of a space addition). If each of your commands is only 
used once, in one relationship to other commands and with one view, then you should hard-code your 
commands’ relationship with each other and their views. Otherwise, you should read on.

An application controller class can take over this logic, freeing up Command classes to concentrate on 
their job, which is to process input, invoke application logic, and handle any results.

Implementation
As always, the key to this pattern is the interface. An application controller is a class (or a set of classes) 
that the front controller can use to acquire commands based on a user request and to find the right view to 
present after the command has been run. You can see the bare bones of this relationship in Figure 12-5.





Chapter 12 ■ Enterprise Patterns

299

So by what logic does the AppController know which view to associate with which command? As 
always with object-oriented code, the interface is more important than the implementation. Let’s fill in a 
possible approach, however.

Implementation Overview

A Command class might demand a different view according to different stages of operation. The default view 
for the AddVenue command might be a data input form. If the user adds the wrong kind of data, the form may 
be presented again, or an error page may be shown. If all goes well, and the venue is created in the system, 
then I may wish to forward to another in a chain of Command objects: AddSpace, perhaps.

The Command objects tell the system of their current state by setting a status flag. Here are the flags that 
this minimal implementation recognizes (set as a property in the Command superclass):

// listing 12.20

    const CMD_DEFAULT = 0;
    const CMD_OK = 1;
    const CMD_ERROR = 2;
    const CMD_INSUFFICIENT_DATA = 3;

The application controller finds and instantiates the correct Command class using the Request object. 
Once it has been run, the Command will be associated with a status. This combination of Command and status 
can be compared against a data structure to determine which command should be run next, or—if no more 
commands should be run—which view to serve up.

The Configuration File

The system’s owner can determine the way that commands and views work together by setting a set of 
configuration directives. Here is an extract:

    <control>

        <command path="/" class="\popp\ch12\batch06\DefaultCommand">
            <view name="main" />
            <status value="CMD_ERROR">
                <view name="error" />
            </status>
        </command>

        <command path="/listvenues" class="\popp\ch12\batch06\ListVenues">
            <view name="listvenues" />
        </command>

        <command path="/quickaddvenue" class="\popp\ch12\batch06\AddVenue">
            <view name="quickadd" />
        </command>

        <command path="/addvenue" class="\popp\ch12\batch06\AddVenue">
            <view name="addvenue" />
            <status value="CMD_OK">



Chapter 12 ■ Enterprise Patterns

300

                <forward path="/addspace" />
            </status>
        </command>

        <command path="/addspace" class="\popp\ch12\batch06\AddSpace">
            <view name="addspace" />
            <status value="CMD_OK">
                <forward path="/listvenues" />
            </status>
        </command>

    </control>

This XML fragment shows one strategy for abstracting the flow of commands and their relationship to 
views from the Command classes themselves. The directives are all contained within a control element.

Each command element defines path and class attributes which describe basic command mapping. 
The logic for views is more complex, however. A view element at the top level of a command defines a default 
relationship. In other words, if no more specific condition is matched, this view will be used for a command. 
The status elements define these specific conditions. Their value attributes should match one of the 
command statuses you have seen. When a command’s execution renders a CMD_OK status, for example, if an 
equivalent status has been defined in the XML document, the corresponding view element will be used.

A view element defines a name attribute. This value is used to build a path to a template file which can 
then be included.

A command or a status element might contain a forward element instead of a view. The WOO system 
treats a forward as a special kind of view which, instead of rendering a template, reinvokes the application 
with a new path.

Let’s work through a fragment of this XML in the light of that explanation:

        <command path="/addvenue" class="\popp\ch12\batch06\AddVenue">
            <view name="addvenue" />
            <status value="CMD_OK">
                <forward path="/addspace" />
            </status>
        </command>

When the system is invoked with the /addvenue path, the AddVenue command is called. It then 
generates a status value—one of CMD_DEFAULT, CMD_OK, CMD_ERROR, or CMD_INSUFFICIENT_DATA. For any 
status but CMD_OK, the addvenue template will be invoked. If the command returns CMD_OK status, however, 
the condition is matched. The status element could simply contain another view that would be included in 
place of the default. Here, though, the forward element comes into play. By forwarding to another command, 
the configuration file delegates all responsibility for handling views to the new element. The system will then 
begin again with the /addspace path in a new request.

Parsing the Configuration File

Thanks to the SimpleXML extension, we don’t have to do any actual parsing—that is handled for us. All 
that is left is to traverse the SimpleXML data structure and build our own data. Here is a class named 
ViewComponentCompiler that does just that:

// listing 12.21
class ViewComponentCompiler



Chapter 12 ■ Enterprise Patterns

301

{
    private static $defaultcmd = DefaultCommand::class;

    public function parseFile($file)
    {
        $options = \simplexml:load_file($file);
        return $this->parse($options);
    }

    public function parse(\SimpleXMLElement $options): Conf
    {
        $conf = new Conf();

        foreach ($options->control->command as $command) {
            $path = (string)$command['path'];
            $cmdstr = (string)$command['class'];
            $path = (empty($path)) ? "/" : $path;
            $cmdstr = (empty($cmdstr)) ? self::$defaultcmd : $cmdstr;
            $pathobj = new ComponentDescriptor($path, $cmdstr);

            $this->processView($pathobj, 0, $command);

            if (isset($command->status) && isset($command->status['value'])) {
                foreach ($command->status as $statusel) {
                    $status = (string)$statusel['value'];
                    $statusval = constant(Command::class . "::" . $status);

                    if (is_null($statusval)) {
                        throw new AppException("unknown status: {$status}");
                    }

                    $this->processView($pathobj, $statusval, $statusel);
                }
            }

            $conf->set($path, $pathobj);
        }
        return $conf;
    }

    public function processView(ComponentDescriptor $pathobj, int $statusval, \
SimpleXMLElement $el)
    {
        if (isset($el->view) && isset($el->view['name'])) {
            $pathobj->setView($statusval, new TemplateViewComponent((string)$el-
>view['name']));
        }

        if (isset($el->forward) && isset($el->forward['path'])) {
            $pathobj->setView($statusval, new ForwardViewComponent((string)$el-
>forward['path']));
        }
    }
}



Chapter 12 ■ Enterprise Patterns

302

The real action here takes place in the parse() method, which accepts a SimpleXMLElement object for 
traversal. I start by instantiating a Conf object (remember, this is just a wrapper around an array). Then I loop 
through the command elements in the XML. For each command, I extract the values of the path and class 
attributes, and I pass this data to the constructor of a ComponentDescriptor object. This object will manage 
the bundle of information associated with a command element—you’ll see the class soon.

Then I call a private method named processView(), passing it the ComponentDescriptor, a zero-
valued integer (because we’re handling the default status), and a reference to the current XML element (that 
is command right now). Depending on what it finds in the XML fragment, processView() either creates a 
TemplateViewComponent or a ForwardViewComponent, which it passes along to ComponentDescriptor::set
View(). It may match nothing and make no call at all, of course—but that is probably inadvisable. —Perhaps 
we’d make it an error condition in a fuller implementation.

Back in parse(), I begin work on the status attributes. I call processView() once again—but this time with 
the integer that corresponds to the string in the status element’s value attribute. In other words, the string  
CMD_OK becomes 1, CMD_ERROR becomes 2, and so on. PHP’s constant() method provides a neat way of making 
this conversion. So I pass processView() a non-zero integer this time around, as well as the status XML element.

Once again processView() populates the ComponentDescriptor with any found ViewComponent objects.
Finally, I store the ComponentDescriptor object in the Conf object, indexed by the command 

component’s path value.
Once the loop is finished, I return the Conf object.
It may take a little re-reading before you can follow this flow; but in essence, the process is very 

simple: ViewComponentCompiler builds up an array (wrapped, as previously, in a Conf object) of 
ComponentDescriptor objects. Each ComponentDescriptor object maintains information about a path and 
a Command class, as well as an array of ViewComponent objects (managing template display or forwarding) 
indexed by a status value (0 for the default view).

Despite all this busywork, it is important to remember the high-level process is pretty simple. We are 
constructing the relationships between potential requests on the one hand, and commands and views on 
the other. Figure 12-6 shows this initialization process.

Managing the Component Data

You have seen that the compiled ComponentDescriptor objects are stored in a Conf object—essentially a 
getter and setter for an associative array. The keys here are the paths the system recognizes: /, for example, 
or /addvenue.

Figure 12-6.  Compiling commands and views



Chapter 12 ■ Enterprise Patterns

303

So let’s take a look at ComponentDescriptor, which manages command, view, and forward information:

// listing 12.22
class ComponentDescriptor
{
    private $path;
    private static $refcmd;
    private $cmdstr;

    public function __construct(string $path, string $cmdstr)
    {
        self::$refcmd = new \ReflectionClass(Command::class);
        $this->path = $path;
        $this->cmdstr = $cmdstr;
    }

    public function getCommand(): Command
    {
        return $this->resolveCommand($this->cmdstr);
    }

    public function setView(int $status, ViewComponent $view)
    {
        $this->views[$status] = $view;
    }

    public function getView(Request $request): ViewComponent
    {
        $status = $request->getCmdStatus();
        $status = (is_null($status)) ? 0 : $status;

        if (isset($this->views[$status])) {
            return $this->views[$status];
        }

        if (isset($this->views[0])) {
            return $this->views[0];
        }

        throw new AppException("no view found");
    }

    public function resolveCommand(string $class): Command
    {
        if (is_null($class)) {
            throw new AppException("unknown class '$class'");
        }

        if (! class_exists($class)) {
            throw new AppException("class '$class' not found");
        }



Chapter 12 ■ Enterprise Patterns

304

        $refclass = new \ReflectionClass($class);

        if (! $refclass->isSubClassOf(self::$refcmd)) {
            throw new AppException("command '$class' is not a Command");
        }

        return $refclass->newInstance();
    }
}

So you can see the storage and retrieval here, but there’s a little more work going on, too. Command 
information (the full class name for the Command) is added via the constructor, and only lazily converted 
into a Command object when getCommand() is called. This instantiation and checking takes place in a private 
method: resolveCommand(). The code here should look familiar—it’s actually stolen from (ahem … inspired 
by) the equivalent functionality in CommandResolver from earlier in the chapter.

Acquiring views is easier. Remember, each view component will have been stored via the setView() method. 
Behind the scenes, we now see that the ViewComponent objects are managed in an array property, $views, and 
indexed by an integer, a Command status value. When the getView() method is called by client code, we are passed 
a Request object in which the Command status may have been cached. We get at this value via a new convenience 
method, Request::getCmdStatus(). Armed with this, it’s simply a matter of checking the $views array for a 
corresponding ViewComponent element. If there is no match, we return the default, which is indexed by zero.

In this way, this little class provides all of the logic implied by a command element in the XML file.
Because most of the real work is done by helper classes, the application controller itself is relatively thin. 

Let’s take a look:

// listing 12.23
class AppController
{
    private static $defaultcmd = DefaultCommand::class;
    private static $defaultview = "fallback";

    public function getCommand(Request $request): Command
    {
        try {
            $descriptor = $this->getDescriptor($request);
            $cmd = $descriptor->getCommand();
        } catch (AppException $e) {
            $request->addFeedback($e->getMessage());
            return new self::$defaultcmd();
        }

        return $cmd;
    }

    public function getView(Request $request): ViewComponent
    {
        try {
            $descriptor = $this->getDescriptor($request);
            $view = $descriptor->getView($request);
        } catch (AppException $e) {
            return new TemplateViewComponent(self::$defaultview);
        }



Chapter 12 ■ Enterprise Patterns

305

        return $view;
    }

    private function getDescriptor(Request $request): ComponentDescriptor
    {
        $reg = Registry::instance();
        $commands = $reg->getCommands();
        $path = $request->getPath();
        $descriptor = $commands->get($path);

        if (is_null($descriptor)) {
            throw new AppException("no descriptor for {$path}", 404);
        }

        return $descriptor;
    }
}

There is little actual logic in this class since most of the complexity has been pushed down to various 
helper classes. Both getCommand() and getView() call a private method, getDescriptor(), to acquire a 
ComponentDescriptor for the current request. The getDescriptor() method gets the current path from the 
Request object and uses it to extract a ComponentDescriptor object from a Conf object which is also stored 
by the registry and returned by getCommands(). Remember that this array of ComponentDescriptor objects 
was previously populated by the ViewComponentCompiler object with potential paths as keys.

Once getCommand() and getView() have a ComponentDescriptor object, each can call its 
corresponding method. In getCommand(), we call ComponentDescriptor::getCommand(); in getView(), we 
call ComponentDescriptor::getView().

Before we move on, there are a few details to wrap up. Now that Command objects no longer invoke views, 
we need a mechanism for rendering templates. This is handled by TemplateViewComponent objects. These 
implement an interface, ViewComponent:

// listing 12.24
interface ViewComponent
{
    public function render(Request $request);
}

Why the interface? We treat both forwarding and template display as view processes. Here is 
TemplateViewDisplay:

// listing 12.25
class TemplateViewComponent implements ViewComponent
{
    private $name = null;

    public function __construct(string $name)
    {
        $this->name = $name;
    }



Chapter 12 ■ Enterprise Patterns

306

    public function render(Request $request)
    {
        $reg = Registry::instance();
        $conf = $reg->getConf();
        $path = $conf->get("templatepath");

        if (is_null($path)) {
            throw new AppException("no template directory");
        }

        $fullpath = "{$path}/{$this->name}.php";

        if (! file_exists($fullpath)) {
            throw new AppException("no template at {$fullpath}");
        }

        include($fullpath);
    }
}

This class is instantiated with a name—which it then uses at render() time, combined with a path-
configuration value, to include a template.

Here is ForwardViewComponent:

// listing 12.26
class ForwardViewComponent implements ViewComponent
{
    private $path = null;

    public function __construct($path)
    {
        $this->path = $path;
    }

    public function render(Request $request)
    {
        $request->forward($this->path);
    }
}

This class simply calls forward() on the provided Request object. The implementation of forward() 
varies depending upon the Request subtype. For HttpRequest, it is a matter of setting the Location header:

// listing 12.27

    // HttpRequest

    public function forward(string $path)
    {
        header("Location: {$path}");
        exit;
    }



Chapter 12 ■ Enterprise Patterns

307

For CliRequest we can’t rely on the server to handle forwarding, so we have to take a different 
approach:

// listing 12.28

    // CliRequest

    public function forward(string $path)
    {
        // tack the new path onto the end the argument list
        // last argument wins
        $_SERVER['argv'][] = "path:{$path}";
        Registry::reset();
        Controller::run();
    }

We take advantage of the fact that, when the argument array is parsed for a path, the final match found 
is ultimately set on the Request. All we need do is add a path argument, clear the Registry, and run the 
controller from the top.

And that leads us full circle, an excellent moment for an overview!
The strategies an application controller might use to acquire views and commands can vary 

considerably; the key is that these are hidden away from the wider system. Figure 12-7 shows the high-level 
process by which a Front Controller class uses an application controller to acquire first a Command object and 
then a view.

Figure 12-7.  Using an application controller to acquire commands and views



Chapter 12 ■ Enterprise Patterns

308

Note that the view that is rendered in Figure 12-7 could be one of ForwardViewComponent (which will 
start the process over again with a new path) or TemplateViewComponent (which will include a template file).

Remember that the data needed for the process of acquiring Command and ViewComponent objects in 
Figure 12-7 was compiled by our old friend, ApplicationHelper. As a reminder, here is the high-level code 
that achieved that:

// listing 12.29
    private function setupOptions()
    {

        //...

        $vcfile = $conf->get("viewcomponentfile");
        $cparse = new ViewComponentCompiler();

        $commandandviewdata = $cparse->parseFile($vcfile);
        $reg->setCommands($commandandviewdata);
    }

The Command Class

Now that commands are no longer responsible for invoking their templates, it’s worth looking briefly at the 
base class and the implementation. We have already seen the new statuses in the Command class, but there is 
an additional piece of housekeeping to note:

// listing 12.30
abstract class Command
{

    const CMD_DEFAULT = 0;
    const CMD_OK = 1;
    const CMD_ERROR = 2;
    const CMD_INSUFFICIENT_DATA = 3;

    final public function __construct()
    {
    }

    public function execute(Request $request)
    {
        $status = $this->doExecute($request);
        $request->setCmdStatus($status);
    }

    abstract public function doExecute(Request $request): int;
}

In a good example of the Template Method pattern, the execute() method calls the abstract 
doExecute() method, and caches the return value in the Request object. This will be used a little later by the 
ComponentDescriptor in selecting the correct view to return.



Chapter 12 ■ Enterprise Patterns

309

A Concrete Command

Here is how a simple AddVenue command might look:

// listing 12.31
class AddVenue extends Command
{
    public function doExecute(Request $request): int
    {
        $name = $request->getProperty("venue_name");

        if (is_null($name)) {
            $request->addFeedback("no name provided");
            return self::CMD_INSUFFICIENT_DATA;
        } else {
            // do some stuff
            $request->addFeedback("'{$name}' added");
            return self::CMD_OK;
        }

        return self::CMD_DEFAULT;
    }
}

In fact, this is missing functional code related to building a Venue object and saving it to a database, but 
we will get to all that. All that’s important at this point is the fact that the command returns different statuses, 
according to the circumstances. As we have already seen, different statuses will cause different views to be 
selected and returned by the application controller. So, if we’re using the example XML, when CMD_OK is 
returned, the forwarding mechanism will trigger forwarding to /addspace. This is triggered in this way only 
for /addvenue. If the request that caused this command to be invoked uses the path /quickaddvenue, then 
no forwarding will take place, and the quickaddvenue view will be displayed. The AddVenue command knows 
nothing of this, though. It sticks to its core responsibilities.

Consequences
A fully featured instance of the Application Controller pattern can be a pain to set up because of the sheer 
amount of work that must go into acquiring and applying metadata that describes the relationships between 
command and request, command and command, and command and view.

For this reason, I tend to implement something like this only when my application tells me it is needed. 
I usually hear this whisper when I find myself adding conditionals to my commands that invoke different 
views or invoke other commands, according to the circumstances. It is at about this time that I feel that 
command flow and display logic are beginning to spiral out of my control.

Of course, an application controller can use all sorts of mechanisms to build its associations among 
commands and views, not just the approach I have taken here. Even if you’re starting off with a fixed 
relationship among a request string, a command name, and a view in all cases, you could still benefit from 
building an application controller to encapsulate this. It will give you considerable flexibility when you must 
refactor in order to accommodate more complexity.



Chapter 12 ■ Enterprise Patterns

310

Page Controller
Much as I like the Front Controller pattern, it is not always the right approach to take. The investment in 
up-front design tends to reward the larger system and penalize simple, need-results-now projects. The Page 
Controller pattern will probably be familiar to you already as it is a common strategy. Nevertheless, it is 
worth exploring some of the issues.

The Problem
Once again, the problem is your need to manage the relationship among request, domain logic, and 
presentation. This is pretty much a constant for enterprise projects. What differs, though, are the constraints 
placed on you.

If you have a relatively simple project, one in which big up-front design could threaten your deadline 
without adding huge amounts of value, Page Controller can be a good option for managing requests and 
views.

Let’s say that you want to present a page that displays a list of all venues in the Woo system. Even with 
the database retrieval code finished, without Front Controller already in place, I have a daunting task to get 
just this simple result.

The view is a list of venues; the request is for a list of venues. Errors permitting, the request does not 
lead to a new view, as you might expect in a complex task. The simplest thing that works here is to associate 
the view and the controller—often in the same page.

Implementation
Although the practical reality of Page Controller projects can become fiendish, the pattern is simple. Control 
is related to a view, or to a set of views. In the simplest case, this means that the control sits in the view itself, 
although it can be abstracted, especially when a view is closely linked with others (that is, when you might 
need to forward to different pages in different circumstances).

Here is the simplest flavor of Page Controller:

<?php
// listing 12.32
namespace popp\ch12\batch07;

try {
    $venuemapper = new VenueMapper();
    $venues = $venuemapper->findAll();
} catch (\Exception $e) {
    include('error.php');
    exit(0);
}

// default page follows
?>
<html>
<head>
<title>Venues</title>
</head>
<body>
<h1>Venues</h1>



Chapter 12 ■ Enterprise Patterns

311

<?php foreach ($venues as $venue) { ?>
    <?php print $venue->getName(); ?><br />
<?php } ?>

</body>
</html>

This document has two elements to it. The view element handles display, while the controller  
element manages the request and invokes application logic. Even though view and controller inhabit the 
same page, they are rigidly separated.

There is very little to this example (aside from the database work going on behind the scenes, of which 
you’ll find more in the next chapter). The PHP block at the top of the page attempts to get a list of Venue 
objects, which it stores in the $venues global variable.

If an error occurs, the page delegates to a page called error.php by using include(), followed by 
exit() to kill any further processing on the current page. I could equally have used an HTTP forward. If no 
include takes place, then the HTML at the bottom of the page (the view) is shown.

This will do as a quick test, but a system of any size or complexity will probably need more support  
than that.

The Page Controller code was previously implicitly separated from the view. Here, I make the break, 
starting with a rudimentary Page Controller base class:

// listing 12.33
abstract class PageController
{
    abstract public function process();

    public function __construct()
    {
        $this->reg = Registry::instance();
    }

    public function init()
    {
        if (isset($_SERVER['REQUEST_METHOD'])) {
            $request = new HttpRequest();
        } else {
            $request = new CliRequest();
        }

Figure 12-8.  Page Controllers embedded in views



Chapter 12 ■ Enterprise Patterns

312

        $this->reg->setRequest($request);
    }

    public function forward(string $resource)
    {
        $request = $this->getRequest();
        $request->forward($resource);
    }

    public function render(string $resource, Request $request)
    {
        include($resource);
    }

    public function getRequest()
    {
        return $this->reg->getRequest();
    }
}

This class uses some of the tools that you have already looked at—in particular, the Request and 
Registry classes. The PageController class’s main roles are to provide access to a Request object and 
to manage the inclusion of views. This list of purposes would quickly grow in a real project as more child 
classes discover a need for common functionality.

A child class could live inside the view, and thereby display it by default as before. Or, it could stand 
separate from the view. The latter approach is cleaner, I think, so that’s the path that I take. Here is a 
PageController that attempts to add a new venue to the system:

// listing 12.34
class AddVenueController extends PageController
{
    public function process()
    {
        $request = $this->getRequest();

        try {
            $name = $request->getProperty('venue_name');

            if (is_null($request->getProperty('submitted'))) {
                $request->addFeedback("choose a name for the venue");
                $this->render(__DIR__ . '/view/add_venue.php', $request);
            } elseif (is_null($name)) {
                $request->addFeedback("name is a required field");
                $this->render(__DIR__ . '/view/add_venue.php', $request);

                return;
            } else {
                // add to database
                $this->forward('listvenues.php');
            }



Chapter 12 ■ Enterprise Patterns

313

        } catch (Exception $e) {
            $this->render(__DIR__.'/view/error.php', $request);
        }
    }
}

The AddVenueController class only implements the process() method. process() is responsible for 
checking the user’s submission. If the user has not submitted a form, or has completed the form incorrectly, 
the default view (add_venue.php) is included, providing feedback and presenting the form. If I successfully 
add a new user, then the method invokes forward() to send the user to the ListVenues page controller.

Note the format I used for the view. I tend to differentiate view files from class files by using all 
lowercase file names in the former and camel case (running words together and using capital letters to show 
the boundaries) in the latter.

You may have noticed that there is nothing within the AddVenueController class that causes it to be 
run. I could place runner code within the same file, but this would make testing difficult (because the very 
act of including the class would execute its methods). For this reason, I create a runner script for each page. 
Here is addvenue.php:

// listing 12.35
$addvenue = new AddVenueController();
$addvenue->init();
$addvenue->process();

Here is the view associated with the AddVenueController class:

<!-- listing 12.36 -->
<html>
<head>
<title>Add Venue</title>
</head>
<body>
<h1>Add Venue</h1>

<table>
<tr>
<td>
<?php
print $request->getFeedbackString("</td></tr><tr><td>");
?>
</td>
</tr>
</table>

<form action="/addvenue.php" method="get">
    <input type="hidden" name="submitted" value="yes"/>
    <input type="text" name="venue_name" />
</form>

</body>
</html>



Chapter 12 ■ Enterprise Patterns

314

As you can see, the view does nothing but display data and provide the mechanism for generating a new 
request. The request is made to the PageController (via the /addvenue.php runner), not back to the view. 
Remember, it is the PageController class that is responsible for processing requests.

You can see an overview of this more complicated version of the Page Controller pattern in Figure 12-9.

Consequences
This approach has the great merit that it immediately makes sense to anyone with any web experience. 
I make a request for venues.php, and that is precisely what I get. Even an error is within the bounds of 
expectation, with “server error” and “page not found” pages an everyday reality.

Things get a little more complicated if you separate the view from the page controller class, but the near 
one-to-one relationship between the participants is clear enough.

A page controller includes its view once it has completed processing. In some circumstances, though, it 
forwards instead to another page controller. So, for example, when AddVenue successfully adds a venue, it no 
longer needs to display the addition form. Instead it delegates to ListVenues.

This is handled within the PageController by the forward() method which, like the 
ForwardViewComponent we have already seen, simply calls forward() on the Request.

Although a page controller class might delegate to Command objects, the benefit of doing so is not as 
marked as it is with Front Controller. Front Controller classes need to work out what the purpose of a request 
is; page controller classes already know this. The light request checking and logic layer calls that you would 
put in a Command sit just as easily in a page controller class, and you benefit from the fact that you do not need 
a mechanism to select your Command objects.

Duplication can be a problem, but the use of a common superclass can factor away a lot of that. You can 
also save on setup time because you can avoid loading data that you won’t need in the current context. Of 
course, you could do that with Front Controller, too, but the process of discovering what is needed, and what 
is not, would be much more complicated.

Figure 12-9.  A Page Controller class hierarchy and its include relationships



Chapter 12 ■ Enterprise Patterns

315

The real drawback to the pattern lies in situations where the paths through your views are complex—
especially when the same view is used in different ways at different times (add and edit screens are a good 
example of this). You can find that you get tangled up in conditionals and state checking, and it becomes 
hard to get an overview of your system.

It is not impossible to start with Page Controller and move toward the Front Controller pattern, however. 
This is especially true if you are using a PageController superclass. As a rule of thumb, if I estimate a system 
should take me less than a week or so to complete, and that it isn’t going to need more phases in the future, 
I would choose Page Controller and benefit from the fast turnaround. If I were building a large project that 
needs to grow over time and has complex view logic, I would go for a Front Controller every time.

Template View and View Helper
Template View is pretty much what you get by default in PHP, in that I can commingle presentation markup 
(HTML) and system code (native PHP). As I have said before, this is both a blessing and a curse because the 
ease with which these can be brought together represents a temptation to combine application and display 
logic in the same place—with potentially disastrous consequences.

In PHP then, programming the view is largely a matter of restraint. If it isn’t strictly a matter of display, 
treat any code with the greatest suspicion.

To this end, the View Helper pattern (Alur et al.) provides for a helper class that may be specific to a 
view or shared between multiple views to help with any tasks that require more than the smallest amount of 
code.

The Problem
These days it is becoming rarer to find SQL queries and other business logic embedded directly in display 
pages, but it still happens. I have covered this particular evil in great detail in previous chapters, so I’ll keep 
this brief.

Web pages that contain too much code can be hard for web producers to work with, as presentation 
components become tangled up in loops and conditionals.

Business logic in the presentation forces you to stick with that interface. You can’t switch in a new view 
easily without porting across a lot of application code, too.

Systems that separate their views from their logic are also easier to test. This is because tests can be 
applied to the functionality of the logic layer in isolation of the noisy distractions of presentation.

Security issues often appear in systems which embed logic in their presentation layer, too. In such 
systems, because database queries and code to handle user input tends to be scattered in with tables and 
forms and lists, it becomes hard to identify potential hazards.

With many operations recurring from view to view, systems that embed application code in their 
templates tend to fall prey to duplication as the same code structures are pasted from page to page. Where 
this happens, bugs and maintenance nightmares surely follow.

To prevent this from happening, you should handle application processing elsewhere and allow views 
to manage presentation only. This is often achieved by making views the passive recipients of data. Where a 
view does need to interrogate the system, it is a good idea to provide a View Helper object to do any involved 
work on the view’s behalf.

Implementation
Once you have created a wider framework, the view layer is not a massive programming challenge.  
Of course, it remains a huge design and information-architecture issue, but that’s another book!



Chapter 12 ■ Enterprise Patterns

316

Template View was so named by Fowler. It is a staple pattern used by most enterprise programmers. 
In some languages, an implementation might involve cooking up a templating system that translates tags 
to values set by the system. You have that option in PHP, too. You could use a templating engine like the 
excellent Twig. My preferred option, though, is to use PHP’s existing functionality, but to use it with care.

In order for a view to have something to work with, it must be able to acquire data. I like to define a View 
Helper that views can use.

Here is a simple View Helper class:

// listing 12.37
class ViewHelper
{
    public function sponsorList()
    {
        // do something complicated to get the sponsor list
        return "Bob's Shoe Emporium";
    }
}

All this class does at present is provide a sponsor list string. Let’s assume that there is some relatively 
complex process to acquire or format this data that we should not embed in the template itself. You can 
extend it to provide additional functionality as your application evolves. If you find yourself doing something 
in a view that takes up more than a couple of lines, chances are it belongs in the View Helper. In a larger 
application, you may provide multiple View Helper objects in an inheritance hierarchy in order to provide 
different tools for different parts of your system.

I might acquire a View Helper from a factory of some kind—perhaps the registry. From the point of view 
of the template, the simplest approach is to make a helper instance available in the render() method:

// listing 12.38
    public function render(string $resource, Request $request)
    {
        $vh = new ViewHelper();
        // now the template will have the $vh variable
        include($resource);
    }

Here is a simple view that uses the View Helper:

<!-- listing 12.39 -->
<html>
<head>
<title>Venues</title>
</head>
<body>
<h1>Venues</h1>

<div>
Proudly sponsored by: <?php echo $vh->sponsorList(); ?>

</div>



Chapter 12 ■ Enterprise Patterns

317

Listing venues

</body>
</html>

The view (list_venues.php) is granted a ViewHelper instance in the $vh variable. It calls the 
sponsorList() method and prints the results.

Clearly, this example doesn’t banish code from the view, but it does severely limit the amount and kind 
of coding that needs to be done. The page contains a simple print statement and will inevitably require other 
method calls as it grows in complexity, but a designer should be able to work around code of this kind with 
little or no effort.

Slightly more problematic are if statements and loops. These are difficult to delegate to a View Helper 
because they are usually bound up with formatted output. I tend to keep both simple conditionals and loops 
(which are very common in building tables that display rows of data) inside the Template View; but to keep 
them as simple as possible, I delegate things like test clauses, where possible.

Consequences
There is something slightly disturbing about the way that data is passed to the view layer, in that a view 
doesn’t really have a fixed interface that guarantees its environment. I tend to think of every view as entering 
into a contract with the system at large. The view effectively says to the application, “If I am invoked, then I 
have a right to access object This, object That, and object TheOther.” It is up to the application to ensure that 
this is the case.

You could make views stricter by providing accessor methods in the helper classes, but I have always 
found it easier to register objects dynamically for the view layer through a Request, Response, or Context 
object.

While templates are often essentially passive, populated with data resulting from the last request, there 
may be times when the view needs to make an ancillary request. The View Helper is a good place to provide 
this functionality, keeping any knowledge of the mechanism by which data is required hidden from the view 
itself. Even the View Helper should do as little work as possible, delegating to a command or contacting the 
domain layer via a facade.

■■ Note   You saw the Facade pattern in Chapter 10. Alur et al. look at one use of Facades in enterprise 
programming in the Session Facade pattern (which is designed to limit fine-grained network transactions). 
Fowler also describes a pattern called Service Layer, which provides a simple point of access to the 
complexities within a layer.

The Business Logic Layer
If the control layer orchestrates communication with the outside world and marshals a system’s response 
to it, the logic layer gets on with the business of an application. This layer should be as free as possible of 
the noise and trauma generated as query strings are analyzed, HTML tables are constructed, and feedback 
messages composed. Business logic is about doing the stuff that needs doing—the true purpose of the 
application. Everything else exists just to support these tasks.

http://dx.doi.org/10.1007/978-1-4842-1996-6_10


Chapter 12 ■ Enterprise Patterns

318

In a classic object-oriented application, the business logic layer is often composed of classes that model 
the problems that the system aims to address. As you shall see, this is a flexible design decision. It also 
requires significant up-front planning.

Let’s begin, then, with the quickest way of getting a system up and running.

Transaction Script
The Transaction Script pattern (Patterns of Enterprise Application Architecture) describes the way that 
many systems evolve of their own accord. It is simple, intuitive, and effective, although it becomes less so as 
systems grow. A transaction script handles a request inline, rather than delegating to specialized objects. It 
is the quintessential quick fix. It is also a hard pattern to categorize because it combines elements from other 
layers in this chapter. I have chosen to present it as part of the business logic layer because the pattern’s 
motivation is to achieve the business aims of the system.

The Problem
Every request must be handled in some way. As you have seen, many systems provide a layer that assesses 
and filters incoming data. Ideally, though, this layer should then call on classes that are designed to fulfill the 
request. These classes could be broken down to represent forces and responsibilities in a system, perhaps 
with a facade interface. This approach requires a certain amount of careful design, however. For some 
projects (typically small in scope and urgent in nature), such development overhead can be unacceptable. In 
this case, you may need to build your business logic into a set of procedural operations. Each operation will 
be crafted to handle a particular request.

The problem, then, is the need to provide a fast and effective mechanism for fulfilling a system’s 
objectives without a potentially costly investment in complex design.

The great benefit of this pattern is the speed with which you can get results. Each script takes input 
and manipulates the database to ensure an outcome. Beyond organizing related methods within the same 
class and keeping the Transaction Script classes in their own tier (that is, as independent as possible of the 
command, control, and view layers), there is little up-front design required.

While business logic layer classes tend to be clearly separated from the presentation layer, they are 
often more embedded in the data layer. This is because retrieving and storing data is key to the tasks that 
such classes often perform. You will see mechanisms for decoupling logic objects from the database later in 
the chapter. Transaction Script classes, though, usually know all about the database (although they can use 
gateway classes to handle the details of their actual queries).

Implementation
Let’s return to my events listing example. In this case, the system supports three relational database tables: 
venue, space, and event. A venue may have a number of spaces (e.g., a theater can have more than one 
stage, and a dance club may have different rooms). Each space plays host to many events. Here is the 
schema:

CREATE TABLE 'venue' (
  'id' int(11) NOT NULL auto_increment,
  'name' text,
  PRIMARY KEY  ('id')
)
CREATE TABLE 'space' (
  'id' int(11) NOT NULL auto_increment,



Chapter 12 ■ Enterprise Patterns

319

  'venue' int(11) default NULL,
  'name' text,
  PRIMARY KEY  ('id')
)
CREATE TABLE 'event' (
  'id' int(11) NOT NULL auto_increment,
  'space' int(11) default NULL,
  'start' mediumtext,
  'duration' int(11) default NULL,
  'name' text,
  PRIMARY KEY  ('id')
)

Clearly, the system will need mechanisms for adding both venues and events. Each of these represents 
a single transaction. I could give each method its own class (and organize my classes according to the 
Command pattern that you encountered in Chapter 11). In this case, though, I am going to place the 
methods in a single class, albeit as part of an inheritance hierarchy. You can see the structure in Figure 12-10.

So why does this example include an abstract superclass? In a script of any size, I would be likely to add 
more concrete classes to this hierarchy. Since most of these will share at least some core functionality, it 
makes sense to lodge this in a common parent.

In fact, this is a pattern in its own right (Fowler has named it Layer Supertype). Where classes in a layer 
share characteristics, it makes sense to group them into a single type, locating utility operations in the base 
class. You will see this a lot in the rest of this chapter.

In this case, the base class acquires a PDO object, which it stores in a property. It also provides methods 
for caching database statements and making queries:

// listing 12.40
abstract class Base
{
    private $pdo;
    private $config = __DIR__ . "/data/woo_options.ini";

Figure 12-10.  A Transaction Script class with its superclass

http://dx.doi.org/10.1007/978-1-4842-1996-6_11


Chapter 12 ■ Enterprise Patterns

320

    private $stmts = [];

    public function __construct()
    {
        $reg = Registry::instance();
        $options = parse_ini_file($this->config, true);
        $conf = new Conf($options['config']);
        $reg->setConf($conf);
        $dsn = $reg->getDSN();

        if (is_null($dsn)) {
            throw new AppException("No DSN");
        }

        $this->pdo = new \PDO($dsn);
        $this->pdo->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);
    }

    public function getPdo(): \PDO
    {
        return $this->pdo;
    }
}

I use the Registry class to acquire a DSN string, which I pass to the PDO constructor. I make the PDO 
object available via a getter method: getPdo(). In fact, a lot of this work can be pushed back into the Registry 
object itself—a strategy you’ll see that I have adopted elsewhere in this chapter and the next.

Here is the start of the VenueManager class, which sets up my SQL statements:

// listing 12.41
class VenueManager extends Base
{

    private $addvenue = "INSERT INTO venue
                          ( name )
                          VALUES( ? )";

    private $addspace  = "INSERT INTO space
                          ( name, venue )
                          VALUES( ?, ? )";

    private $addevent =  "INSERT INTO event
                          ( name, space, start, duration )
                          VALUES( ?, ?, ?, ? )";

    // ...

Not much new here. These are the SQL statements that the transaction scripts will use. They 
are constructed in a format accepted by the PDO class’s prepare() method. The question marks are 
placeholders for the values that will be passed to execute(). Now it’s time to define the first method 
designed to fulfill a specific business need:



Chapter 12 ■ Enterprise Patterns

321

// listing 12.42

    // VenueManager

    public function addVenue(string $name, array $spaces): array
    {
        $pdo = $this->getPdo();
        $ret = [];
        $ret['venue'] = [$name];
        $stmt = $pdo->prepare($this->addvenue);
        $stmt->execute($ret['venue']);
        $vid = $pdo->lastInsertId();

        $ret['spaces'] = [];

        $stmt = $pdo->prepare($this->addspace);
        foreach ($spaces as $spacename) {
            $values = [$spacename, $vid];
            $stmt->execute($values);
            $sid = $pdo->lastInsertId();
            array_unshift($values, $sid);
            $ret['spaces'][] = $values;
        }

        return $ret;
    }

As you can see, addVenue() requires a venue name and an array of space names. It uses these to 
populate the venue and space tables. It also creates a data structure that contains this information, along 
with the newly generated ID values for each row.

If there’s an error with this, remember, an exception is thrown. I don’t catch any exceptions here, so 
anything thrown by prepare() will also be thrown by this method. This is the result I want, although I should 
to make it clear that this method throws exceptions in my documentation.

Having created the venue row, I loop through $spaces, adding a row in the space table for each element. 
Notice that I include the venue ID as a foreign key in each of the space rows I create, associating the row with 
the venue.

The second transaction script is similarly straightforward:

// listing 12.43

    // VenueManager

    public function bookEvent(int $spaceid, string $name, int $time, int $duration)
    {
        $pdo = $this->getPdo();
        $stmt = $pdo->prepare($this->addevent);
        $stmt->execute([$name, $spaceid, $time, $duration]);
    }

The purpose of this script is to add an event to the events table, associated with a space.



Chapter 12 ■ Enterprise Patterns

322

Consequences
The Transaction Script pattern is an effective way of getting good results fast. It is also one of those patterns 
many programmers have used for years without imagining it might need a name. With a few good helper 
methods like those I added to the base class, you can concentrate on application logic without getting too 
bogged down in database fiddle-faddling.

I have seen Transaction Script appear in a less welcome context. I thought I was writing a much more 
complex and object-heavy application than would usually suit this pattern. As the pressure of deadlines 
began to tell, I found that I was placing more and more logic in what was intended to be a thin facade onto a 
Domain Model (see the next section). Although the result was less elegant than I had wanted, I have to admit 
that the application did not appear to suffer for its implicit redesign.

In most cases, you would choose a Transaction Script approach with a small project when you are 
certain it isn’t going to grow into a large one. The approach does not scale well because duplication often 
begins to creep in as the scripts inevitably cross one another. You can go some way to factoring this out, of 
course, but you probably will not be able to excise it completely.

In my example, I decide to embed database code in the transaction script classes themselves. As you 
saw, though, the code wants to separate the database work from the application logic. I can make that 
break absolute by pulling it out of the class altogether and creating a gateway class whose role it is to handle 
database interactions on the system’s behalf.

Domain Model
The Domain Model is the pristine logical engine that many of the other patterns in this chapter strive to 
create, nurture, and protect. It is an abstracted representation of the forces at work in your project. It’s a kind 
of plane of forms, where your business problems play out their nature unencumbered by nasty material 
issues like databases and web pages.

If that seems a little flowery, let’s bring it down to reality. A Domain Model is a representation of the 
real-world participants of your system. It is in the Domain Model that the object-as-thing rule of thumb is 
truer than elsewhere. Everywhere else, objects tend to embody responsibilities. In the Domain Model, they 
often describe a set of attributes, with added agency. They are things that do stuff.

The Problem
If you have been using Transaction Script, you may find that duplication becomes a problem as different 
scripts need to perform the same tasks. That can be factored out to a certain extent, but over time, it’s easy to 
fall into cut-and-paste coding.

You can use a Domain Model to extract and embody the participants and process of your system. 
Rather than using a script to add space data to the database, and then associate event data with it, you 
can create Space and Event classes. Booking an event in a space can then become as simple as a call to 
Space::bookEvent(). A task like checking for a time clash becomes Event::intersects(), and so on.

Clearly, with an example as simple as Woo, a Transaction Script is more than adequate. But as domain 
logic gets more complex, the alternative of a Domain Model becomes increasingly attractive. Complex logic 
can be handled more easily, and you need less conditional code when you model the application domain.

Implementation
Domain Models can be relatively simple to design. Most of the complexity associated with the subject lies 
in the patterns that are designed to keep the model pure—that is, to separate it from the other tiers in the 
application.



Chapter 12 ■ Enterprise Patterns

323

Separating the participants of a Domain Model from the presentation layer is largely a matter of 
ensuring that they keep to themselves. Separating the participants from the data layer is much more 
problematic. Although the ideal is to consider a Domain Model only in terms of the problems it represents 
and resolves, the reality of the database is hard to escape.

It is common for Domain Model classes to map fairly directly to tables in a relational database, and 
this certainly makes life easier. Figure 12-11, for example, shows a class diagram that sketches some of the 
participants of the Woo system.

The objects in Figure 12-11 mirror the tables that were set up for the Transaction Script example. 
This direct association makes a system easier to manage, but it is not always possible, especially if you are 
working with a database schema that precedes your application. Such an association can itself be the source 
of problems. If you’re not careful, you can end up modeling the database, rather than the problems and 
forces you are attempting to address.

Just because a Domain Model often mirrors the structure of a database does not mean that its classes 
should have any knowledge of it. By separating the model from the database, you make the entire tier easier 
to test and less likely to be affected by changes of schema, or even changes of storage mechanism. It also 
focuses the responsibility of each class on its core tasks.

Here is a simplified Venue object, together with its parent class:

// listing 12.44
abstract class DomainObject
{
    private $id;

Figure 12-11.  An extract from a Domain Model



Chapter 12 ■ Enterprise Patterns

324

    public function __construct(int $id)
    {
        $this->id = $id;
    }

    public function getId(): int
    {
        return $this->id;
    }

    public static function getCollection(string $type): Collection
    {
        // dummy implementation
        return Collection::getCollection($type);
    }

    public function markDirty()
    {
        // next chapter!
    }
}

// listing 12.45
class Venue extends DomainObject
{
    private $name;
    private $spaces;

    public function __construct(int $id, string $name)
    {
        $this->name = $name;
        $this->spaces = self::getCollection(Space::class);
        parent::__construct($id);
    }

    public function setSpaces(SpaceCollection $spaces)
    {
        $this->spaces = $spaces;
    }

    public function getSpaces(): SpaceCollection
    {
        return $this->spaces;
    }

    public function addSpace(Space $space)
    {
        $this->spaces->add($space);
        $space->setVenue($this);
    }



Chapter 12 ■ Enterprise Patterns

325

    public function setName(string $name)
    {
        $this->name = $name;
        $this->markDirty();
    }

    public function getName(): string
    {
        return $this->name;
    }
}

There are a few points that distinguish this class from one intended to run without persistence. Instead 
of an array, I am using an object of type SpaceCollection to store any Space objects the Venue might contain 
(though it could be argued that a type-safe array is a bonus whether you are working with a database or 
not!). Because this class works with a special collection object rather than an array of Space objects, the 
constructor needs to instantiate an empty collection on startup. It does this by calling a static method on the 
layer supertype:

 $this->spaces = self::getCollection(Space::class);

I will return to this system’s collection objects and how to acquire them in the next chapter. For now, 
though, the superclass simply returns an empty array.

■■ Note   In this chapter and the next, I will discuss amendments to both the Venue and Space objects. These 
are simple domain objects, and they share a common functional core. If you’re coding along, you should be able 
to apply concepts I discuss to either class. A Space class may not maintain a collection of Space objects for 
example, but it might manage Event objects in exactly the same way.

I expect an $id parameter in the constructor that I pass to the superclass for storage. It should come as 
no surprise to learn that the $id parameter represents the unique ID of a row in the database. Notice also 
that I call a method on the superclass called markDirty()(this will be covered when you encounter the Unit 
of Work pattern).

Consequences
The design of a Domain Model needs to be as simple or complicated as the business processes you need 
to emulate. The beauty of this is that you can focus on the forces in your problem as you design the model, 
handling issues like persistence and presentation in other layers—in theory, that is.

In practice, I think that most developers design their domain models with at least one eye on the 
database. No one wants to design structures that will force you (or, worse, your colleagues) into somersaults 
of convoluted code when it comes to getting your objects in and out of the database.

This separation between the Domain Model and the data layer comes at a considerable cost in terms 
of design and planning. It is possible to place database code directly in the model (although you would 
probably want to design a gateway to handle the actual SQL). For relatively simple models, especially if each 
class broadly maps to a table, this approach can be a real win, saving you the considerable design overhead 
of devising an external system for reconciling your objects with the database.



Chapter 12 ■ Enterprise Patterns

326

Summary
I have covered an enormous amount of ground here (although I have also left out a lot). You should 
not feel daunted by the sheer volume of code in this chapter. Patterns are meant to be used in the right 
circumstances, and combined when useful. Use those described in this chapter that you feel meet the needs 
of your project, and do not feel that you must build an entire framework before embarking on a project. On 
the other hand, there is enough material here to form the basis of a framework, or just as likely, to provide 
some insight into the architecture of some of the prebuilt frameworks you might choose to deploy.

And there’s more! I left you teetering on the edge of persistence, with just a few tantalizing hints about 
collections and mappers to tease you. In the next chapter, I will look at some patterns for working with 
databases and for insulating your objects from the details of data storage.



327© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_13

CHAPTER 13

Database Patterns

Most web applications of any complexity handle persistence to a greater or lesser extent. Shops must recall 
their products and their customer records. Games must remember their players and the state of play. Social 
networking sites must keep track of your 238 friends and your unaccountable liking for boy-bands of the ’80s 
and ’90s. Whatever the application, the chances are it’s keeping score behind the scenes. In this chapter,  
I look at some patterns that can help.

This chapter will cover the following:

•	 The Data Layer interface: Patterns that define the points of contact between the 
storage layer and the rest of the system

•	 Object watching: Keeping track of objects, avoiding duplicates, and automating save 
and insert operations

•	 Flexible queries: Allowing your client coders to construct queries without thinking 
about the underlying database

•	 Creating lists of found objects: Building iterable collections

•	 Managing your database components: The welcome return of the Abstract Factory 
pattern

The Data Layer
In discussions with clients, it’s usually the presentation layer that dominates. Fonts, colors, and ease of use 
are the primary topics of conversation. Among developers, it is often the database that looms large. It’s not 
the database itself that concerns us; we can trust that to do its job unless we’re very unlucky. No, it’s the 
mechanisms we use to translate the rows and columns of a database table into data structures that cause the 
problems. In this chapter, I look at code that can help with this process.

Not everything presented here sits in the Data layer itself. Rather, I have grouped some of the patterns 
that help to solve persistence problems. All of these patterns are described by one or more of Clifton Nock, 
Martin Fowler, and Alur, et al.

Data Mapper
If you thought I glossed over the issue of saving and retrieving Venue objects from the database in the 
“Domain Model” section of Chapter 12, here is where you might find at least some answers. The Data 
Mapper pattern is described as a Data Access Object in a couple places. First, it’s covered by Alur et al. in 
Core J2EE Patterns: Best Practices and Design Strategies (Prentice Hall, 2001). It’s also covered by Martin 
Fowler in Patterns of Enterprise Application Architecture (Addison-Wesley Professional, 2002). Note that Data 
Access Object is not an exact match to the Data Mapper pattern, as it generates data transfer objects; but 
since such objects are designed to become the real thing if you add water, the patterns are close enough).

http://dx.doi.org/10.1007/978-1-4842-1996-6_12


Chapter 13 ■ Database Patterns

328

As you might imagine, a data mapper is a class that is responsible for handling the transition from 
database to object.

The Problem
Objects are not organized like tables in a relational database. As you know, database tables are grids 
made up of rows and columns. One row may relate to another in a different (or even the same) table by 
means of a foreign key. Objects, on the other hand, tend to relate to one another more organically. One 
object may contain another, and different data structures will organize the same objects in different ways, 
combining and recombining objects in new relationships at runtime. Relational databases are optimized to 
manage large amounts of tabular data, whereas classes and objects encapsulate smaller focused chunks of 
information.

This disconnect between classes and relational databases is often described as the object-relational 
impedance mismatch (or simply impedance mismatch).

So how do you make that transition? One answer is to give a class (or a set of classes) responsibility 
for just that problem, effectively hiding the database from the domain model and managing the inevitable 
rough edges of the translation.

Implementation
Although with careful programming, it may be possible to create a single Mapper class to service multiple 
objects, it is common to see an individual Mapper for a major class in the Domain Model.

Figure 13-1 shows three concrete Mapper classes and an abstract superclass.

In fact, because the Space objects are effectively subordinate to Venue objects, it may be possible to 
factor the SpaceMapper class into VenueMapper. For the sake of these exercises, I’m going to keep them 
separate.

As you can see, the classes present common operations for saving and loading data. The base class 
stores common functionality, delegating responsibility for handling object-specific operations to its 
children. Typically, these operations include actual object generation and constructing queries for database 
operations.

Figure 13-1.  Mapper classes



Chapter 13 ■ Database Patterns

329

The base class often performs housekeeping before or after an operation, which is why Template 
Method is used for explicit delegation (e.g., calls from concrete methods like insert() to abstract ones like 
doInsert(), etc.). Implementation determines which of the base class methods are made concrete in this 
way, as you will see later in the chapter.

Here is a simplified version of a Mapper base class:

// listing 13.01
abstract class Mapper
{
    protected $pdo;

    public function __construct()
    {
        $reg = Registry::instance();
        $this->pdo = $reg->getPdo();
    }

    public function find(int $id): DomainObject
    {
        $this->selectstmt()->execute([$id]);
        $row = $this->selectstmt()->fetch();
        $this->selectstmt()->closeCursor();

        if (! is_array($row)) {
            return null;
        }

        if (! isset($row['id'])) {
            return null;
        }

        $object = $this->createObject($row);

        return $object;
    }

    public function createObject(array $raw): DomainObject
    {
        $obj = $this->doCreateObject($raw);

        return $obj;
    }

    public function insert(DomainObject $obj)
    {
        $this->doInsert($obj);
    }

    abstract public function update(DomainObject $object);
    abstract protected function doCreateObject(array $raw): DomainObject;
    abstract protected function doInsert(DomainObject $object);



Chapter 13 ■ Database Patterns

330

    abstract protected function selectStmt(): \PDOStatement;
    abstract protected function targetClass(): string;
}

The constructor method uses a Registry to get a PDO object. A registry really shows its worth for 
classes like this. There isn’t always a sensible path from the control layer to a Mapper along which data can be 
passed. Another way of managing mapper creation would be to hand it off to the Registry class itself. Rather 
than instantiate it, the mapper would expect to be provided with a PDO object as a constructor argument:

abstract class Mapper
{
    protected $pdo;

    function __construct(\PDO $pdo)
    {
        $this->pdo = $pdo;
    }
}

Client code would acquire a new VenueMapper from Registry using a method such as getVenueMapper(). 
This would instantiate a mapper, generating the PDO object too. For subsequent requests, the method 
would return the cached mapper. Because it allows me to keep mappers ignorant of the complications of 
configuration (even with a registry as a facade), this latter approach is the one I usually opt for.

Returning to the Mapper class, the insert() method does nothing but delegate to doInsert(). This is 
something that I would factor out in favor of an abstract insert() method, were it not for the fact that I know 
that the implementation used here will be useful here in due course.

find() is responsible for invoking a prepared statement (provided by an implementing child class) and 
acquiring row data. It finishes up by calling createObject(). The details of converting an array to an object 
will vary from case to case, of course, so the implementation is handled by the abstract doCreateObject() 
method. Once again, createObject() seems to do nothing but delegate to the child implementation; and once 
again, I’ll soon add the housekeeping that makes this use of the Template Method pattern worth the trouble.

Child classes will also implement custom methods for finding data according to specific criteria (I will 
want to locate Space objects that belong to Venue objects, for example).

You can take a look at the process from the child’s perspective here:

// listing 13.02
class VenueMapper extends Mapper
{
    private $selectStmt;
    private $updateStmt;
    private $insertStmt;

    public function __construct()
    {
        parent::__construct();
        $this->selectStmt = $this->pdo->prepare(
            "SELECT * FROM venue WHERE id=?"
        );

        $this->updateStmt = $this->pdo->prepare(
            "UPDATE venue SET name=?, id=? WHERE id=?"
        );



Chapter 13 ■ Database Patterns

331

        $this->insertStmt = $this->pdo->prepare(
            "INSERT INTO venue ( name ) VALUES( ? )"
        );
    }

    protected function targetClass(): string
    {
        return Venue::class;
    }

    public function getCollection(array $raw): Collection
    {
        return new VenueCollection($raw, $this);
    }

    protected function doCreateObject(array $raw): DomainObject
    {
        $obj = new Venue(
            (int)$raw['id'],
            $raw['name']
        );

        return $obj;
    }

    protected function doInsert(DomainObject $object)
    {
        $values = [$object->getName()];
        $this->insertStmt->execute($values);
        $id = $this->pdo->lastInsertId();
        $object->setId((int)$id);
    }

    public function update(DomainObject $object)
    {
        $values = [
            $object->getName(),
            $object->getId(),
            $object->getId()
        ];

        $this->updateStmt->execute($values);
    }

    public function selectStmt(): \PDOStatement
    {
        return $this->selectStmt;
    }

}



Chapter 13 ■ Database Patterns

332

Once again, this class is stripped of some of the goodies that are still to come. Nonetheless, it does its 
job. The constructor prepares some SQL statements for use later on.

The parent Mapper class implements find(), which invokes selectStmt() to acquire the prepared 
SELECT statement. Assuming all goes well, Mapper invokes VenueMapper::doCreateObject(). It’s here that I 
use the associative array to generate a Venue object.

From the point of view of the client, this process is simplicity itself:

// listing 13.03
$mapper = new VenueMapper();
$venue = $mapper->find(2);
print_r($venue);

The call to print_r() is a quick way of confirming that find() was successful. In my system (where 
there is a row in the venue table with ID 2), the output from this fragment is as follows:

popp\ch13\batch01\Venue Object
(
    [name:popp\ch13\batch01\Venue:private] => The Likey Lounge
    [spaces:popp\ch13\batch01\Venue:private] =>
    [id:popp\ch13\batch01\DomainObject:private] => 2
)

The doInsert() and update() methods reverse the process established by find(). Each accepts a 
DomainObject, extracts row data from it, and calls PDOStatement::execute() with the resulting information. 
Notice that the doInsert() method sets an ID on the provided object. Remember that objects are passed by 
reference in PHP, so the client code will see this change via its own reference.

Another thing to note is that doInsert() and update() are not really type safe. They will accept any 
DomainObject subclass without complaint. You should perform an instanceof test and throw an Exception 
if the wrong object is passed.

Once again, here is a client perspective on inserting and updating:

// listing 13.04
$mapper = new VenueMapper();
$venue = new Venue(-1, "The Likey Lounge");
// add the object to the database
$mapper->insert($venue);
// find the object again – just to prove it works!
$venue = $mapper->find($venue->getId());
print_r($venue);
// alter our object
$venue->setName("The Bibble Beer Likey Lounge");
// call update to enter the amended data
$mapper->update($venue);
// once again, go back to the database to prove it worked
$venue = $mapper->find($venue->getId());
print_r($venue);



Chapter 13 ■ Database Patterns

333

Handling Multiple Rows
The find() method is pretty straightforward because it only needs to return a single object. What do you 
do, though, if you need to pull lots of data from the database? Your first thought may be to return an array of 
objects. This will work, but there is a major problem with the approach.

If you return an array, each object in the collection will need to be instantiated first, which, if you have 
a result set of 1,000 objects, may be needlessly expensive. An alternative would be to simply return an array 
and let the calling code sort out object instantiation. This is possible, but it violates the very purpose of the 
Mapper classes.

There is one way that you can have your cake and eat it. You can use the built-in Iterator interface.
The Iterator interface requires implementing classes to define methods for querying a list. If you do 

this, your class can be used in foreach loops just like an array.
Table 13-1 shows the methods that the Iterator interface requires.

In order to implement an Iterator, you need to implement its methods and keep track of your place 
within a dataset. How you acquire that data, order it, or otherwise filter it is hidden from the client.

Here is an Iterator implementation that wraps an array but also accepts a Mapper object in its 
constructor for reasons that will become apparent:

// listing 13.05
abstract class Collection implements \Iterator
{
    protected $mapper;
    protected $total = 0;
    protected $raw = [];

    private $pointer = 0;
    private $objects = [];

    public function __construct(array $raw = [], Mapper $mapper = null)
    {
        $this->raw = $raw;
        $this->total = count($raw);

        if (count($raw) && is_null($mapper)) {
            throw new AppException("need Mapper to generate objects");
        }

        $this->mapper = $mapper;
    }

Table 13-1.  Methods Defined by the Iterator Interface

Name Description

rewind() Send pointer to the start of list

current() Return element at current pointer position

key() Return current key (i.e., pointer value)

next() Return element at current pointer and advance pointer

valid() Confirm that there is an element at the current pointer position



Chapter 13 ■ Database Patterns

334

    public function add(DomainObject $object)
    {
        $class = $this->targetClass();

        if (! ($object instanceof $class)) {
            throw new AppException("This is a {$class} collection");
        }

        $this->notifyAccess();
        $this->objects[$this->total] = $object;
        $this->total++;
    }

    abstract public function targetClass(): string;

    protected function notifyAccess()
    {
        // deliberately left blank!
    }

    private function getRow($num)
    {
        $this->notifyAccess();

        if ($num >= $this->total || $num < 0) {
            return null;
        }

        if (isset($this->objects[$num])) {
            return $this->objects[$num];
        }

        if (isset($this->raw[$num])) {
            $this->objects[$num] = $this->mapper->createObject($this->raw[$num]);

            return $this->objects[$num];
        }
    }

    public function rewind()
    {
        $this->pointer = 0;
    }

    public function current()
    {
        return $this->getRow($this->pointer);
    }



Chapter 13 ■ Database Patterns

335

    public function key()
    {
        return $this->pointer;
    }

    public function next()
    {
        $row = $this->getRow($this->pointer);

        if (! is_null($row)) {
            $this->pointer++;
        }
    }

    public function valid()
    {
        return (! is_null($this->current()));
    }
}

The constructor expects to be called with no arguments or with two (the raw data that may eventually 
be transformed into objects and a mapper reference).

Assuming that the client has set the $raw argument (it will be a Mapper object that does this), this is 
stored in a property together with the size of the provided dataset. If raw data is provided, an instance of the 
Mapper is also required, as it’s this that will convert each row into an object.

If no arguments were passed to the constructor, the class starts out empty; note, however, that the add() 
method is available for adding to the collection.

The class maintains two arrays: $objects and $raw. If a client requests a particular element, the 
getRow() method looks first in $objects to see if it has one already instantiated. If so, that gets returned. 
Otherwise, the method looks in $raw for the row data. $raw data is only present if a Mapper object is also 
present, so the data for the relevant row can be passed to the Mapper::createObject() method you 
encountered earlier. This returns a DomainObject object, which is cached in the $objects array with the 
relevant index. The newly created DomainObject object is returned to the user.

The rest of the class is simple manipulation of the $pointer property and calls to getRow(). Apart, that 
is, from the notifyAccess() method, which will become important when you encounter the Lazy Load 
pattern.

You may have noticed that the Collection class is abstract. You need to provide specific 
implementations for each domain class:

// listing 13.06
class VenueCollection extends Collection
{
    public function targetClass(): string
    {
        return Venue::class;
    }
}

The VenueCollection class simply extends Collection and implements a targetClass() method. 
This, in conjunction with the type checking in the super class’s add() method, ensures that only Venue 
objects can be added to the collection. You could provide additional checking in the constructor as well if 
you wanted to be even safer.



Chapter 13 ■ Database Patterns

336

Clearly, this class should only work with a VenueMapper. In practical terms, though, this is a reasonably 
type-safe collection, especially as far as the Domain Model is concerned.

There are parallel classes for Event and Space objects, of course.
Figure 13-2 shows some Collection classes.

Because the Domain Model needs to instantiate Collection objects, and because I may need to switch 
the implementation at some point (especially for testing purposes), I provide convenience getter methods in 
the Registry to acquire empty collections. As your system grows, you may delegate this to a dedicated factory. 
During development, though, I tend to begin with the simplest approach and default to using the Registry 
for most object creation. Here’s how I get an empty VenueCollection object:

// listing 13.07
$reg = Registry::instance();

$collection = $reg->getVenueCollection();
$collection->add(new Venue(-1, "Loud and Thumping"));
$collection->add(new Venue(-1, "Eeezy"));
$collection->add(new Venue(-1, "Duck and Badger"));

foreach ($collection as $venue) {
     print $venue->getName() . "\n";
}

With the implementation I have built here, there isn’t much else you can do with this collection; 
however, adding elementAt(), deleteAt(), count(), and similar methods is a trivial exercise. (And fun,  
too! Enjoy!)

Note that I used the ::class syntax to get a fully qualified string representation of the class. This feature 
has only been available since PHP 5.5. Prior to that, I would have had to have been careful to provide the full 
namespace path myself.

Using a Generator in Place of the Iterator Interface

Although it’s not difficult to do, implementing an Iterator interface can be a chore. As of PHP 5.5 you 
can use a simpler (and often more memory efficient) mechanism called a generator. A generator is a 
function that can return multiple values, usually in a loop. Instead of using the return keyword, a generator 

Figure 13-2.  Managing multiple rows with collections



Chapter 13 ■ Database Patterns

337

function will use yield. When the PHP processor sees yield in a function, it will return an Iterator of type 
Generator to calling code. This new object can be treated like any Iterator. Cleverly, the loop that yielded 
a value using yield will continue to run, but only as the Generator is asked for its next() value. Practically 
speaking, the flow looks like this:

•	 Client code calls a generator function (a function containing a yield keyword)

•	 The generator function contains a loop or a repetitive process which returns multiple 
values via yield. On encountering yield, the PHP processor creates a Generator 
object and returns it to client code

•	 The repetitive process in the generator function is temporarily frozen at this point

•	 Client code takes this Generator and treats like any Iterator—probably passing it to 
foreach

•	 With every iteration of foreach, the Generator object gets the next value from the 
generator function

So I could use this feature for my Collection base class. Because a generator function (or method) 
returns a Generator, the Collection itself would no longer be iterable—instead, I’ll use a generator method 
as a factory:

src/ch13/batch01/GenCollection.php

// listing 13.08
abstract class GenCollection
{
    protected $mapper;
    protected $total = 0;
    protected $raw = [];

    private $result;
    private $pointer = 0;
    private $objects = [];

    public function __construct(array $raw = [], Mapper $mapper = null)
    {
        $this->raw = $raw;
        $this->total = count($raw);

        if (count($raw) && is_null($mapper)) {
            throw new AppException("need Mapper to generate objects");
        }

        $this->mapper = $mapper;
    }

    public function add(DomainObject $object)
    {
        $class = $this->targetClass();

        if (! ($object instanceof $class )) {
            throw new AppException("This is a {$class} collection");
        }



Chapter 13 ■ Database Patterns

338

        $this->notifyAccess();
        $this->objects[$this->total] = $object;
        $this->total++;
    }

    public function getGenerator()
    {
        for ($x = 0; $x < $this->total; $x++) {
            yield $this->getRow($x);
        }
    }

    abstract public function targetClass(): string;

    protected function notifyAccess()
    {
        // deliberately left blank!
    }

    private function getRow($num)
    {
        $this->notifyAccess();

        if ($num >= $this->total || $num < 0) {
            return null;
        }

        if (isset($this->objects[$num])) {
            return $this->objects[$num];
        }

        if (isset($this->raw[$num])) {
            $this->objects[$num] = $this->mapper->createObject($this->raw[$num]);
            return $this->objects[$num];
        }
    }
}

As you can see, this makes for a more compact base class. I have been able to do away with current() 
and reset(), and so on. The one drawback is that the Collection itself can no longer be iterated directly. 
Instead, client code must call getGenerator() and iterate the Generator object that yield causes to be 
returned, like this:

// listing 13.09
$genvencoll = new GenVenueCollection();
$genvencoll->add(new Venue(-1, "Loud and Thumping"));
$genvencoll->add(new Venue(-1, "Eeezy"));
$genvencoll->add(new Venue(-1, "Duck and Badger"));

$gen = $genvencoll->getGenerator();



Chapter 13 ■ Database Patterns

339

foreach ($gen as $wrapper) {
    print_r($wrapper);
}

Because I’d rather not add this additional layer to my system, I’m going to stick with the implemented 
Iterator version for this example. However, generators are really the way to go for making lightweight 
iterators with the minimum of setup.

Acquiring Collection Objects

We have already seen that I have decided to use the Registry as a factory for Collections. I also use it for 
serving up Mapper objects. Here is the code:

// listing 13.10
    public function getVenueMapper(): VenueMapper
    {
        return new VenueMapper();
    }

    public function getSpaceMapper(): SpaceMapper
    {
        return new SpaceMapper();
    }

    public function getEventMapper(): EventMapper
    {
        return new EventMapper();
    }

    public function getVenueCollection(): VenueCollection
    {
        return new VenueCollection();
    }

    public function getSpaceCollection(): SpaceCollection
    {
        return new SpaceCollection();
    }

    public function getEventCollection(): EventCollection
    {
        return new EventCollection();
    }

I’m beginning to push the boundaries of what fits neatly in the Registry. A few more getter methods, 
and it will be time to refactor this code to use the Abstract Factory pattern instead. I’ll leave that to you, 
though (head back to Chapter 9 if you need a reminder).

Now that accessing Mapper and Collection classes is so easy, the Venue class can be extended to 
manage the persistence of Space objects. The class provides methods for adding individual Space objects to 
its SpaceCollection or for switching in an entirely new SpaceCollection:

http://dx.doi.org/10.1007/978-1-4842-1996-6_9


Chapter 13 ■ Database Patterns

340

// listing 13.11

    // Venue

    public function getSpaces(): SpaceCollection
    {
        if (is_null($this->spaces)) {
            $reg = Registry::instance();
            $this->spaces = $reg->getSpaceCollection();
        }

        return $this->spaces;
    }

    public function setSpaces(SpaceCollection $spaces)
    {
        $this->spaces = $spaces;
    }

    public function addSpace(Space $space)
    {
        $this->getSpaces()->add($space);
        $space->setVenue($this);
    }

The setSpaces() operation currently takes it on trust that all Space objects in the collection refer 
to the current Venue. It would be easy enough to add checking to the method. This version keeps things 
simple though. Notice that I only instantiate the $spaces property when getSpaces() is called. Later on, I’ll 
demonstrate how you can extend this lazy instantiation to limit database requests.

The VenueMapper needs to set up a SpaceCollection for each Venue object it creates:

// listing 13.12

    // VenueMapper

    protected function doCreateObject(array $array): DomainObject
    {
        $obj = new Venue(
            (int)$array['id'],
            $array['name']
        );

        $spacemapper = new SpaceMapper();
        $spacecollection = $spacemapper->findByVenue($array['id']);
        $obj->setSpaces($spacecollection);

        return $obj;
    }



Chapter 13 ■ Database Patterns

341

The VenueMapper::doCreateObject() method gets a SpaceMapper and acquires a SpaceCollection 
from it. As you can see, the SpaceMapper class implements a findByVenue() method. This brings us to the 
queries that generate multiple objects. For the sake of brevity, I omitted the Mapper::findAll() method 
from the original listing for woo\mapper\Mapper. Here it is restored:

// listing 13.13

    // Mapper

    public function findAll(): Collection
    {
        $this->selectAllStmt()->execute([]);

        return $this->getCollection(
            $this->selectAllStmt()->fetchAll()
        );
    }

    abstract protected function selectAllStmt(): \PDOStatement;
    abstract protected function getCollection(array $raw): Collection;

This method calls a child method: selectAllStmt(). Like selectStmt(), this should contain a prepared 
statement object primed to acquire all rows in the table. Here’s the PDOStatement object as created in the 
SpaceMapper class:

// listing 13.14

        // SpaceMapper::__construct()

        $this->selectAllStmt = $this->pdo->prepare(
            "SELECT * FROM space"
        );
        $this->findByVenueStmt = $this->pdo->prepare(
            "SELECT * FROM space where venue=?"
        );

I included another statement here, $findByVenueStmt, which is used to locate Space objects specific to 
an individual Venue.

The findAll() method calls another new method, getCollection(), passing it its found data. Here is S
paceMapper::getCollection():

// listing 13.15
    public function getCollection(array $raw): Collection
    {
        return new SpaceCollection($raw, $this);
    }

A full version of the Mapper class should declare getCollection() and selectAllStmt() as abstract 
methods, so all mappers are capable of returning a collection containing their persistent domain objects. 
In order to get the Space objects that belong to a Venue, however, I need a more limited collection. You have 
already seen the prepared statement for acquiring the data; now, here is the SpaceMapper::findByVenue() 
method, which generates the collection:



Chapter 13 ■ Database Patterns

342

// listing 13.16
    public function findByVenue($vid): Collection
    {
        $this->findByVenueStmt->execute([$vid]);

        return new SpaceCollection($this->findByVenueStmt->fetchAll(), $this);
    }

The findByVenue() method is identical to findAll(), except for the SQL statement used. Back in the 
VenueMapper, the resulting collection is set on the Venue object via Venue::setSpaces().

So Venue objects now arrive fresh from the database, complete with all their Space objects in a neat 
type-safe list. None of the objects in that list are instantiated before being requested.

Figure 13-3 shows the process by which a client class might acquire a SpaceCollection and how the 
SpaceCollection class interacts with SpaceMapper::createObject() to convert its raw data into an object 
for returning to the client.

Consequences
The drawback with the approach I took to adding Space objects to Venue ones is that I had to take two 
trips to the database. In most instances, I think that is a price worth paying. Also, note that the work in 
VenueMapper::doCreateObject() to acquire a correctly populated SpaceCollection could be moved to 
Venue::getSpaces(), so that the secondary database connection would only occur on demand. Here’s how 
such a method might look:

// listing 13.17

    // Venue

Figure 13-3.  Acquiring a SpaceCollection and using it to get a Space object



Chapter 13 ■ Database Patterns

343

    public function getSpaces2()
    {
        if (is_null($this->spaces)) {
            $reg = Registry::instance();
            $finder = $reg->getSpaceMapper();
            $this->spaces = $finder->findByVenue($this->getId());
        }

        return $this->spaces;
    }

If efficiency becomes an issue, however, it should be easy enough to factor out SpaceMapper altogether 
and retrieve all the data you need in one go using an SQL join.

Of course, your code may become less portable as a result of that, but efficiency optimization always 
comes at a price!

Ultimately, the granularity of your Mapper classes will vary. If an object type is stored solely by another, 
then you may consider only having a Mapper for the container.

The great strength of this pattern is the strong decoupling it effects between the Domain layer and database. 
The Mapper objects take the strain behind the scenes and can adapt to all sorts of relational twistedness.

Perhaps the biggest drawback with the pattern is the sheer amount of slog involved in creating concrete 
Mapper classes. However, there is a large amount of boilerplate code that can be automatically generated. 
A neat way of generating the common methods for Mapper classes is through reflection. You can query 
a domain object, discover its setter and getter methods (perhaps in tandem with an argument naming 
convention), and generate basic Mapper classes ready for amendment. This is how all the Mapper classes 
featured in this chapter were initially produced.

One issue to be aware of with mappers is the danger of loading too many objects at one time. The 
Iterator implementation helps us here, though. Because a Collection object only holds row data at first, 
the secondary request (for a Space object) is only made when a particular Venue is accessed and converted 
from array to object. This form of lazy loading can be enhanced even further, as you shall see.

You should be careful of ripple loading. Be aware as you create your mapper that the use of another 
one to acquire a property for your object may be the tip of a very large iceberg. This secondary mapper may 
itself use yet more in constructing its own object. If you are not careful, you could find that what looks on the 
surface like a simple find operation sets off tens of other similar operations.

You should also be aware of any guidelines your database application lays down for building efficient 
queries and be prepared to optimize (on a database-by-database basis if necessary). SQL statements that 
apply well to multiple database applications are nice; fast applications are much nicer. Although introducing 
conditionals (or strategy classes) to manage different versions of the same queries is a chore, and potentially 
ugly in the former case, don’t forget that all this mucky optimization is neatly hidden away from client code.

Identity Map
Do you remember the nightmare of pass-by-value errors in PHP 4? The sheer confusion that ensued when 
two variables that you thought pointed to a single object turned out to refer to different but cunningly similar 
ones? Well, the nightmare has returned.

The Problem
Here’s some test code created to try out the Data Mapper example:

// listing 13.18



Chapter 13 ■ Database Patterns

344

$mapper = new VenueMapper();

$venue = new Venue(-1, "The Likey Lounge");
$mapper->insert($venue);
$venue = $mapper->find($venue->getId());
print_r($venue);

$venue->setName("The Bibble Beer Likey Lounge");
$mapper->update($venue);
$venue = $mapper->find($venue->getId());
print_r($venue);

The purpose of this code was to demonstrate that an object that you add to the database could 
also be extracted via a Mapper and would be identical. Identical, that is, in every way except for being 
the same object. I cheated when designing this problem by assigning the new Venue object over the old. 
Unfortunately, you won’t always have that kind of control over the situation. The same object may be 
referenced at several different times within a single request. If you alter one version of it and save that to the 
database, can you be sure that another version of the object (perhaps stored already in a Collection object) 
won’t be written over your changes?

Not only are duplicate objects risky in a system, they also represent a considerable overhead. Some 
popular objects could be loaded three or four times in a process, with all but one of these trips to the 
database entirely redundant.

Fortunately, fixing this problem is relatively straightforward.

Implementation
An identity map is simply an object whose task it is to keep track of all the objects in a system, and thereby 
help to ensure that nothing that should be one object becomes two.

In fact, the Identity Map itself does not prevent this from happening in any active way. Its role is to 
manage information about objects. Here is a simple Identity Map:

// listing 13.19
class ObjectWatcher
{
    private $all = [];
    private static $instance = null;

    private function __construct()
    {
    }

    public static function instance(): self
    {
        if (is_null(self::$instance)) {
            self::$instance = new ObjectWatcher();
        }

        return self::$instance;
    }

    public function globalKey(DomainObject $obj): string



Chapter 13 ■ Database Patterns

345

    {
        $key = get_class($obj) . "." . $obj->getId();

        return $key;
    }

    public static function add(DomainObject $obj)
    {
        $inst = self::instance();
        $inst->all[$inst->globalKey($obj)] = $obj;
    }

    public static function exists($classname, $id)
    {
        $inst = self::instance();
        $key = "{$classname}.{$id}";

        if (isset($inst->all[$key])) {
            return $inst->all[$key];
        }

        return null;
    }
}

Figure 13-4 shows how an Identity Map object might integrate with other classes you have seen.

The main trick with an Identity Map is, pretty obviously, identifying objects. This means that you need 
to tag each object in some way. There are a number of different strategies you can take here. The database 
table key that all objects in the system already use is no good because the ID is not guaranteed to be unique 
across all tables.

You could also use the database to maintain a global key table. Every time you created an object, you 
would iterate the key table’s running total and associate the global key with the object in its own row. The 
overhead of this is relatively slight, and it would be easy to do.

As you can see, I have gone for an altogether simpler approach. I concatenate the name of the object’s 
class with its table ID. There cannot be two objects of type popp\ch13\batch03\Event with an ID of 4, so my 
key of popp\ch13\batch03\Event.4 is safe enough for my purposes.

Figure 13-4.  An Identity Map



Chapter 13 ■ Database Patterns

346

The globalKey() method handles the details of this. The class provides an add() method for adding 
new objects. Each object is labeled with its unique key in an array property, $all.

The exists() method accepts a class name and an $id rather than an object. I don’t want to have to 
instantiate an object to see whether or not it already exists! The method builds a key from this data and 
checks to see if it indexes an element in the $all property. If an object is found, a reference is duly returned.

There is only one class where I work with the ObjectWatcher class in its role as an Identity Map. The 
Mapper class provides functionality for generating objects, so it makes sense to add the checking there:

// listing 13.20

    // Mapper

    public function find(int $id): DomainObject
    {
        $old = $this->getFromMap($id);

        if (! is_null($old)) {
            return $old;
        }

        // work with db
        return $object;
    }

    abstract protected function targetClass(): string;

    private function getFromMap($id)
    {
        return ObjectWatcher::exists(
            $this->targetClass(),
            $id
        );
    }

    private function addToMap(DomainObject $obj)
    {
        ObjectWatcher::add($obj);
    }

    public function createObject($raw)
    {
        $old = $this->getFromMap($raw['id']);

        if (! is_null($old)) {
            return $old;
        }

        $obj = $this->doCreateObject($raw);
        $this->addToMap($obj);

        return $obj;
    }



Chapter 13 ■ Database Patterns

347

    public function insert(DomainObject $obj)
    {
        $this->doInsert($obj);
        $this->addToMap($obj);
    }

The class provides two convenience methods: addToMap() and getFromMap(). These save me the bother 
of remembering the full syntax of the static call to ObjectWatcher. More importantly, they call down to the 
child implementation (e.g., VenueMapper) to get the name of the class currently awaiting instantiation.

This is achieved by calling targetClass(), an abstract method that is implemented by all concrete 
Mapper classes. It should return the name of the class that the Mapper is designed to generate. Here is the 
SpaceMapper class’s implementation of targetClass():

// listing 13.21

    // SpaceMapper

    protected function targetClass(): string
    {
        return Space::class;
    }

Both find() and createObject() first check for an existing object by passing the object ID to 
getFromMap(). If an object is found, it is returned to the client and method execution ends. If, however, there 
is no version of this object in existence yet, object instantiation goes ahead. In createObject(), the new 
object is passed to addToMap() to prevent any clashes in the future.

So why am I going through part of this process twice, with calls to getFromMap() in both find() and 
createObject()? The answer lies with Collections. When these generate objects, they do so by calling 
createObject(). I need to make sure that the row encapsulated by a Collection object is not stale, as well 
as to ensure that the latest version of the object is returned to the user.

Consequences
As long as you use the Identity Map in all contexts in which objects are generated from or added to the 
database, the possibility of duplicate objects in your process is practically zero.

Of course, this only works within your process. Different processes will inevitably access versions 
of the same object at the same time. It is important to think through the possibilities for data corruption 
engendered by concurrent access. If there is a serious issue, you may need to consider a locking strategy. 
You might also consider storing objects in shared memory or using an external object caching system like 
Memcached. You can learn about Memcached at http://danga.com/memcached/ and about PHP support 
for it at http://www.php.net/memcache.

Unit of Work
When do you save your objects? Until I discovered the Unit of Work pattern (written up by David Rice in 
Martin Fowler’s Patterns of Enterprise Application Architecture), I sent out save orders from the Presentation 
layer upon completion of a command. This turned out to be an expensive design decision.

The Unit of Work pattern helps you to save only those objects that need saving.

http://danga.com/memcached/
http://www.php.net/memcache


Chapter 13 ■ Database Patterns

348

The Problem
One day, I echoed my SQL statements to the browser window to track down a problem and had a shock. 
I found that I was saving the same data over and over again in the same request. I had a neat system of 
composite commands, which meant that one command might trigger several others, and each one was 
cleaning up after itself.

Not only was I saving the same object twice, I was saving objects that didn’t need saving.
This problem, then, is similar in some ways to that addressed by Identity Map. That problem involved 

unnecessary object loading; this problem lies at the other end of the process. Just as these issues are 
complementary, so are the solutions.

Implementation
To determine what database operations are required, you need to keep track of various events that befall 
your objects. Probably the best place to do that is in the objects themselves.

You also need to maintain a list of objects scheduled for each database operation (i.e., insert, update, 
delete). I am only going to cover insert and update operations here. Where might be a good place to store a 
list of objects? It just so happens that I already have an ObjectWatcher object, so I can develop that further:

// listing 13.22

    // ObjectWatcher

    private $all = [];
    private $dirty = [];
    private $new = [];
    private $delete = []; // unused in this example
    private static $instance = null;

    public static function addDelete(DomainObject $obj)
    {
        $inst = self::instance();
        $inst->delete[$self->globalKey($obj)] = $obj;
    }

    public static function addDirty(DomainObject $obj)
    {
        $inst = self::instance();

        if (! in_array($obj, $inst->new, true)) {
            $inst->dirty[$inst->globalKey($obj)] = $obj;
        }
    }

    public static function addNew(DomainObject $obj)
    {
        $inst = self::instance();
        // we don't yet have an id
        $inst->new[] = $obj;
    }



Chapter 13 ■ Database Patterns

349

    public static function addClean(DomainObject $obj)
    {
        $inst  = self::instance();
        unset($inst->delete[$inst->globalKey($obj)]);
        unset($inst->dirty[$inst->globalKey($obj)]);

        $inst->new = array_filter(
            $inst->new,
            function ($a) use ($obj) {
                return !($a === $obj);
            }
        );
    }

    public function performOperations()
    {
        foreach ($this->dirty as $key => $obj) {
            $obj->getFinder()->update($obj);
        }

        foreach ($this->new as $key => $obj) {
            $obj->getFinder()->insert($obj);
            print "inserting " . $obj->getName() . "\n";
        }

        $this->dirty = [];
        $this->new = [];
    }

The ObjectWatcher class remains an Identity Map and continues to serve its function of tracking all 
objects in a system via the $all property. This example simply adds more functionality to the class.

You can see the Unit of Work aspects of the ObjectWatcher class in Figure 13-5.

Figure 13-5.  Unit of Work aspects in the ObjectWatcher class

Objects are described as “dirty” when they have been changed since extraction from the database. 
A dirty object is stored in the $dirty array property (via the addDirty() method) until the time comes to 
update the database. Client code may decide that a dirty object should not undergo update for its own 
reasons. It can ensure this by marking the dirty object as clean (via the addClean() method). As you might 
expect, a newly created object should be added to the $new array (via the addNew() method). Objects in this 
array are scheduled for insertion into the database. I am not implementing delete functionality in these 
examples, but the principle should be clear enough.



Chapter 13 ■ Database Patterns

350

The addDirty() and addNew() methods each add an object to their respective array properties. 
addClean(), however, removes the given object from the $dirty array, marking it as no longer pending 
update.

When the time finally comes to process all objects stored in these arrays, the performOperations() 
method should be invoked (probably from the controller class, or its helper). This method loops through the 
$dirty and $new arrays, either updating or adding the objects.

The ObjectWatcher class now provides a mechanism for updating and inserting objects. The code is 
still missing a means of adding objects to the ObjectWatcher object.

Because it is these objects that are operated upon, they are probably best placed to perform this 
notification. Here are some utility methods I can add to the DomainObject class—notice the constructor 
method in particular:

// listing 13.23
abstract class DomainObject
{
    private $id;

    public function __construct(int $id)
    {
        $this->id = $id;

        if ($id < 0) {
            $this->markNew();
        }
    }

    abstract public function getFinder(): Mapper;

    public function getId(): int
    {
        return $this->id;
    }

    public function setId(int $id)
    {
        $this->id = $id;
    }

    public function markNew()
    {
        ObjectWatcher::addNew($this);
    }

    public function markDeleted()
    {
        ObjectWatcher::addDelete($this);
    }

    public function markDirty()
    {
        ObjectWatcher::addDirty($this);
    }



Chapter 13 ■ Database Patterns

351

    public function markClean()
    {
        ObjectWatcher::addClean($this);
    }
}

As you can see, the constructor method marks the current object as new (by calling markNew()) if no 
$id property has been passed to it. This qualifies as magic of a sort and should be treated with some caution. 
As it stands, this code slates a new object for insertion into the database without any intervention from the 
object creator. Imagine a coder new to your team writing a throwaway script to test some domain behavior. 
There’s no sign of persistence code there, so all should be safe enough, shouldn’t it? Now imagine these test 
objects, perhaps with interesting throwaway names, making their way into persistent storage. Magic is nice, 
but clarity is nicer. It may be better to require client code to pass some kind of flag into the constructor in 
order to queue the new object for insertion.

I also need to add some code to the Mapper class:

// listing 13.24

    // Mapper

    public function createObject($raw): DomainObject
    {
        $old = $this->getFromMap($raw['id']);

        if (! is_null($old)) {
            return $old;
        }

        $obj = $this->doCreateObject($raw);
        $this->addToMap($obj);

        return $obj;
    }

The only thing remaining to do is to add markDirty() invocations to methods in the Domain Model 
classes. Remember, a dirty object is one that has been changed since it was retrieved from the database. 
This is the one aspect of this pattern that has a slightly fishy odor. Clearly, it’s important to ensure that all 
methods that mess up the state of an object are marked dirty, but the manual nature of this task means that 
the possibility of human error is all too real.

Here are some methods in the Space object that call markDirty():

// listing 13.25

    // Space

    public function setVenue(Venue $venue)
    {
        $this->venue = $venue;
        $this->markDirty();
    }



Chapter 13 ■ Database Patterns

352

    public function setName(string $name)
    {
        $this->name = $name;
        $this->markDirty();
    }

Here is some code for adding a new Venue and Space to the database, taken from a Command class:

// listing 13.26
        $venue = new Venue(-1, "The Green Trees");

        $venue->addSpace(
            new Space(-1, 'The Space Upstairs')
        );
        $venue->addSpace(
            new Space(-1, 'The Bar Stage')
        );

// this could be called from the controller or a helper class
        ObjectWatcher::instance()->performOperations();

I have added some debug code to the ObjectWatcher, so you can see what happens at the end of the 
request:

inserting The Green Trees
inserting The Space Upstairs
inserting The Bar Stage

Because a high-level controller object usually calls the performOperations() method, all you need to 
do in most cases is create or modify an object, and the Unit of Work class (ObjectWatcher) will do its job just 
once at the end of the request.

Consequences
This pattern is very useful, but there are a few issues to be aware of. You need to be sure that all modify 
operations actually do mark the object in question as dirty. Failing to do this can result in hard-to-spot bugs.

You may like to look at other ways of testing for modified objects. Reflection sounds like a good option 
there, but you should look into the performance implications of such testing—the pattern is meant to 
improve efficiency, not undermine it.

Lazy Load
Lazy Load is one of those core patterns most web programmers learn for themselves very quickly, simply because 
it’s such an essential mechanism for avoiding massive database hits, which is something we all want to do.

The Problem
In the example that has dominated this chapter, I have set up a relationship between Venue, Space, and 
Event objects. When a Venue object is created, it is automatically given a SpaceCollection object. If I were 



Chapter 13 ■ Database Patterns

353

to list every Space object in a Venue, this would automatically kick off a database request to acquire all the 
Events associated with each Space. These are stored in an EventCollection object. If I don’t wish to view 
any events, I have nonetheless made several journeys to the database for no reason. With many venues, each 
with two or three spaces, and with each space managing tens, perhaps hundreds, of events, this is a costly 
process.

Clearly, we need to throttle back this automatic inclusion of collections in some instances.
Here is the code in SpaceMapper that acquires Event data:

// listing 13.27

    // SpaceMapper

    protected function doCreateObject(array $raw): DomainObject
    {

        $obj = new Space((int)$raw['id'], $raw['name']);
        $venmapper = new VenueMapper();
        $venue = $venmapper->find((int)$raw['venue']);
        $obj->setVenue($venue);

        $eventmapper = new EventMapper();
        $eventcollection = $eventmapper->findBySpaceId((int)$raw['id']);
        $obj->setEvents($eventcollection);

        return $obj;
    }

The doCreateObject() method first acquires the Venue object with which the space is associated. This 
is not costly because it is almost certainly already stored in the ObjectWatcher object. Then the method calls 
the EventMapper::findBySpaceId() method. This is where the system could run into problems.

Implementation
As you may know, a Lazy Load means to defer acquisition of a property until it is actually requested by a 
client.

The easiest way of doing this is to make the deferral explicit in the containing object. Here’s how I might 
do this in the Space object:

// listing 13.28

    // Space

    public function getEvents2()
    {
        if (is_null($this->events)) {
            $this->events = $this->getFinder()->findByScaceId($this->getId());
        }

        return $this->events;
    }



Chapter 13 ■ Database Patterns

354

This method checks to see whether or not the $events property is set. If it isn’t set, then the method 
acquires a finder (that is, a Mapper) and uses its own $id property to get the EventCollection with which it 
is associated. Clearly, for this method to save us a potentially unnecessary database query, I would also need 
to amend the SpaceMapper code, so that it does not automatically preload an EventCollection object, as it 
did in the preceding example!

This approach will work just fine, although it is a little messy. Wouldn’t it be nice to tidy the mess away?
This brings us back to the Iterator implementation that goes to make the Collection object. I am 

already hiding one secret behind that interface (the fact that raw data may not yet have been used to 
instantiate a domain object at the time a client accesses it). Perhaps I can hide still more.

The idea here is to create an EventCollection object that defers its database access until a request is 
made of it. This means that a client object (such as Space, for example) need never know that it is holding 
an empty Collection in the first instance. As far as a client is concerned, it is holding a perfectly normal 
EventCollection.

Here is the DeferredEventCollection object:

// listing 13.29
class DeferredEventCollection extends EventCollection
{
    private $stmt;
    private $valueArray;
    private $run = false;

    public function __construct(
        Mapper $mapper,
        \PDOStatement $stmt_handle,
        array $valueArray
    ) {
        parent::__construct([], $mapper);
        $this->stmt = $stmt_handle;
        $this->valueArray = $valueArray;
    }

    public function notifyAccess()
    {
        if (! $this->run) {
            $this->stmt->execute($this->valueArray);
            $this->raw = $this->stmt->fetchAll();
            $this->total = count($this->raw);
        }

        $this->run = true;
    }
}

As you can see, this class extends a standard EventCollection. Its constructor requires Mapper and 
PDOStatement objects and an array of terms that should match the prepared statement. In the first instance, 
the class does nothing but store its properties and wait. No query has been made of the database.

You may remember that the Collection base class defines the empty method called notifyAccess() 
that I mentioned in the “Data Mapper” section. This is called from any method whose invocation is the 
result of a call from the outside world.



Chapter 13 ■ Database Patterns

355

DeferredEventCollection overrides this method. Now if someone attempts to access the Collection, 
the class knows it is time to end the pretense and acquire some real data. It does this by calling the 
PDOStatement::execute() method. Together with PDOStatement::fetch(), this yields an array of fields 
suitable for passing along to Mapper::createObject().

Here is the method in EventMapper that instantiates a DeferredEventCollection:

// listing 13.30

    // EventMapper

    public function findBySpaceId(int $sid)
    {
        return new DeferredEventCollection(
            $this,
            $this->selectBySpaceStmt,
            [$sid]
        );
    }

Consequences
Lazy loading is a good habit to get into, whether or not you explicitly add deferred loading logic to your 
domain classes.

Over and above type safety, the particular benefit of using a collection rather than an array for your 
properties is the opportunity this gives you to retrofit lazy loading should you need it.

Domain Object Factory
The Data Mapper pattern is neat, but it does have some drawbacks. In particular a Mapper class takes a lot 
on board. It composes SQL statements; it converts arrays to objects; and, of course, it converts objects back 
to arrays, ready to add data to the database. This versatility makes a Mapper class convenient and powerful. 
It can reduce flexibility to some extent, however. This is especially true when a mapper must handle many 
different kinds of queries or when other classes need to share a Mapper’s functionality. For the remainder 
of this chapter, I will decompose Data Mapper, breaking it down into a set of more focused patterns. These 
finer-grained patterns combine to duplicate the overall responsibilities managed in Data Mapper, and some 
or all can be used in conjunction with that pattern. They are well defined by Clifton Nock in Data Access 
Patterns (Addison Wesley, 2003), and I have used his names where overlaps occur.

Let’s start with a core function: the generation of domain objects.

The Problem
You have already encountered a situation in which the Mapper class displays a natural fault line. The 
createObject() method is used internally by Mapper, of course, but Collection objects also need it to 
create domain objects on demand. This requires us to pass along a Mapper reference when creating a 
Collection object. Although there’s nothing wrong with allowing callbacks (as you have seen in the Visitor 
and Observer patterns), it’s neater to move responsibility for domain object creation into its own type. This 
can then be shared by Mapper and Collection classes alike.

The Domain Object Factory is described in Data Access Patterns.



Chapter 13 ■ Database Patterns

356

Implementation
Imagine a set of Mapper classes, broadly organized so that each faces its own domain object. The Domain 
Object Factory pattern simply requires that you extract the createObject() method from each Mapper and 
place it in its own class in a parallel hierarchy. Figure 13-6 shows these new classes.

Domain Object Factory classes have a single core responsibility, and as such, they tend to be simple:

// listing 13.31
abstract class DomainObjectFactory
{
    abstract public function createObject(array $row): DomainObject;
}

Here’s a concrete implementation:

// listing 13.32
class VenueObjectFactory extends DomainObjectFactory
{
    public function createObject(array $row): DomainObject
    {
        $obj = new Venue((int)$row['id'], $row['name']);

        return $obj;
    }
}

Of course, you might also want to cache objects to prevent duplication and prevent unnecessary trips to 
the database, as I did within the Mapper class. You could move the addToMap() and getFromMap() methods 
here, or you could build an observer relationship between the ObjectWatcher and your createObject() 
methods. I’ll leave the details up to you. Just remember, it’s up to you to prevent clones of your domain 
objects running amok in your system!

Figure 13-6.  Domain Object Factory classes



Chapter 13 ■ Database Patterns

357

Consequences
The Domain Object Factory decouples database row data from object field data. You can perform any 
number of adjustments within the createObject() method. This process is transparent to the client, whose 
responsibility it is to provide the raw data.

By snapping this functionality away from the Mapper class, it becomes available to other components. 
Here’s an altered Collection implementation, for example:

// listing 13.33

abstract class Collection implements \Iterator
{
    protected $dofact = null;
    protected $total = 0;
    protected $raw = [];

    private $result;
    private $pointer = 0;
    private $objects = [];

    // Collection

    public function __construct(array $raw = [], DomainObjectFactory $dofact = null)
    {
        if (count($raw) && ! is_null($dofact)) {
            $this->raw = $raw;
            $this->total = count($raw);
        }

        $this->dofact = $dofact;
    }

    // ...

The DomainObjectFactory can be used to generate objects on demand:

// listing 13.34

    private function getRow(int $num)
    {

        // ...

        if (isset($this->raw[$num])) {
            $this->objects[$num] = $this->dofact->createObject($this->raw[$num]);

            return $this->objects[$num];
        }
    }



Chapter 13 ■ Database Patterns

358

Because Domain Object Factories are decoupled from the database, they can be used for testing more 
effectively. I might, for example, create a mock DomainObjectFactory to test the Collection code. It’s much 
easier to do this than it would be to emulate an entire Mapper object (you can read more about mock and 
stub objects in Chapter 18).

One general effect of breaking down a monolithic component into composable parts is an unavoidable 
proliferation of classes. The potential for confusion should not be underestimated. Even when every 
component and its relationship with its peers is logical and clearly defined, I often find it challenging to 
chart packages containing tens of similarly named components.

This is going to get worse before it gets better. Already, I can see another fault line appearing in Data 
Mapper. The Mapper::getCollection() method was convenient; but once again, other classes might 
want to acquire a Collection object for a domain type, without having to go to a database facing class. So 
I have two related abstract components: Collection and DomainObjectFactory. According to the domain 
object I am working with, I will require a different set of concrete implementations: VenueCollection and 
VenueObjectFactory, for example, or SpaceCollection and SpaceObjectFactory. This problem leads us 
directly to the Abstract Factory pattern, of course. Figure 13-7 shows the PersistenceFactory class. I’ll be 
using this to organize the various components that make up the next few patterns.

Figure 13-7.  Using the Abstract Factory pattern to organize related components

http://dx.doi.org/10.1007/978-1-4842-1996-6_18


Chapter 13 ■ Database Patterns

359

The Identity Object
The mapper implementation I have presented here suffers from a certain inflexibility when it comes to 
locating domain objects. Finding an individual object is no problem. Finding all relevant domain objects 
is just as easy. Anything in between, though, requires you to add a special method to craft the query 
(EventMapper::findBySpaceId() is a case in point).

An identity object (also called a Data Transfer Object by Alur et al.) encapsulates query criteria, thereby 
decoupling the system from database syntax.

The Problem
It’s hard to know ahead of time what you or other client coders are going to need to search for in a database. 
The more complex a domain object, the greater the number of filters you might need in your query. You 
can address this problem to some extent by adding more methods to your Mapper classes on a case-by-
case basis. This is not very flexible, of course, and can involve duplication as you are required to craft many 
similar but differing queries both within a single Mapper class and across the mappers in your system.

An identity object encapsulates the conditional aspect of a database query in such a way that different 
combinations can be combined at runtime. Given a domain object called Person, for example, a client 
might be able to call methods on an identity object in order to specify a male, aged above 30 and below 
40, who is less than 6 feet tall. The class should be designed so that conditions can be combined flexibly 
(perhaps you’re not interested in your target’s height, or maybe you want to remove the lower age limit). An 
identity object limits a client coder’s options to some extent. If you haven’t written code to accommodate 
an income field, then this cannot be factored into a query without adjustment. The ability to apply different 
combinations of conditions does provide a step forward in flexibility, however. Let’s see how this might work.

Implementation
An identity object will typically consist of a set of methods you can call to build query criteria. Having set the 
object’s state, you can pass it on to a method responsible for constructing the SQL statement.

Figure 13-8 shows a typical set of IdentityObject classes.

Figure 13-8.  Managing query criteria with identity objects



Chapter 13 ■ Database Patterns

360

You can use a base class to manage common operations and to ensure that your criteria objects share a 
type. Here’s an implementation that is simpler even than the classes shown in Figure 13-8:

// listing 13.35
class IdentityObject
{
    private $name = null;

    public function setName(string $name)
    {
        $this->name = $name;
    }

    public function getName(): string
    {
        return $this->name;
    }
}

// listing 13.36
class EventIdentityObject extends IdentityObject
{
    private $start = null;
    private $minstart = null;

    public function setMinimumStart(int $minstart)
    {
        $this->minstart = $minstart;
    }

    public function getMinimumStart()
    {
        return $this->minstart;
    }

    public function setStart(int $start)
    {
        $this->start = $start;
    }

    public function getStart()
    {
        return $this->start;
    }
}

Nothing’s too taxing here. The classes simply store the data provided and give it up on request. Here’s 
some code that might use SpaceIdentityObject to build a WHERE clause:

        $idobj = new EventIdentityObject();
        $idobj->setMinimumStart(time());



Chapter 13 ■ Database Patterns

361

        $idobj->setName("A Fine Show");
        $comps = [];
        $name = $idobj->getName();

        if (! is_null($name)) {
            $comps[] = "name = '{$name}'";
        }

        $minstart = $idobj->getMinimumStart();

        if (! is_null($minstart)) {
            $comps[] = "start > {$minstart}";
        }

        $start = $idobj->getStart();

        if (! is_null($start)) {
            $comps[] = "start = '{$start}'";
        }

        $clause = " WHERE " . implode(" and ", $comps);
        print "{$clause}\n";

This model will work well enough, but it does not suit my lazy soul. For a large domain object, the sheer 
number of getters and setters you would have to build is daunting. Then, following this model, you’d have to 
write code to output each condition in the WHERE clause. I couldn’t even be bothered to handle all cases in 
my example code (no setMaximumStart() method for me), so imagine my joy at building identity objects in 
the real world.

Luckily, there are various strategies you can deploy to automate both the gathering of data and the 
generation of SQL. In the past, for example, I have populated associative arrays of field names in the base 
class. These were themselves indexed by comparison types: greater than, equal, less than, or equal to. The 
child classes provide convenience methods for adding this data to the underlying structure. The SQL builder 
can then loop through the structure to build its query dynamically. I’m sure implementing such a system is 
just a matter of coloring in, so I’m going to look at a variation on it here.

I will use a fluent interface. That is a class whose setter methods return object instances, allowing your 
users to chain objects together in fluid, language-like way. This will satisfy my laziness, but still, I hope, give 
the client coder a flexible way of defining criteria.

I start by creating woo\mapper\Field, a class designed to hold comparison data for each field that will 
end up in the WHERE clause:

// listing 13.37
class Field
{
    protected $name = null;
    protected $operator = null;
    protected $comps = [];
    protected $incomplete = false;

    // sets up the field name (age, for example)
    public function __construct(string  $name)



Chapter 13 ■ Database Patterns

362

    {
        $this->name = $name;
    }

    // add the operator and the value for the test
    // (> 40, for example) and add to the $comps property
    public function addTest(string $operator, $value)
    {
        $this->comps[] = [
            'name' => $this->name,
            'operator' => $operator,
            'value' => $value
        ];
    }

    // comps is an array so that we can test one field in more than one way
    public function getComps(): array
    {
        return $this->comps;
    }

    // if $comps does not contain elements, then we have
    // comparison data and this field is not ready to be used in
    // a query
    public function isIncomplete(): bool
    {
        return empty($this->comps);
    }
}

This simple class accepts and stores a field name. Through the addTest() method, the class builds an 
array of operator and value elements. This allows us to maintain more than one comparison test for a single 
field. Now, here’s the new IdentityObject class:

// listing 13.38
class IdentityObject
{
    protected $currentfield = null;
    protected $fields = [];
    private $enforce = [];

    // an identity object can start off empty, or with a field
    public function __construct(string $field = null, array $enforce = null)
    {
        if (! is_null($enforce)) {
            $this->enforce = $enforce;
        }

        if (! is_null($field)) {
            $this->field($field);
        }
    }



Chapter 13 ■ Database Patterns

363

    // field names to which this is constrained
    public function getObjectFields()
    {
        return $this->enforce;
    }

    // kick off a new field.
    // will throw an error if a current field is not complete
    // (ie age rather than age > 40)
    // this method returns a reference to the current object
    // allowing for fluent syntax
    public function field(string $fieldname): self
    {
        if (! $this->isVoid() && $this->currentfield->isIncomplete()) {
            throw new \Exception("Incomplete field");
        }

        $this->enforceField($fieldname);

        if (isset($this->fields[$fieldname])) {
            $this->currentfield=$this->fields[$fieldname];
        } else {
            $this->currentfield = new Field($fieldname);
            $this->fields[$fieldname]=$this->currentfield;
        }

        return $this;
    }

    // does the identity object have any fields yet
    public function isVoid(): bool
    {
        return empty($this->fields);
    }

    // is the given fieldname legal?
    public function enforceField(string $fieldname)
    {
        if (! in_array($fieldname, $this->enforce) && ! empty($this->enforce) ) {
            $forcelist = implode(', ', $this->enforce);
            throw new \Exception("{$fieldname} not a legal field ($forcelist)");
        }
    }

    // add an equality operator to the current field
    // ie 'age' becomes age=40
    // returns a reference to the current object (via operator())
    public function eq($value): self
    {
        return $this->operator("=", $value);
    }



Chapter 13 ■ Database Patterns

364

    // less than
    public function lt($value): self
    {
        return $this->operator("<", $value);
    }

    // greater than
    public function gt($value): self
    {
        return $this->operator(">", $value);
    }

    // does the work for the operator methods
    // gets the current field and adds the operator and test value
    // to it
    private function operator(string $symbol, $value): self
    {
        if ($this->isVoid()) {
            throw new \Exception("no object field defined");
        }

        $this->currentfield->addTest($symbol, $value);

        return $this;
    }

    // return all comparisons built up so far in an associative array
    public function getComps(): array
    {
        $ret = [];

        foreach ($this->fields as $field) {
            $ret = array_merge($ret, $field->getComps());
        }

        return $ret;
    }
}

The easiest way to work out what’s going on here is to start with some client code and work backward:

// listing 13.39
$idobj = new IdentityObject();
$idobj->field("name")
    ->eq("The Good Show")
    ->field("start")
    ->gt(time())
    ->lt(time() + (24 * 60 * 60));

I begin by creating the IdentityObject. Calling field() causes a Field object to be created and 
assigned as the $currentfield property. Notice that field() returns a reference to the identity object. 
This allows us to hang more method calls off the back of the call to field(). The comparison methods eq(), 



Chapter 13 ■ Database Patterns

365

gt(), and so forth each call operator(). This checks that there is a current Field object to work with; and if 
so, it passes along the operator symbol and the provided value. Once again, eq() returns an object reference, 
so that I can add new tests or call add() again to begin work with a new field.

Notice the way that the client code is almost sentence-like: field "name" equals "The Good Show" and 
field "start" is greater than the current time, but less than a day away.

Of course, by losing those hard-coded methods, I also lose some safety. This is what the $enforce array 
is designed for. Subclasses can invoke the base class with a set of constraints:

// listing 13.40
class EventIdentityObject extends IdentityObject
{
    public function __construct(string $field = null)
    {
        parent::__construct(
            $field,
            ['name', 'id', 'start', 'duration', 'space']
        );
    }
}

The EventIdentityObject class now enforces a set of fields. Here’s what happens if I try to work with a 
random field name:

PHP Fatal error:  Uncaught exception 'Exception' with message 'banana not a &#x00E5;
legal field (name, id, start, duration, space)'...

Consequences
Identity objects allow client coders to define search criteria without reference to a database query. They also 
save you from having to build special query methods for the various kinds of find operations your user might 
need.

Part of the point of an identity object is to shield users from the details of the database. It’s important, 
therefore, that if you build an automated solution like the fluent interface in the preceding example, the 
labels you use should refer explicitly to your domain objects and not to the underlying column names. 
Where these differ, you should construct a mechanism for aliasing between them.

Where you use specialized entity objects, one for each domain object, it is useful to use an abstract 
factory (like PersistenceFactory described in the previous section) to serve them up along with other 
domain object related objects.

Now that I can represent search criteria, I can use this to build the query itself.

The Selection Factory and Update Factory Patterns
I have already pried a few responsibilities from the Mapper classes. With these patterns in place, a Mapper 
does not need to create objects or collections. With query criteria handled by Identity Objects, it must no 
longer manage multiple variations on the find() method. The next stage is to remove responsibility for 
query creation.



Chapter 13 ■ Database Patterns

366

The Problem
Any system that speaks to a database must generate queries, but the system itself is organized around 
domain objects and business rules rather than the database. Many of the patterns in this chapter can be 
said to bridge the gap between the tabular database and the more organic, treelike structures of the domain. 
There is, however, a moment of translation—the point at which domain data is transformed into a form that 
a database can understand. It is at this point that the true decoupling takes place.

Implementation
Of course, you have seen some of this functionality before in the Data Mapper pattern. In this specialization, 
though, I can benefit from the additional functionality afforded by the identity object pattern. This will tend 
to make query generation more dynamic, simply because the potential number of variations is so high.

Figure 13-9 shows my simple selection and update factories.

Figure 13-9.  Selection and update factories



Chapter 13 ■ Database Patterns

367

Selection and update factories are, once again, typically organized so that they parallel the domain 
objects in a system (possibly mediated via identity objects). Because of this, they are also candidates for 
my PersistenceFactory: the Abstract Factory I maintain as a one-stop shop for domain object persistence 
tools. Here is an implementation of a base class for update factories:

// listing 13.41
abstract class UpdateFactory
{
    abstract public function newUpdate(DomainObject $obj): array;

    protected function buildStatement(string $table, array $fields, array $conditions = 
null): array
    {
        $terms = array();

        if (! is_null($conditions)) {
            $query  = "UPDATE {$table} SET ";
            $query .= implode(" = ?,", array_keys($fields)) . " = ?";
            $terms  = array_values($fields);
            $cond   = [];
            $query .= " WHERE ";

            foreach ($conditions as $key => $val) {
                $cond[] = "$key = ?";
                $terms[] = $val;
            }

            $query .= implode(" AND ", $cond);
        } else {
            $query  = "INSERT INTO {$table} (";
            $query .= implode(",", array_keys($fields));
            $query .= ") VALUES (";

            foreach ($fields as $name => $value) {
                $terms[] = $value;
                $qs[] = '?';
            }

            $query .= implode(",", $qs);
            $query .= ")";
        }

        return array($query, $terms);
    }
}

In interface terms, the only thing that this class does is define the newUpdate() method. This will return 
an array containing a query string, and a list of terms to apply to it. The buildStatement() method does 
the generic work involved in building the update query, with the work specific to individual domain objects 
handled by child classes. buildStatement() accepts a table name, an associative array of fields and their 
values, and a similar associative array of conditions. The method combines these to create the query. Here’s 
a concrete UpdateFactory class:



Chapter 13 ■ Database Patterns

368

// listing 13.42
class VenueUpdateFactory extends UpdateFactory
{
    public function newUpdate(DomainObject $obj): array
    {
        // note type checking removed
        $id = $obj->getId();
        $cond = null;
        $values['name'] = $obj->getName();

        if ($id > -1) {
            $cond['id'] = $id;
        }

        return $this->buildStatement("venue", $values, $cond);
    }
}

In this implementation, I work directly with a DomainObject. In systems where one might operate on 
many objects at once in an update, I could use an identity object to define the set on which I would like to 
act. This would form the basis of the $cond array, which here only holds id data.

newUpdate() distills the data required to generate a query. This is the process by which object data is 
transformed to database information.

Notice that the newUpdate() method will accept any DomainObject. This is so that all UpdateFactory 
classes can share an interface. It would be a good idea to add some further type checking to ensure the 
wrong object is not passed in.

Here’s some quick code to try out the VenueUpdateFactory class:

// listing 13.43
$vuf = new VenueUpdateFactory();
print_r($vuf->newUpdate(new Venue(334, "The Happy Hairband")));

Array
(
    [0] => UPDATE venue SET name = ? WHERE id = ?
    [1] => Array
        (
            [0] => The Happy Hairband
            [1] => 334
        )
)

You can see a similar structure for SelectionFactory classes. Here is the base class:

// listing 13.44
abstract class SelectionFactory
{
    abstract public function newSelection(IdentityObject $obj): array;

    public function buildWhere(IdentityObject $obj): array



Chapter 13 ■ Database Patterns

369

    {
        if ($obj->isVoid()) {
            return ["", []];
        }

        $compstrings = [];
        $values = [];

        foreach ($obj->getComps() as $comp) {
            $compstrings[] = "{$comp['name']} {$comp['operator']} ?";
            $values[] = $comp['value'];
        }

        $where = "WHERE " . implode(" AND ", $compstrings);

        return [$where, $values];
    }
}

Once again, this class defines the public interface in the form of an abstract class. newSelection() 
expects an IdentityObject. Also requiring an IdentityObject, but local to the type, is the utility method, 
buildWhere(). This uses the IdentityObject::getComps() method to acquire the information necessary to 
build a WHERE clause, as well as to construct a list of values, both of which it returns in a two element array.

Here is a concrete SelectionFactory class:

// listing 13.45
class VenueSelectionFactory extends SelectionFactory
{
    public function newSelection(IdentityObject $obj): array
    {
        $fields = implode(',', $obj->getObjectFields());
        $core = "SELECT $fields FROM venue";
        list($where, $values) = $this->buildWhere($obj);

        return [$core . " " . $where, $values];
    }
}

This builds the core of the SQL statement and then calls buildWhere() to add the conditional clause. 
In fact, the only thing that differs from one concrete SelectionFactory to another in my test code is the 
name of the table. If I don’t find that I require unique specializations soon, I will refactor these subclasses 
out of existence and use a single concrete SelectionFactory. This would query the table name from the 
PersistenceFactory.

Again, here is some client code:

// listing 13.46
$vio = new VenueIdentityObject();
$vio->field("name")->eq("The Happy Hairband");

$vsf = new VenueSelectionFactory();
print_r($vsf->newSelection($vio));



Chapter 13 ■ Database Patterns

370

Array

(
    [0] => SELECT name,id FROM venue WHERE name = ?
    [1] => Array
        (
            [0] => The Happy Hairband
        )
)

Consequences
The use of a generic identity object implementation makes it easier to use a single parameterized 
SelectionFactory class. If you opt for hard-coded identity objects—that is, identity objects which consist of 
a list of getter and setter methods—you are more likely to have to build an individual SelectionFactory per 
domain object.

One of the great benefits of query factories combined with identity objects is the range of queries you 
can generate. This can also cause caching headaches. These methods generate queries on the fly, and it’s 
difficult to know when you’re duplicating effort. It may be worth building a means of comparing identity 
objects, so that you can return a cached string without all that work. A similar kind of database statement 
pooling might be considered at a higher level, too.

Another issue with the combination of patterns I have presented in the latter part of this chapter is 
the fact that they’re flexible, but they’re not that flexible. By this, I mean they are designed to be extremely 
adaptable within limits. There is not much room for exceptional cases here, though. Mapper classes, while 
more cumbersome to create and maintain, are very accommodating of any kind of performance kludge or 
data juggling you might need to perform behind their clean APIs. These more elegant patterns suffer from 
the problem that, with their focused responsibilities and emphasis on composition, it can be hard to cut 
across the cleverness and do something dumb but powerful.

Luckily, I have not lost my higher level interface—there’s still a controller level where I can head 
cleverness off at the pass if necessary.

What’s Left of Data Mapper Now?
So, I have stripped object, query, and collection generation from Data Mapper, to say nothing of the 
management of conditionals. What could possibly be left of it? Well, something that is very much like 
a mapper is needed in vestigial form. I still need an object that sits above the others I have created and 
coordinates their activities. It can help with caching duties and handle database connectivity (although the 
database-facing work could be delegated still further). Clifton Nock calls these data layer controllers domain 
object assemblers.

Here is an example:

// listing 13.47
class DomainObjectAssembler
{
    protected $pdo = null;



Chapter 13 ■ Database Patterns

371

    public function __construct(PersistenceFactory $factory)
    {
        $this->factory = $factory;
        $reg = Registry::instance();
        $this->pdo = $reg->getPdo();
    }

    public function getStatement(string $str): \PDOStatement
    {
        if (! isset($this->statements[$str])) {
            $this->statements[$str] = $this->pdo->prepare($str);
        }
        return $this->statements[$str];
    }

    public function findOne(IdentityObject $idobj): DomainObject
    {
        $collection = $this->find($idobj);

        return $collection->next();
    }

    public function find(IdentityObject $idobj): Collection
    {
        $selfact = $this->factory->getSelectionFactory();
        list ($selection, $values) = $selfact->newSelection($idobj);
        $stmt = $this->getStatement($selection);
        $stmt->execute($values);
        $raw = $stmt->fetchAll();

        return $this->factory->getCollection($raw);
    }

    public function insert(DomainObject $obj)
    {
        $upfact = $this->factory->getUpdateFactory();
        list($update, $values) = $upfact->newUpdate($obj);
        $stmt = $this->getStatement($update);
        $stmt->execute($values);

        if ($obj->getId() < 0) {
            $obj->setId((int)$this->pdo->lastInsertId());
        }

        $obj->markClean();
    }
}

As you can see, this is not an abstract class. Instead of itself breaking down into specializations, it uses 
the PersistenceFactory to ensure that it gets the correct components for the current domain object.

Figure 13-10 shows the high-level participants I built up as I factored out Mapper.



Chapter 13 ■ Database Patterns

372

Aside from making the database connection and performing queries, the class manages 
SelectionFactory and UpdateFactory objects. In the case of selections, it also works either with a 
Collection class to generate return values.

From a client’s point of view, creating a DomainObjectAssembler is easy. It’s simply a matter of getting 
the correct concrete PersistenceFactory object and passing it to the constructor:

// listing 13.48
$factory = PersistenceFactory::getFactory(Venue::class);
$finder = new DomainObjectAssembler($factory);

Of course, “client” here is unlikely to mean the end client. We can insulate higher level classes from 
even this complexity by adding a getFinder() method to the PersistenceFactory itself and transforming 
the previous example into a one-liner, like this:

$finder = PersistenceFactory::getFinder(Venue::class);

I’ll leave that to you, however.
A client coder might then go on to acquire a collection of Venue objects:

// listing 13.49
$idobj = $factory->getIdentityObject()
    ->field('name')
    ->eq('The Eyeball Inn');

$collection = $finder->find($idobj);

foreach ($collection as $venue) {
    print $venue->getName()."\n";
}

Figure 13-10.  Some of the persistence classes developed in this chapter



Chapter 13 ■ Database Patterns

373

Summary
As always, the patterns you choose to use will depend on the nature of your problem. I naturally gravitate 
toward a Data Mapper working with an identity object. I like neat automated solutions, but I also need to 
know I can break out of the system and go manual when I need to, while maintaining a clean interface and 
a decoupled database layer. I may need to optimize an SQL query, for example, or use a join to acquire 
data across multiple tables. Even if you’re using a complex pattern-based third-party framework, you may 
find that the fancy object-relational mapping on offer does not do quite what you want. One test of a good 
framework, and of a good home-grown system, is the ease with which you can plug your own hack into 
place without degrading the overall integrity of the system as a whole. I love elegant, beautifully composed 
solutions, but I’m also a pragmatist!

Once again, I have covered a lot in this chapter. Here’s a quick rundown of the patterns we looked at and 
how you use them:

•	 Data Mapper: Create specialist classes for mapping Domain Model objects to and 
from relational databases

•	 Identity Map: Keep track of all the objects in your system to prevent duplicate 
instantiations and unnecessary trips to the database

•	 Unit of Work: Automate the process by which objects are saved to the database, 
ensuring that only objects that have been changed are updated, and only those that 
have been newly created are inserted

•	 Lazy Load: Defer object creation, and even database queries, until they are actually 
needed

•	 Domain Object Factory: Encapsulate object creation functionality

•	 Identity Object: Allow clients to construct query criteria without reference to the 
underlying database

•	 Query (Selection and Update) Factory: Encapsulate the logic for constructing SQL 
queries

•	 Domain Object Assembler: Construct a controller that manages the high-level 
process of data storage and retrieval

In the next chapter, we take a welcome break from code, and I’ll introduce some of the wider practices 
that can contribute to a successful project.



PART III

Practice



377© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_14

CHAPTER 14

Good (and Bad) Practice

So far in this book, I have focused on coding, concentrating particularly on the role of design in building 
flexible and reusable tools and applications. Development doesn’t end with code, however. It is possible to 
come away from books and courses with a solid understanding of a language, yet still encounter problems 
when it comes to running and deploying a project.

In this chapter, I will move beyond code to introduce some of the tools and techniques that form the 
underpinnings of a successful development process. This chapter will cover the following:

•	 Third-party packages: Where to get them and when to use them

•	 Build: Creating and deploying packages

•	 Version control: Bringing harmony to the development process

•	 Documentation: Writing code that is easy to understand, use, and extend

•	 Unit testing: A tool for automated bug detection and prevention

•	 Standards: Why it's sometimes good to follow the herd

•	 Vagrant: A tool that uses virtualization, so that all developers can work with a system 
that resembles a production environment, no matter their hardware or OS

•	 Continuous integration: Using this practice and set of tools to automate project 
builds and tests, as well as to be alerted of problems as they occur

Beyond Code
When I first graduated from working on my own and took a place in a development team, I was astonished 
at how much stuff other developers seemed to have to know. Good-natured arguments simmered endlessly 
over issues of vital-seeming importance: Which is the best text editor? Should the team standardize on an 
integrated development environment? Should we impose a coding standard? How should we test our code? 
Should we document as we develop? Sometimes these issues seemed more important than the code itself, 
and my colleagues seemed to have acquired their encyclopedic knowledge of the domain through some 
strange process of osmosis.

The books I had read on PHP, Perl, and Java certainly didn’t stray from the code itself to any great extent. 
As I have already discussed, most books on programming platforms rarely diverge from their tight focus on 
functions and syntax to take in code design. If design is off topic, you can be sure that wider issues such as 
version control and testing are rarely discussed. This is not a criticism—if a book professes to cover the main 
features of a language, it should be no surprise that this is all it does.



Chapter 14 ■ Good (and Bad) Practice

378

In learning about code, however, I found that I had neglected many of the mechanics of a project’s day-
to-day life. I discovered that some of these details were critical to the success or failure of projects I helped 
develop. In this chapter, and in more detail in coming chapters, I will look beyond code to explore some of 
the tools and techniques on which the success of your projects may depend.

Borrowing a Wheel
When faced with a challenging but discrete requirement in a project (the need to parse a particular format, 
perhaps, or to use a novel protocol in talking to a remote server), there is a lot to be said for building a 
component that addresses the need. It can also be one of the best ways to learn your craft. In creating a 
package, you gain insight into a problem and file away new techniques that might have wider application. 
You invest at once in your project and in your own skills. By keeping functionality internal to your system, 
you can save your users from having to download third-party packages. Occasionally, too, you may sidestep 
thorny licensing issues. There’s nothing like the sense of satisfaction you can get when you test a component 
you designed yourself and find that, wonder of wonders, it works—it does exactly what you wrote on the tin.

There is a dark side to all this, of course. Many packages represent an investment of thousands of 
man-hours: a resource that you may not have on hand. You may be able to address this by developing only 
the functionality needed specifically by your project, whereas a third-party tool might fulfill a myriad of other 
needs, as well. The question remains, however: if a freely available tool exists, why are you squandering your 
talents in reproducing it? Do you have the time and resources to develop, test, and debug your package? 
Might not this time be better deployed elsewhere?

I am one of the worst offenders when it comes to wheel reinvention. Picking apart problems and 
inventing solutions to them is a fundamental part of what we do as coders. Getting down to some serious 
architecture is a more rewarding prospect than writing some glue to stitch together three or four existing 
components. When this temptation comes over me, I remind myself of projects past. Although the choice to 
build from scratch has never killed a project in my experience, I have seen it devour schedules and murder 
profit margins. There I sit with a manic gleam in my eye, hatching plots and spinning class diagrams, failing 
to notice as I obsess over the details of my component that the big picture is now a distant memory.

Now, when I map out a project, I try to develop a feel for what belongs inside the codebase and what 
should be treated as a third-party requirement. For example, your application may generate (or read) an 
RSS feed; and you may need to validate e-mail addresses and automate mailouts, authenticate users, or read 
from a standard-format configuration file. All of these needs can be fulfilled by external packages.

In previous versions of this book, I suggested that PEAR (PHP Extension and Application Repository) 
was the way to go for packages. Times change, though, and the PHP world has very definitely moved to 
the Composer dependency manager and its default repository, Packagist (https://packagist.org). 
Because Composer manages packages on a per-project basis, it is less prone to the dreaded dependency 
hell syndrome (where different packages require incompatible versions of the same library). Besides, 
the fact that all the action has moved to Composer/Packagist means that you’re more likely to find 
what you’re looking for there. What’s more, many of the PEAR packages are available through Packagist 
(https://packagist.org/packages/pear/).

So, once you have defined your needs, your first stop should be the Packagist site. You can then use 
Composer to install your package and to manage package dependencies. I will cover Composer in more 
detail in the next chapter.

To give you some idea of what’s available using Composer and Packagist, here are just a few of the 
things you can do with the packages you’ll find there:

•	 Cache output with pear/cache_lite

•	 Test the efficiency of your code with the athletic/athletic benchmark library

•	 Abstract the details of database access with doctrine/dbal

•	 Extract RSS feeds with simplepie/simplepie

https://packagist.org/
https://packagist.org/packages/pear/


Chapter 14 ■ Good (and Bad) Practice

379

•	 Send mail with attachments with pear/mail

•	 Parse configuration file formats with symfony/config

•	 Parse and manipulate URLs with jwage/purl

The Packagist website provides a powerful search facility. You may find packages that address your 
needs there, or you may need to cast your net wider using a search engine. Either way, you should always 
take time to assess existing packages before setting out to potentially reinvent that wheel.

The fact that you have a need—and that a package exists to address it—should not be the start and end 
of your deliberations. Although it is preferable to use a package where it will save you otherwise unnecessary 
development, in some cases it can add overhead without real gain. Your client’s need for your application 
to send mail, for example, does not mean that you should automatically use the pear/mail package. PHP 
provides a perfectly good mail() function, so this would probably be your first stop. As soon as you realize 
that you have a requirement to validate all e-mail addresses according to the RFC822 standard and that 
the design team wants to send image attachments with the e-mails, you may begin to weigh the options 
differently. As it happens, pear/mail supports both these features (the latter in conjunction with mail_mime).

Many programmers, myself included, often place too much emphasis on the creation of original code, 
sometimes to the detriment of their projects.

■■ Note   The unwillingness to use third party tools and solutions is often built-in at the institutional level. This 
tendency to treat external products with suspicion is sometimes known as the not invented here syndrome.

This emphasis on authorship may be one reason that there often seems to be more creation than actual 
use of reusable code.

Effective programmers see original code as just one of the tools available to aid them in engineering a 
project’s successful outcome. Such programmers look at the resources they have at hand and deploy them 
effectively. If a package exists to take some strain, then that is a win. To steal and paraphrase an aphorism 
from the Perl world: good coders are lazy.

Playing Nice
The truth of Sartre’s famous dictum that “Hell is other people” is proved on a daily basis in some software 
projects. This might describe the relationship between clients and developers, symptomized by the many 
ways that lack of communication leads to creeping features and skewed priorities. But the cap fits, too, for 
happily communicative and cooperative team members when it comes to sharing code.

As soon as a project has more than one developer, version control becomes an issue. A single coder 
may work on code in place, saving a copy of her working directory at key points in development. Introduce 
another programmer to the mix, and this strategy breaks down in minutes. If the new developer works in the 
same development directory, then there is a real chance that one programmer will overwrite the work of his 
colleague when saving, unless both are very careful to always work on different files.

Alternatively, our two developers can each take a version of the codebase to work on separately. That 
works fine until the moment comes to reconcile the two versions. Unless the developers have worked on 
entirely different sets of files, the task of merging two or more development strands rapidly becomes an 
enormous headache.

This is where Git, Subversion, and similar tools come in. Using a version control system, you can check 
out your own version of a codebase and work on it until you are happy with the result. You can then update 
your version with any changes that your colleagues have been making. The version control software will 
automatically merge these changes into your files, notifying you of any conflicts it cannot handle. Once you 
have tested this new hybrid, you can save it to the central repository, making it available to other developers.



Chapter 14 ■ Good (and Bad) Practice

380

Version control systems provide you with other benefits. They keep a complete record of all stages of a 
project, so you can roll back to, or grab a snapshot of, any point in the project’s lifetime. You can also create 
branches, so that you can maintain a public release at the same time as a bleeding-edge development version.

Once you have used version control on a project, you will not want to attempt another without it. 
Working simultaneously with multiple branches of a project can be a conceptual challenge, especially at first, 
but the benefits soon become clear. Version control is just too useful to live without. I cover Git in Chapter 17.

Giving Your Code Wings
Have you ever seen your code grounded because it is just too hard to build? This is especially true for 
projects that are developed in place. Such projects settle into their context, with passwords and directories, 
databases and helper application invocations programmed right into the code. Deploying a project of 
this kind can be a major undertaking, with teams of programmers picking through source code to amend 
settings, so that they fit the new environment.

This problem can be eased to some degree by providing a centralized configuration file or class so 
that settings can be changed in one place. But even then, build can be a chore. The difficulty or ease of 
installation will have a major impact upon the popularity of any application you distribute. It will also 
impede or encourage multiple and frequent deployments during development.

As with any repetitive and time-consuming task, build should be automated. A build tool can determine 
default values for install locations, check and change permissions, create databases, and initialize variables, 
among other tasks. In fact, a build tool can do just about anything you need to get an application from a 
source directory in a distribution to full deployment.

This doesn’t absolve the user from the responsibility for adding information about his environment to 
the code, of course, but it can make the process as easy as answering a few questions or providing a couple of 
command line switches.

Cloud products such as Amazon’s EC2 have made it possible to create test and staging environments, as 
needed. Good build and install solutions are essential in order to take full advantage of these resources. It’s no 
good being able to provision a server on an automated basis if you can’t also deploy your system on the fly.

There are various build tools available to the developer. Both PEAR and Composer manage installation 
(PEAR centrally, and Composer to a local vendor directory). You can create your own packages for either 
system, which can then be downloaded and installed by users with ease. Build is about much more than the 
process of placing file A in location B, however.

In Chapter 19, I will look at an application called Phing. This open source project is a port of the popular 
Ant build tool that is written in and for Java. Phing is written in and for PHP, but it’s architecturally similar to 
Ant and uses the same XML format for its build files.

Composer performs a limited number of tasks extremely well and offers the simplest possible 
configuration. Phing is more daunting at first, but with the tradeoff of immense flexibility. Not only can 
you use Phing to automate anything from file copying to XSLT transformation, you can easily write and 
incorporate your own tasks, should you need to extend the tool. Phing is written using PHP’s object-oriented 
features, and its design emphasizes modularity and ease of extension.

Build tools and those designed for package or dependency management are far from mutually 
exclusive. Typically, a build tool is used during development to run tests, perform project housekeeping, 
and to prepare the packages that are ultimately deployed via PEAR, Composer, or even distribution based–
package management systems like RPM and Apt.

Standards
I mentioned previously that this book is shifting its focus in this edition from PEAR to Composer. Is this 
because Composer is much better than PEAR? I do love lots of things about Composer, and these might 
swing the decision on their own. The principal reason the book is shifting, though, is that everyone else has 

http://dx.doi.org/10.1007/978-1-4842-1996-6_17
http://dx.doi.org/10.1007/978-1-4842-1996-6_19


Chapter 14 ■ Good (and Bad) Practice

381

shifted. Composer has become the standard for dependency management. That is crucial because it means 
that when I find a package at Packagist, I am also likely to find all its dependencies and related packages. I’ll 
even find many of the PEAR packages there.

Choosing a standard for dependency management, then, ensures availability and interoperability. But 
standards apply beyond packages and dependencies to the ways that systems work and to the ways that we 
code. If we agree on protocols, then our systems and teams can integrate seamlessly with one another. And, 
as more and more components mix across more and more systems, that is increasingly essential.

Where a definitive way of handling, say, logging, is needed, it is obviously ideal that we adopt the best 
protocol. But the quality of the recommendation (which will dictate formats, log levels, etc.) is possibly less 
important than the fact that we all comply with it. It’s no good implementing the best standard if you’re the 
only person doing it.

In chapter 15, I discuss standards in more detail with particular reference to a set of recommendations 
managed by the PHP-FIG group. These PSRs (PHP Standards Recommendations) cover everything from 
caching to security. In the chapter, I will focus on PSR-1 and PSR-2, recommendations which address the 
thorny issue of coding style (where do you like to put your braces? And how do you feel about someone 
else telling you to change the way you do it?). Then I move on to the absolute boon of PSR-4, which covers 
autoloading (support for PSR-4 is another area in which Composer excels).

Vagrant
What operating system does your team use? Some organizations mandate a particular combination 
of hardware and software, of course. Often, though, there will be a mix. One developer may have a 
development machine running Fedora. Another might swear by his MacBook, and a third may stick with his 
Windows box (he probably likes it for gaming).

Chances are, the production system will run on something else entirely—CentOS, perhaps.
It can be a pain getting a system to work across multiple platforms, and it can be a risk if none of those 

platforms resemble the production system. You really don’t want to discover issues related to the production 
OS after you’ve gone live. In practice, of course, you’ll likely deploy to a staging environment first. Even so, 
wouldn’t it be better to catch these problems early?

Vagrant is a technology that uses virtualization to give all team members a development environment 
that is as close as possible to production. Getting up and running should be as simple as invoking a 
command or two and, best of all, everyone can stick with their favorite machines and distributions (I’m a 
Fedora guy, for the record).

I cover Vagrant in Chapter 20.

Testing
When you create a class, you are probably pretty sure that it works. You will, after all, have put it through its 
paces during development. You’ll also have run your system with the component in place, checking that it 
integrates well, and that your new functionality is available and performing as expected.

Can you be sure that your class will carry on working as expected though? That might seem like a silly 
question. After all, you’ve checked your code once; why should it stop working arbitrarily? Well, of course 
it won’t; nothing happens arbitrarily, and if you never add another line of code to your system, you can 
probably breathe easy. If, on the other hand, your project is active, then it’s inevitable that your component’s 
context will change and highly likely that the component itself will be altered in any number of ways.

Let’s look at these issues in turn. First, how can changing a component’s context introduce errors? Even 
in a system where components are nicely decoupled from one another, they remain interdependent. Objects 
used by your class return values, perform actions, and accept data. If any of these behaviors change, the 
effects on the operation of your class might cause the kind of error that’s easy to catch—the kind where your 
system falls over with a convenient error message that includes a file name and line number. Much more 

http://dx.doi.org/10.1007/978-1-4842-1996-6_15
http://dx.doi.org/10.1007/978-1-4842-1996-6_20


Chapter 14 ■ Good (and Bad) Practice

382

insidious, though, is the kind of change that does not cause an engine-level error, but nonetheless confuses 
your component. If your class makes an assumption based on another class’s data, a change in that data 
might cause it to make a wrong decision. Your class is now in error and without a change to a line of code.

And it’s likely that you will go on altering the class you’ve just completed. Often, these changes will be 
minor and obvious—so minor, in fact, that you won’t feel the need to run through the careful checks you 
performed during development. You’ll have probably forgotten them all, anyhow, unless you kept them 
in some way (perhaps commented out at the bottom of your class file as I sometimes do). Small changes, 
though, have a way of causing large unintended consequences—consequences that might have been caught 
had you thought to put a test harness in place.

A test harness is a set of automated tests that can be applied to your system as a whole or to its individual 
classes. Well deployed, a test harness helps you to prevent bugs from occurring and from recurring. A single 
change may cause a cascade of errors, and the test harness can help you to locate and eliminate these. This 
means you can make changes with some confidence that you are not breaking anything. It is quite satisfying 
to make an improvement to your system and then see a list of failed tests. These are all errors that might have 
been propagated within your system, but now it won’t have to suffer them.

Continuous Integration
Have you ever made a schedule that made everything okay? You start with an assignment: code maybe, or 
a school project. It’s big and scary, and failure lurks. But you get out a sheet of paper, and you slice it up into 
manageable tasks. You determine the books to read and the components to write. Maybe you highlight the 
tasks in different colors. Individually, none of the tasks is actually that scary, it turns out. And gradually, as 
you plan, you conquer the deadline. As long as you do a little bit every day, you’ll be fine. You can relax.

Sometimes, though, that schedule takes on a talismanic power. You hold it up like a shield, to protect 
yourself from doubt, and from the creeping fear that perhaps this time you’ll crash and burn. And it’s only 
after several weeks that you realize the schedule is not magic on its own. You actually have to do the work, 
too. By then, of course, lulled by the schedule’s reassuring power, you have let things slide. There’s nothing 
for it but to make a new schedule. This time it will be less reassuring.

Testing and building are like that, too. You have to run your tests. You have to build your projects, and 
build them in fresh environments regularly; otherwise, the magic won’t work.

And if writing tests is a pain, running them can be a chore, especially as they gain in complexity and 
failures interrupt your plans. Of course, if you were running them more often, you’d probably have fewer 
failures, and those you did have would stand a good chance of relating to new code that’s fresh in your mind.

It’s easy to get comfortable in a sandbox. After all, you’ve got all your toys there: little scriptlets that 
make your life easy, development tools, and useful libraries. The trouble is, your project may be getting too 
comfortable in your sandbox, too. It may begin to rely on uncommitted code, or dependencies that you have 
left out of your build files. That means it’s broken anywhere else but where you work.

The only answer is to build, build, and build again. And do it in a reasonably virgin environment each time.
Of course, it’s all very well to advise this; it’s quite another matter to do it. Coders as a breed tend to like 

to code. They want to keep the meetings and the housekeeping to a minimum. That’s where Continuous 
Integration (CI) comes in. CI is both a practice and a set of tools to make the practice as easy as it possibly 
can be. Ideally, builds and tests should be entirely automatic, or at least launchable from a single command 
or click. Any problems will be tracked, and you will be notified before an issue becomes too serious. I will 
talk more about CI in Chapter 21.

http://dx.doi.org/10.1007/978-1-4842-1996-6_21


Chapter 14 ■ Good (and Bad) Practice

383

Summary
A developer’s aim is always to deliver a working system. Writing good code is an essential part of this aim’s 
fulfillment, but it is not the whole story.

In this chapter, I introduced dependency management with Composer and Packagist. I also discussed 
two great aids to collaboration: Vagrant and version control. I covered why version control requires 
automated build, and I introduced Phing, a PHP implementation of Ant, a Java build tool. Finally, I 
discussed software testing and introduced CI, a set of tools to automate build and testing.



385© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_15

CHAPTER 15

PHP Standards

Unless you are a lawyer or a health inspector, the topic of standards probably does not make your heart race. 
However, what standards help us achieve is worth getting excited about. Standards promote interoperability, 
and that gives us access to a vast array of compatible tools and framework components.

This chapter will cover several important aspects of standards:

•	 Why standards: What are standards and why they matter

•	 PHP Standards Recommendations: Their origins and purpose

•	 PSR-1: The Basic Coding Standard

•	 PSR-2: The Coding Style Guide

•	 PSR-4: Autoloading

Why Standards?
Design patterns interoperate. That is built in at their core. A problem described in a design pattern suggests 
a particular solution, which in turn generates architectural consequences. These are then well addressed 
by new patterns. Patterns also help developers to interoperate because they provide a shared vocabulary. 
Object-oriented systems tend to privilege the principle of playing nice.

As we increasingly share each other’s components though, this informal tendency towards 
interoperability is not always enough. As we have seen, Composer (or our package management system of 
choice) allows us to mix and match tools in our projects. These components may be designed as standalone 
libraries, or they may be pieces from a wider framework. Either way, once deployed in our system, they must 
be capable of working beside and in collaboration with any number of other components. By adhering to 
core standards, we make it less likely that our work will run into compatibility issues.

In some senses, the nature of a standard is less important than the fact that it is adhered to. Personally, for 
example, I don’t love every aspect of the PSR-2 style guidelines. In most circumstances, including this book, 
I have adopted the standard. Other developers on my teams will hopefully find my code easier to work with 
because they will find it in a format that is familiar. For other standards, such as autoloading, failure to observe a 
common standard will result in components that may not work together at all without additional middleware.

Standards are probably not the most exciting aspect of programming. However there is an interesting 
contradiction at their core. It may seem that a standard closes down creativity. After all, standards tell you 
want you can and can’t do. You must comply. You might think that this is hardly the stuff of innovation. And 
yet we owe the great flowering of creativity that the internet has ushered into our lives to the fact that every 
node on this network of networks conforms to open standards. Proprietary systems stuck within walled 
gardens are necessarily limited in scope and often in longevity—no matter how clever their code or slick 
their interfaces. The internet, with its shared protocols, ensures that any site can link to any other site. Most 



Chapter 15 ■ PHP Standards

386

browsers support standard HTML, CSS, and JavaScript. The interfaces we can build within these standards 
are not always the most impressive we might imagine (though the limitations are much less than they were); 
still, abiding by them enables us to maximize the reach of our work.

Used well, standards promote openness, cooperation, and, ultimately, creativity. This is true, even if a 
standard itself enforces some limitations.

What Are PHP Standards Recommendations?
At the 2009 PHP Tek conference, a group of framework developers formed an organization they called the 
PHP Framework Interop Group (PHP-Fig). Since then, developers have come on board from other key 
components. Their purpose was to build standards, so that their systems could better co-exist.

The group vote on standards proposals which progress from Draft, through Review, and finally, to 
Accepted status.

Table 15-1 lists the current standards at the time of this writing.

But that’s not all. There are also draft proposals in the works, including one for inline documentation 
(PSR-5), another style guide (PSR-12), and a standard for hypermedia links (PSR-13).

Why PSR in Particular?
So, why choose one standard and not another? It happens that the PHP Framework Interop Group—the 
originators of PSRs—has a pretty great pedigree, and the standards themselves therefore make sense. But 
also, these are the standards that the major frameworks and components are adopting. If you are using 
Composer to add functionality to your projects, you are already consuming code that complies with PSRs. 
By using its conventions for autoloading and its style guides, you are likely building code that is ready for 
collaboration with other people and components.

Table 15-1.  Accepted PHP Standards Recommendations

PSR Number Name Description

1 Basic Coding Standard Fundamentals such as PHP tags and basic naming 
conventions

2 Coding Style Guide Code formatting, including rules for placement of braces, 
argument lists, etc.

3 Logger Interface Rules for log levels and logger behaviors

4 Autoloading Standard Conventions for naming classes and namespaces, as well as 
their mapping to the filesystem

6 Caching Interface Rules for cache management, including data types, cache 
item lifetime, error handling, etc.

7 HTTP Message Interfaces Conventions for HTTP requests and responses



Chapter 15 ■ PHP Standards

387

■■ Note   One set of standards is not inherently superior to another. When you choose whether to adopt a 
standard, your choice may be driven by your judgment of the recommendation’s merits. Alternatively, you 
might make a pragmatic choice based on the context within which you are working. If you’re working in the 
WordPress community, for example, you might want to adopt the style defined in the Core Contributor Handbook 
at https://make.wordpress.org/core/handbook/best-practices/coding-standards/php/. Such a choice 
is part of the point of standards, which are all about the cooperation of people and software.

PSRs are a good bet because they are supported by key framework and component projects, including 
Phing, Composer, PEAR, Symfony, and Zend 2. Like patterns, standards are infectious—you’re probably 
already benefiting from them.

Who Are PSRs for?
Ostensibly PSRs are designed for the creators of frameworks. The fact that the membership of the PHP-Fig 
group rapidly widened to include the creators of tools as well as frameworks, however, shows that standards 
have wide relevance. That said, unless you are creating a logger, you may not need to worry too much about 
the details of PSR-3 (beyond ensuring any logging tool you use is itself compliant). On the other hand, if 
you’ve read the rest of this book, chances are you are as likely to be creating tools as you are to be consuming 
them. So, it’s also likely that you’ll find something relevant to you either in the present standards or the 
standards to come.

And then there are the standards that matter to all of us. Unglamorous as style guides are, for example, 
they are relevant to every programmer. And while the rules that govern autoloading really apply to those who 
create autoloaders (and the main game in town is probably Composer’s), they also fundamentally affect how 
we organize our classes, our packages, and our files.

For these reasons, I will focus on coding style and autoloading for the rest of this chapter.

Coding with Style
I tend to find pull request comments like “your braces are in the wrong place” disproportionately irritating. 
Such input often seems nitpicky and perilously close to bike-shedding.

■■ Note   In case you have not come across it, the verb “to bike-shed” refers to the tendency in some 
reviewers to criticize unimportant elements of a project under scrutiny. The implication is that such elements 
are chosen because they fit within the scope of the commenter’s competence. So, given a skyscraper to assess, 
a particular manager might focus, not on the vast and complex tower of glass and steel, but on the much easier 
to comprehend bike shed around the back. Wikipedia has a good history of the term: https://en.wikipedia.
org/wiki/Law_of_triviality

https://make.wordpress.org/core/handbook/best-practices/coding-standards/php/
https://en.wikipedia.org/wiki/Law_of_triviality
https://en.wikipedia.org/wiki/Law_of_triviality


Chapter 15 ■ PHP Standards

388

And yet I have come to see that conforming to a common style can help improve the quality of code. 
This is mainly a matter of readability (regardless of the reasoning behind a particular rule). If a team abides 
by the same rules for indentations, brace placement, argument lists, and so on, then a developer can quickly 
assess and contribute to a colleague’s code.

So, for this edition of the book, I committed to edit all code examples so that they conform to PSR-1 
and PSR-2. I have asked my colleague and technical editor Paul Tregoing to hold me to that, too. This was a 
promise that was so easy to make at the planning stage—and much more effort than I expected. This brings 
me to the first style guide lesson I learned. If possible, adopt a standard early for your project. Refactoring to 
a code style will likely tie up resources and make it hard to examine code differences that span The Time of 
the Great Reformat.

So what changes have I had to apply? Let’s start with the basics.

PSR-1 Basic Coding Standard
These are the fundamentals for PHP code. You can find them in detail at http://www.php-fig.org/psr/
psr-1/. Let’s break them down.

Opening and Closing Tags
First of all, a PHP section should open either with <?php or <?=. In other words, the short opening tag, <?, 
should not be used, nor should any other variation. A section should close with ?> only (or, as we shall see in 
the next section, no tag at all).

Side Effects
A PHP file should declare classes, interfaces, functions, and the like, or it should perform an action (such 
as reading or writing to a file or sending output to the browser); however, it should not do both. If you are 
accustomed to using require_once() to include other class files, this will trip you up straight away because 
the act of including another file is a side effect. Just as patterns beget patterns, so standards tend to require 
other standards. The correct way to handle class dependencies is through a PSR-4 compliant autoloader.

So, is it legal for a class you declare to write to a file in one of its methods? That is perfectly acceptable 
because the effect is not kicked off by the file’s inclusion. In other words, it’s an execution effect not a side 
effect.

So what kind of file might perform actions rather than declare classes? Think of the script that kicks off 
an application.

Here is a listing that performs actions as a direct result of inclusion:

// listing 15.01
// index.php
namespace popp\ch15\batch01;

require_once(__DIR__ . "/../../../vendor/autoload.php");

$tree = new Tree();
print "loaded " . get_class($tree) . "\n";

Here is a PHP file that declares a class with no side effects:

// listing 15.02

http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/


Chapter 15 ■ PHP Standards

389

// Tree.php
namespace popp\ch15\batch01;

class Tree
{
}

■■ Note   In other chapters, I largely omit namespace declarations and use directives in order to focus on the 
code. Since this chapter is about the mechanics of formatting class files, I will include namespace and use 
statements where appropriate.

Naming
Classes must be declared in upper camel case, also known as studly caps. In other words, a class name 
should begin with a capital letter. The rest of the name should be lowercase unless it consists of multiple 
words. In this instance, each word should begin with an uppercase letter, like this:

class MyClassName

Properties can be named in any way, although consistency is called for. I tend to use camel case, an 
approach similar to studly caps, but without the leading capital letter:

private $myPropertyName

Methods must be declared in camel case:

public function myMethodName()

Class constants must be upper case, with words separated by underscores:

const MY_NAME_IS = 'matt';

More Rules and an Example
Classes, namespaces, and files should be declared in accordance with the PSR-4 autoloading standard. We 
will come to that later in the chapter, however. PHP documents should be saved as UTF-8 encoded files.

Finally, for PSR-1, let’s get it all wrong—and then put it right. Here is a class file that breaks all the rules:

<?
// listing 15.03

class conf_reader {
    const ModeFile = 1;
    const Mode_DB = 2;
    private $conf_file;
    private $confValues= [];

    function read_conf() {



Chapter 15 ■ PHP Standards

390

        // implementation
    }
}
?>

Can you spot all the issues? First of all, I used a short opening tag. I also failed to declare a namespace 
(though we haven’t yet covered this requirement in detail). In naming my class, I used underscores and no 
capitals, rather than studly caps. And I used two formats for my constant names, neither of which are the 
required one—all capitals with words should be separated by underscores. Although both my property names 
were legal, I failed to make them consistent; specifically, I used underscores for $conf_file and camel case 
for $confValues. In naming my method, read_conf(), I used an underscore rather than camel case.

Let’s fix the problems:

<?php
// listing 15.04

namespace popp\ch15\batch01;

class ConfReader {
    const MODE_FILE = 1;
    const MODE_DB = 2;
    private $confFile;
    private $confValues = [];

    function readConf() {
        // implementation
    }
}

PSR-2 Coding Style Guide
The Coding Style Guide (PSR-2) builds upon PSR-1. Let’s jump in and look at some of the rules.

Starting and Ending a PHP Document
We have already seen that PSR-1 requires that PHP blocks open with <?php. PSR-2 stipulates that pure PHP 
files should not have an ending ?> tag, but should end with a single blank line. It’s all too easy to end a file 
with a closing tag, and then let an extra newline creep in. This can result in formatting bugs, as well as errors 
when you set HTTP headers (you cannot do this after content has already been sent to the browser).

namespace declarations should be followed by a blank line, and a block of use declarations should be 
followed by a blank line. Do not put more than one use declaration on the same line:

// listing 15.05

namespace popp\ch15\batch01;

use popp\ch10\batch06\DiamondDecorator;
use popp\ch10\batch06\DiamondPlains;

// begin class



Chapter 15 ■ PHP Standards

391

Starting and Ending a Class
The class keyword, the class name, and extends and implements must all be placed on the same line. 
Where a class implements multiple interfaces, each interface name can be included on the same line as the 
class declaration, or it can be placed indented on its own line. If you choose to place your interface names 
on multiple lines, the first item must be placed on its own line rather than directly after the implements 
keyword. Class braces should begin on the line after the class declaration and end on their own line (directly 
after the class contents). So, a class declaration might look something like this:

// listing 15.06
class EarthGame extends Game implements
    Playable,
    Savable
{
    // class body
}

However, you could equally place the interface names on a single line:

class EarthGame extends Game implements Playable, Savable
{
    // class body
}

Declaring Properties
Properties must have a declared visibility (public, private, or protected). The var keyword is not 
acceptable. We have already covered the format for property names as part of PSR-1. You can use 
underscores, camel case, or studly case—but you should be consistent.

Starting and Ending a Method
All methods must have a declared visibility (public, private, or protected). The visibility keyword must 
follow abstract or final, but precede static. Method arguments with default values should be placed at the 
end of the argument list.

Single Line Declarations

Method braces should begin on the line after the method name and end on their own line (directly after the 
method code). A list of method arguments should not begin or end with a space (i.e., they should snuggle in close 
to the wrapping parentheses). For each argument, the comma should be flush with the preceding argument name 
(or the default value), but it should then be followed by a space. Let’s clarify things with an example:

// listing 15.07

final public static function generateTile(int $diamondCount, bool $polluted = false)
{
    // implementation
}



Chapter 15 ■ PHP Standards

392

Multi-line Declarations

A single line method declaration is not practical in cases where there are many arguments. In this situation, 
you can break the argument list so that each argument (including type, argument variable, default value, and 
comma) is placed indented on its own line. In this case, the closing parenthesis should be placed on the line 
after the argument list, flush with the start of the method declaration. The opening brace should follow the 
closing parenthesis on the same line, separated by a space. The method body should begin on a new line. 
Once again, that sounds much more complicated that it is. An example should make it clearer:

// listing 15.08

    public function __construct(
        int $size,
        string $name,
        bool $wraparound = false,
        bool $aliens = false
    ) {
        // implementation
    }

Lines and Indentation
You should use four spaces rather than tabs for indentation. It’s worth checking your editor settings—you 
can configure good editors to use spaces rather than a tab when you press the Tab key. You should also wrap 
your text before your line reaches 120 characters.

Calling Methods and Functions
Do not place a space between the method name and the opening parenthesis. You can apply the same rules 
to the argument list in a method call as you do to the argument list in a method declaration. In other words, 
for a single line call leave no space after the opening parenthesis or before the closing parenthesis. A comma 
should follow directly after each argument, with a single space falling before the next one. If you need to 
use multiple lines for a method call, each argument should sit indented on its own line, and the closing 
parenthesis should fall on a new line:

// listing 15.09

        $earthgame = new EarthGame(
            5,
            "earth",
            true,
            true
        );
        $earthgame::generateTile(5, true);



Chapter 15 ■ PHP Standards

393

Flow of Control
Flow control keywords (if, for, while, etc.) must be followed by a single space. However, the opening 
parenthesis must not be followed by a space. Similarly, the closing parenthesis must not be preceded by 
a space. So, the contents should be snug in their brackets. In contrast to class and (single line) function 
declarations, the opening brace for the flow control block should begin on the same line as the closing 
parenthesis. The closing brace should sit on its own line. Here’s a quick example:

// listing 15.10

        $tile = [];
        for ($x = 0; $x < $diamondcount; $x++) {
            if ($polluted) {
                $tile[] = new PollutionDecorator(new DiamondDecorator(new Plains()));
            } else {
                $tile[] = new DiamondDecorator(new Plains());
            }
        }

Notice the space after both for and if. The for and if statements are flush to their parentheses. In both 
cases, the closing parenthesis is followed by a space and then the opening brace for the flow control body.

Checking and Fixing your Code
Even if this chapter covered every single directive in PSR-2, it would be hard to keep it all in your mind. After 
all, we have other things to think about—like the design and implementation of our systems. So, given that 
we have bought into the value of coding standards, how do we comply without using too much of our time or 
focus? We use a tool, of course.

PHP_CodeSniffer allows you to detect and even repair standards violations—and not just for PSR. You 
can get it by following the instructions at https://github.com/squizlabs/PHP_CodeSniffer. There are 
Composer and PEAR options, but here’s how you can download the PHP archive files:

curl -OL https://squizlabs.github.io/PHP_CodeSniffer/phpcs.phar

curl -OL https://squizlabs.github.io/PHP_CodeSniffer/phpcbf.phar

Why two downloads? The first is for phpcs, which diagnoses and reports on violations. The second is for 
phpcbf, which can fix a lot of them. Let’s put the tools through their paces. First, here is a scrappily formatted 
piece of code:

// listing 15.11
namespace popp\ch15\batch01;

class ebookParser {
    function __construct(string $path , $format=0 ) {
        if ($format>1)
            $this->setFormat( 1 );
    }
    function setformat(int $format) {
        // do something with $format
    }
}

https://github.com/squizlabs/PHP_CodeSniffer
https://squizlabs.github.io/PHP_CodeSniffer/phpcs.phar


Chapter 15 ■ PHP Standards

394

Rather than run through the problems here, let’s have PHP_CodeSniffer do it for us:

$ php phpcs.phar --standard=PSR2 src/ch15/batch01/phpcsBroken.php

----------------------------------------------------------------------
FOUND 14 ERRORS AFFECTING 6 LINES
----------------------------------------------------------------------
  3 | ERROR | [x] There must be one blank line after the namespace
    |       |     declaration
  4 | ERROR | [ ] Class name "ebookParser" is not in camel caps
    |       |     format
  4 | ERROR | [x] Opening brace of a class must be on the line after
    |       |     the definition
  6 | ERROR | [ ] Visibility must be declared on method "__construct"
  6 | ERROR | [x] Expected 0 spaces between argument "$path" and
    |       |     comma; 1 found
  6 | ERROR | [x] Incorrect spacing between argument "$format" and
    |       |     equals sign; expected 1 but found 0
  6 | ERROR | [x] Incorrect spacing between default value and equals
    |       |     sign for argument "$format"; expected 1 but found 0
  6 | ERROR | [x] Expected 0 spaces between argument "$format" and
    |       |     closing bracket; 1 found
  6 | ERROR | [x] Opening brace should be on a new line
  7 | ERROR | [x] Inline control structures are not allowed
  8 | ERROR | [x] Space after opening parenthesis of function call
    |       |     prohibited
  8 | ERROR | [x] Expected 0 spaces before closing bracket; 1 found
 11 | ERROR | [ ] Visibility must be declared on method "setformat"
 11 | ERROR | [x] Opening brace should be on a new line
----------------------------------------------------------------------
PHPCBF CAN FIX THE 11 MARKED SNIFF VIOLATIONS AUTOMATICALLY
----------------------------------------------------------------------

That’s an exhausting number of problems for just a few lines of code. Luckily, as the output indicates, 
we can fix a lot of these with very little effort:

$ php phpcbf.phar --standard=PSR2 src/ch15/batch01/EbookParser.php

Processing EbookParser.php [PHP => 83 tokens in 15 lines]... DONE in 11ms (11 fixable 
violations)
        => Fixing file: 0/11 violations remaining [made 4 passes]... DONE in 17ms
Patched 1 file

Now, if we run phpcs again, we’ll see that the situation is much improved:

$ php phpcs.phar --standard=PSR2 src/ch15/batch01/EbookParser.php

----------------------------------------------------------------------
FOUND 3 ERRORS AFFECTING 3 LINES
----------------------------------------------------------------------



Chapter 15 ■ PHP Standards

395

  5 | ERROR | Class name "ebookParser" is not in camel caps format
  8 | ERROR | Visibility must be declared on method "__construct"
 15 | ERROR | Visibility must be declared on method "setformat"
----------------------------------------------------------------------

I’ll go ahead and add the visibility declarations, and then change the name of the class—a quick job! 
And now I have a stylishly compliant code file:

// listing 15.12

namespace popp\ch15\batch01;

class EbookParser
{
    public function __construct(string $path, $format = 0)
    {
        if ($format > 1) {
            $this->setFormat(1);
        }
    }

    private function setformat(int $format)
    {
        // do something with $format
    }
}

PSR-4 Autoloading
We looked at PHP’s support for autoloading in Chapter 5. In that chapter, we saw how we could use the 
spl_autoload_register() function to automatically require files based on the name of an as yet unloaded 
class. Although this is powerful, it is also a kind of behind the scenes magic. This is fine in a single project, 
but a recipe for great confusion if multiple components come together and all use different conventions for 
loading class files.

The Autoloading Standard (PSR-4) requires frameworks to conform to a common set of rules, thereby 
adding some discipline to the magic.

This is great news for developers. It means that we can more or less ignore the mechanics of requiring 
files, and focus instead on class dependencies.

The Rules that Matter to Us
The main purpose of PSR-4 is to define rules for autoloader developers. However, those rules inevitably 
determine the way we must declare namespaces and classes. Here are some of the basics.

A fully-qualified classname (that is, the name of a class, including its namespaces) must include an 
initial “vendor” namespace. So, a class must have at least one namespace.

http://dx.doi.org/10.1007/978-1-4842-1996-6_5


Chapter 15 ■ PHP Standards

396

Let’s say that our vendor namespace is popp. We can declare a class in this way:

// listing 15.13

namespace popp;

class Services
{
}

The fully-qualified class name for this class is popp\Services.
The initial namespaces in a path must correspond to one or more base directories. We can use this to 

map a set of sub-namespaces to a starting directory. If, for example, we want to work with the namespace 
popp\library (and nothing else under the popp namespace), then we might map that to a top-level 
directory to spare us from having to maintain an empty popp/ directory.

Let’s set up a composer.json file to perform that mapping:

{
    "autoload": {
        "psr-4": {
            "popp\\library\\": "mylib"
        }
    }  
}

Notice that I don’t even need to call the base directory, "library". This is an arbitrary mapping of 
popp\library to the mylib directory. Now I can create a class file under the mylib directory:

// listing 15.14
// mylib/LibraryCatalogue.php

namespace popp\library;

use popp\library\inventory\Book;

class LibraryCatalogue
{
    private $books = [];
    public function addBook(Book $book)
    {
        $this->books[] = $book;
    }
}

In order to be found, the LibraryCatalogue class must be placed in a file with exactly the same name 
(with the obvious addition of the .php extension).

After a base directory (mylib) has been associated with initial namespaces (popp\library), there 
must then be a direct relation between subsequent directories and sub-namespaces. It happens that I have 
already referenced a class named popp\library\inventory\Book in my LibraryCatalogue class. That class 
file should therefore be placed in the mylib/inventory directory:



Chapter 15 ■ PHP Standards

397

// listing 15.15
// mylib/library/inventory/Book.php

namespace popp\library\inventory;

class Book
{
    // implementation
}

Remember the rule that the initial namespaces in a path must correspond to one or more base 
directories? So far we have made a one-to-one relationship between popp\library and mylib. There’s 
actually no reason why we can’t map the popp\library namespace to more than one base directory. Let’s 
add a directory named additional to the mapping; here’s the amendment to composer.json:

{
    "autoload": {
        "psr-4": {
            "popp\\library\\": ["mylib", "additional"]
        }
    }
}

Now I can create the additional/inventory directories and a class to go in them:

// listing 15.16
// additional/inventory/Ebook.php
namespace popp\library\inventory;

class Ebook extends Book
{
    // implementation
}

Next, let’s create a top-level runner script, index.php, to instantiate these classes:

// listing 15.17
// index.php

require_once("vendor/autoload.php");

use popp\library\LibraryCatalogue;

// will be found under mylib/
use popp\library\inventory\Book;

// will be found under additional/
use popp\library\inventory\Ebook;

$catalogue = new LibraryCatalogue();
$catalogue->addBook(new Book());
$catalogue->addBook(new Ebook());



Chapter 15 ■ PHP Standards

398

■■ Note   You must use Composer to generate the autoload file, vendor/autoload.php, and this file must be 
included in some way before you gain access to the logic you have declared in composer.json. You can do this 
by running the command composer install. You can learn more about Composer in Chapter 15.

Remember the rule about side effects? A PHP file should declare classes, interfaces, functions, and the 
like; or, it should perform an action. However, it should not do both. This script falls into the taking action 
category. Crucially, it calls require_once() to include the autoload code generated using the configuration 
in the composer.json file. Thanks to this, all the classes are located, despite the fact that Ebook has been 
placed in an entirely separate base directory from the rest.

Why would I want to maintain two separate directories for the same core namespace? One possible 
reason is for unit tests that you want to keep separate from production code. You may also manage plug-ins 
and extensions that will not ship with every version of your system.

■■ Note   Be sure to keep an eye on all the PSR standards at http://www.php-fig.org/psr/. This is a fast 
moving area, and you’ll likely find that standards relevant to you are on their way.

Summary
In this chapter, I wrestled a little with the possibility that standards are less than fantastically exciting—and 
then made a case for their power. Standards get integration issues out of our way, so that we can get on and 
do amazing things. I looked at PSR-1 and PSR-2, the standards for basic coding and for wider coding style. 
Next, I went on to discuss PSR-4, the standard for autoloaders. Finally, I worked through a Composer-based 
example that showed PSR-4 compliant autoloading in practice.

http://dx.doi.org/10.1007/978-1-4842-1996-6_15
http://www.php-fig.org/psr/


399© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_16

CHAPTER 16

PHP Using and Creating 
Components with Composer

Programmers aspire to produce reusable code. This is one of the great goals in object-oriented coding. We 
like to abstract useful functionality from the messiness of specific context, turning a particular solution into a 
tool that can be used again and again. To come at this from another angle, if programmers love the reusable, 
they hate duplication. By creating libraries that can be reapplied, programmers avoid the need to implement 
similar solutions across multiple projects.

Even if we avoid duplication in our own code, though, there is a wider issue. For every tool you create, 
how many other programmers have implemented the same solution? This is wasted effort on an epic scale: 
wouldn’t it be much more sensible for programmers to collaborate and to focus their energies on making a 
single tool better, rather than producing hundreds of variations on a theme?

In order to do this, we need to get our hands on existing libraries. But then the packages we need will 
likely require other libraries in order to do their work. So we need a tool which can handle downloading and 
installing packages, as well as manage their dependencies. That is where Composer comes in; it does all this, 
and more besides.

This chapter will cover several key issues:

•	 Installation: Downloading and setting up Composer

•	 Requirements: Using composer.json to get packages

•	 Versions: Specifying versions so as to get the latest code without breaking your 
system

•	 Packagist: Configuring your code for public access

•	 Private repositories: Leveraging Composer using a private repository

What Is Composer?
Strictly speaking, Composer is a dependency manager, rather than a package manger. This, it seems, is 
because it handles component relationships on a local basis, rather than centrally as Yum and Apt do. If you 
think that this is an overly fine distinction, you could be right. However we define it, Composer allows you 
to specify packages. It downloads them to a local directory (vendor), finds and downloads all dependencies, 
and then makes all this code available to your project via an autoloader.

As always, we need to begin by getting the tool.



Chapter 16 ■ PHP Using and Creating Components with Composer

400

Installing Composer
You can download Composer at https://getcomposer.org/download/. You will find an installer 
mechanism there, but the phar file should suit most purposes:

$ wget https://getcomposer.org/download/1.2.0/composer.phar .
$ chmod 755 composer.phar
$ sudo mv composer.phar /usr/bin/composer

I download the archive and run chmod to ensure that it is executable. Then I copy it into a central 
location so that I can run it easily from anywhere in my system. Now I can test the command:

$ composer --version

Composer version 1.2.0 2016-07-19 01:28:52

Installing a (Set of) Package(s)
Why did I do that funky bit with the brackets? Because packages inevitably beget packages—sometimes a lot 
of packages.

Let’s begin with a library that stands alone, though. Imagine that we’re building an application which 
needs to communicate with Twitter. A little bit of research leads me to the abraham/twitteroath package. In 
order to install this, I need to generate a JSON file named composer.json, and then define a require element:

{
    "require": {
        "abraham/twitteroauth": "0.6.*"
    }
}

I begin with a directory that is empty apart from the composer.json file. Once I run a Composer 
command, though, we’ll see a change:

$ composer install

Loading composer repositories with package information
Updating dependencies (including require-dev)
  - Installing abraham/twitteroauth (0.6.4)
    Downloading: 100%        

Writing lock file
Generating autoload files

So what has been generated? Let’s take a look:

$ ls

composer.json  composer.lock  vendor

https://getcomposer.org/download/


Chapter 16 ■ PHP Using and Creating Components with Composer

401

Composer installs packages into vendor/. It also generates a file named composer.lock. This specifies 
the exact versions of all packages installed. If you’re using version control, you should commit this file. If 
another developer runs composer install with a composer.lock file present, package versions will be 
installed on her system exactly as specified. In this way, the team can stay in sync with one another, and you 
can be sure that your production environment exactly matches the development and test environments. You 
can override the lockfile by running this snippet:

composer update

This will generate a new lock file. Typically, you will run this to keep current with new package versions 
(if you are using wildcards, as I have, or ranges).

Installing a Package from the Command Line
As you have seen, I can create the composer.json file using an editor. But you can also have Composer do it 
for you. This is particularly useful if you need to kick off with a single package. When you invoke composer 
require on the command line, Composer will download the specified package and install it into vendor/ for 
you. It will also generate a composer.json file, which you can then edit and extend:

$ composer require abraham/twitteroauth

Using version ^0.6.4 for abraham/twitteroauth
./composer.json has been created
Loading composer repositories with package information
Updating dependencies (including require-dev)
  - Installing abraham/twitteroauth (0.6.4)
    Loading from cache

Writing lock file
Generating autoload files

Versions
Composer is designed to support semantic versioning. In essence, this involves defining a package’s version 
with three numbers, separated by dots: major, minor, and patch. If you fix a bug, add no functionality, 
and do not break backwards compatibility, you should increment the patch number. If you add new 
functionality, but do not break backwards compatibility, you should increment the middle minor number. 
If your new version breaks backwards compatibility (in other words, if client code would break if this new 
version were suddenly switched in), then you should increment the first major version number.

■■ Note   You can read more about the semantic versioning convention at https://semver.org.

You should bear this in mind when specifying versions in your composer.json file: if you are too liberal 
in your ranges or wild cards, you may find that your system breaks on update.

Table 16-1 shows some of the ways that you can specify versions with Composer.

https://semver.org/


Chapter 16 ■ PHP Using and Creating Components with Composer

402

require-dev
Very often you need packages during development that are unnecessary in a production context. You will 
want to run tests locally, for example, but you are unlikely to need PHPUnit available on your public site.

Composer addresses this by supporting a separate require-dev element. You can add packages here, 
just as you can for the require element:

{
    "require-dev": {
        "phpunit/phpunit": "*"
    },
    "require": {
        "abraham/twitteroauth": "0.6.*",
        "ext-xml": "*"
    }
}

Now, when we run composer install, PHPUnit and all sorts of dependent packages are downloaded 
and installed:

$ composer install

Loading composer repositories with package information
Updating dependencies (including require-dev)
  - Installing abraham/twitteroauth (0.6.4)
    Loading from cache

  - Installing symfony/yaml (v3.1.3)
    Downloading: 100%        

  - Installing sebastian/version (2.0.0)

Table 16-1.  Composer and Package Versions

Type Example Notes

Exact 1.2.2 Only install the given version

Wildcard 1.2.* Install the exact specified numbers, but find latest available version 
matching the wildcard

Range 1.0.0 - 1.1.7 Install a version no lower than the first number and no higher than the 
last number

Comparison >1.2.0 <=1.2.2 Use <, <=, >, and >= to specify complex ranges. You can combine these 
directives with a space (equivalent to “and”) or with || to specify “or”.

Tilde (major 
version)

~1.3 The given number is the minimum, and the final number specified can 
increase. So for ~1.3, 1.3 is the minimum and there can be no match at 
2.0.0 or above

Caret ^1.3 Will match up to, but not including, the next breaking change. So while 
~1.3.1 will not match at 1.4 and above, ^1.3.1 will match from 1.3.1 up 
to, but not including, 2.0.0. This is generally the most useful shortcut



Chapter 16 ■ PHP Using and Creating Components with Composer

403

    Downloading: 100%        
....
  - Installing phpspec/prophecy (v1.6.1)
    Downloading: 100%        

  - Installing myclabs/deep-copy (1.5.1)
    Loading from cache

  - Installing phpunit/phpunit (5.5.0)
    Downloading: 100%        

sebastian/global-state suggests installing ext-uopz (*)
phpunit/phpunit-mock-objects suggests installing ext-soap (*)
phpunit/php-code-coverage suggests installing ext-xdebug (>=2.4.0)
phpunit/phpunit suggests installing phpunit/php-invoker (~1.1)
Writing lock file
Generating autoload files

If you’re installing in a production context, however, you can pass the --no-dev flag to composer 
install, and Composer will download only those packages specified in the require element:

$ composer install --no-dev

Loading composer repositories with package information
Updating dependencies
  - Installing abraham/twitteroauth (0.6.4)
    Loading from cache

Writing lock file
Generating autoload files

■■ Note   When you run the composer install command, Composer creates a file named composer.lock. 
This records the exact version of every file you installed under vendor/. If you run composer install with 
a composer.lock file present alongside composer.json, Composer will fetch the package versions it has 
recorded if they are not present. This is useful because you can commit a composer.lock file to your version-
control repository and be sure that your team will download the same versions of all the packages you have 
installed. If you need to override composer.lock, either to get the latest versions of packages or because you 
have changed composer.json, you should run composer update to override the lock file.

Composer and Autoload
We covered autoloading in some detail in Chapter 15. For the sake of completeness however, it is worth 
looking at it briefly. Composer generates a file named autoload.php, which handles class loading for the 
packages it downloads. You can also leverage this functionality for your own code by including autoload.

http://dx.doi.org/10.1007/978-1-4842-1996-6_15


Chapter 16 ■ PHP Using and Creating Components with Composer

404

php (usually with require_once()). Once you have done this, any class you declare in your system will be 
found automatically when accessed in your code, so long as your directories and filenames mirror your 
namespaces and class names.

In other words, a class named popp5/megaquiz/command/CommandContext must be placed in a file 
named CommandContext.php in the popp5/megaquiz/command/ directory.

If you want to mix things up (perhaps by omitting a redundant leading directory or two, or by adding a 
test directory to the search path), then you can use the autoload element to map a namespace to your file 
structure, like this:

    "autoload": {
        "psr-4": {
            "popp5\\megaquiz\\": ["src", "test"]
        }
    }

Now, so long as autoload.php is included, my classes are easily discoverable. Thanks to my autoload 
configuration, the popp5/megaquiz/command/CommandContext class will now be found in src/command/
CommandContext.php. Not only that, but because I have referenced more than one target (test as well as 
src), I can also create test classes that belong to the popp5\megaquiz\ namespace under the test/ directory.

Turn to the “PSR-4 Autoloading” section in Chapter 15 to follow a more in-depth example.

Creating Your Own Package
If you have worked with PEAR in the past, you might expect a section on creating a package here to involve 
an entirely new package file. In fact, we’ve already been creating a package throughout this chapter. We just 
have to add some more information, and then find a way to make our code available to others.

Adding Package Information
You really do not have to add that much information to make a viable package, but you absolutely need a 
name, so that your package can be found. I’m also going to include the description and authors elements, 
as well as to create a fake product named megaquiz which you will find popping up in other chapters 
occasionally:

    "name": "popp5/megaquiz",
    "description": "a truly mega quiz",
    "authors": [
        {
            "name": "matt zandstra",
            "email": "matt@getinstance.com"
        }
    ],

These fields should be mostly self-explanatory. The exception might be that leading namespace—
popp5, in this case—which is separated from the actual package name by a forward slash. This is known 
as the vendor name. As you might expect, the vendor name becomes a top-level directory under vendor/ 
when your package is installed. This is often the organization name used by the package owner in Github or 
Bitbucket.

With all that in place, you are ready to commit your package to your version control host of choice. If 
you’re not sure what that involves, you can learn a lot more about this subject in Chapter 17.

http://dx.doi.org/10.1007/978-1-4842-1996-6_15
http://dx.doi.org/10.1007/978-1-4842-1996-6_17


Chapter 16 ■ PHP Using and Creating Components with Composer

405

■■ Note   Composer supports a version field, but it is considered better practice to use a tag in Git to track 
your package’s version. Composer will automatically recognize this.

Remember that you should not push the vendor directory (at least not usually—there are some arguable 
exceptions to that rule). However, it is often a good idea to track the generated composer.lock file alongside 
composer.json.

Platform Packages
Although you cannot use Composer to install system-wide packages, you can specify system-wide 
requirements, so that your package will only install in a system which is ready for it.

A platform package is specified with a single key, though in a couple of cases the key is further broken 
down by type, using a dash. I list the available types in Table 16-2.

Let’s try it out:

{
    "require": {
        "abraham/twitteroauth": "0.6.*",
        "ext-xml": "*",
        "ext-gd": "*"
    }
}

In the preceding code, I specify that my package requires the xml and gd extensions. Now it’s time to run 
update:

$ composer update

Loading composer repositories with package information
Updating dependencies (including require-dev)
Your requirements could not be resolved to an installable set of packages.

  Problem 1
- The requested PHP extension ext-gd * is missing from your system. Install or enable PHP's 
gd extension.

Table 16-2.  Platform Packages

Type Example Description

PHP "php": "7.*" The PHP version

Extension "ext-xml": ">2" The PHP extension

Library "lib-iconv": "~2" A system library used by PHP

HHVM "hhvm": "~2" An HHVM version (HHVM is a virtual machine that supports an 
extended version of PHP)



Chapter 16 ■ PHP Using and Creating Components with Composer

406

It looks as though I was set up for XML; however, GD, an image manipulation package, is not installed 
on my system, so Composer throws an error.

Distribution Through Packagist
If you’ve been working through this chapter, you might have wondered where the packages we have been 
installing actually come from. It feels a lot like magic, but (as you might expect) there is a package repository 
behind the scenes. It is called Packagist, and it can be found at https://packagist.org. So long as your 
code can be found in a public git repository, it can be made available through Packagist.

Let’s give it a shot. I have pushed my megaquiz project to Github, so now I need to tell Packagist about 
my repository. Once I have signed up, I simply add the URL of my repository. You can see this in Figure 16-1.

Once I’ve added megaquiz, Packagist locates the repository, checks the composer.json file, and displays 
a control panel. You can see that in Figure 16-2.

Packagist tells me that I have not set license information. I can fix this at any time by 
adding a license element to the composer.json file:"license": "Apache-2.0",

Figure 16-1.  Adding a package to Packagist

https://packagist.org/


Chapter 16 ■ PHP Using and Creating Components with Composer

407

Packagist has also failed to find any version information. I’ll fix this by adding a tag to the Github 
repository:

$ git tag -a '1.0.1' -m '1.0.1'
$ git push –tags

■■ Note   If you think I’m cheating by skimming over this Git stuff, you’re right. I cover both Git and Github in 
some detail in Chapter 17.

Now Packagist knows about my version number. You can confirm that in Figure 16-3.

Figure 16-2.  The package control panel

http://dx.doi.org/10.1007/978-1-4842-1996-6_17


Chapter 16 ■ PHP Using and Creating Components with Composer

408

Now, anyone can include megaquiz from another package. Here is a minimal composer.json file:

{
    "require": {
        "popp5/megaquiz": "*"
    }
}

I specify the vendor name and the package name. Riskily, I am happy to accept any version at all. Let’s 
go ahead and install:

$ composer install

Loading composer repositories with package information
Installing dependencies (including require-dev)
  - Installing abraham/twitteroauth (0.6.4)
    Loading from cache

Figure 16-3.  Packagist knows the version



Chapter 16 ■ PHP Using and Creating Components with Composer

409

  - Installing popp5/megaquiz (1.0.1)
    Downloading: 100%        

Writing lock file
Generating autoload files

Notice that the dependencies I specified when I set up megaquiz are also downloaded.

Keeping it private
Of course, you don’t always want to publish your code to the world. Sometimes you need to share only with a 
smaller set of authorized users.

Here is a private package named getinstance/api_util that I use for internal projects:

{
    "name": "getinstance/api_util",
    "description": "core getinstance api code",
    "authors": [
        {
            "name": "matt zandstra",
            "email": "matt@getinstance.com"
        }
    ],  
    "require": {
        "silex/silex": "~1.3",
        "bshaffer/oauth2-server-php": "~1.8"
    },  
    "require-dev": {
         "phpunit/phpunit": "~4.3.0"
    },  
    "autoload": {
        "psr-4": {
            "getinstance\\api_util\\": ["src" , "test/functional"]
        }
    }
}

This is hosted in a private Bitbucket repository, so it’s not available via Packagist. So how would I 
include it in a project? I simply need to tell Composer where to look. I can do this by creating or adding to 
the repositories element:

{
    "repositories": [
        {
            "type": "vcs",
            "url": "git@bitbucket.org:getinstance/api_util.git"
        }
    ],



Chapter 16 ■ PHP Using and Creating Components with Composer

410

    "require": {
        "popp5/megaquiz": "*",
        "getinstance/api_util": "v1.0.3"
    }
}

So now, so long as I have access to getinstance/api_util, I can install both my private package and 
megaquiz at once:

$ composer install

Loading composer repositories with package information
Installing dependencies (including require-dev)        
  - Installing abraham/twitteroauth (0.6.4)
    Loading from cache

  - Installing popp5/megaquiz (1.0.1)
    Loading from cache
...
  - Installing silex/silex (v1.3.5)
    Loading from cache

  - Installing getinstance/api_util (v1.0.3)
    Cloning 3cf2988875b824936e6421d0810ceea90b76d139
...
Writing lock file
Generating autoload files

Summary
You should leave this chapter with a sense of how easy it is to leverage Composer packages to add power 
to your projects. Through the composer.json file, you can also make your code accessible to other users, 
whether publicly by using Packagist or by specifying your own repository. This approach automates 
dependency downloads for your users and allows third-party packages to use yours without the need for 
bundling.



411© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_17

CHAPTER 17

Version Control with Git

All disasters have their tipping point, the moment at which order finally breaks down and events simply 
spiral out of control. Do you ever find yourself in projects like that? Are you able to spot that crucial moment?

Perhaps it’s when you make “just a couple of changes” and find that you have brought everything 
crashing down around you (and, even worse, you’re not quite sure how to get back to the point of stability 
you have just destroyed). It could be when you realize that three members of your team have been working 
on the same set of classes and merrily saving over each other’s work. Or perhaps it’s when you discover that a 
bug fix that you have implemented twice has somehow disappeared from the codebase yet again. Wouldn’t it 
be nice if there were a tool to help you manage collaborative working, allowing you to take snapshots of your 
projects, roll them back if necessary, and then to merge multiple strands of development? In this chapter, we 
look at Git, a tool that does all that, and more.

This chapter will cover the following aspects of working with Git:

•	 Basic configuration: Exploring some tips for setting up Git

•	 Importing: Starting a new project

•	 Committing changes: Saving your work to the repository

•	 Updating: Merging other people’s work with your own

•	 Branching: Maintaining parallel strands of development

Why Use Version Control?
If it hasn’t already, version control will change your life (if only your life as a developer). How many times 
have you reached a stable moment in a project, drawn a breath, and plunged onward into development 
chaos once again? How easy was it to revert to the stable version when it came time to demonstrate your 
work in progress? Of course, you may have saved a snapshot of your project when it reached a stable 
moment, probably by duplicating your development directory. Now imagine that your colleague is working 
on the same codebase. Perhaps he has saved a stable copy of the code as you have. The difference is that 
his copy is a snapshot of his work, not yours. Of course, he has a messy development directory, too. So you 
have four versions of your project to coordinate. Now imagine a project with four programmers and a web UI 
developer. You’re looking pale. Perhaps you would like to lie down?

Git exists exclusively to address this problem. Using Git, all of your developers can clone their own 
copies of the codebase from a central repository. Whenever they reach a stable point in their code, they can 
pull the latest code from the server and merge it with their own recent work. When they are ready, and after 
they have fixed any conflicts, they can push their new stable synthesis back into the shared repository.



Chapter 17 ■ Version Control with Git

412

Git is a distributed version-control system. This means that, once they have acquired a branch, users 
commit to their own local repository without the need for a network connection. There are a number of 
benefits to this. It means that day-to-day operations are faster, and that you can work easily on planes 
and trains and in automobiles. Ultimately, however, you can share an authoritative repository with your 
teammates.

The fact that each developer can merge her work into a central repository means that reconciling 
multiple strands of development is made vastly easier. Even better, you can check out versions of your 
codebase based on a date or a label. So when your code reaches a stable point, suitable for showing to a 
client as work in progress, for example, you can tag that with an arbitrary label. You can then use that tag to 
check out the correct codebase when your client swoops into your office looking to impress an investor.

Wait! There’s more! You can also manage multiple strands of development at the same time. If this 
sounds needlessly complicated, imagine a mature project. You have already shipped the first version, 
and you’re well into development of version 2. Does version 1.n go away in the meantime? Of course not. 
Your users are spotting bugs and requesting enhancements all the time. You may be months away from 
shipping version 2, so where do you make and test the changes? Git lets you maintain distinct branches 
of the codebase. So you might create a bug-fix branch of your version 1.n for development on the current 
production code. At key points, this branch can be merged back into the version 2 code (the trunk), so that 
your new release can benefit from improvements to version 1.n.

■■ Note   Git is not the only version-control system available. You might also like to look into Subversion 
(http://subversion.apache.org/) or Mercurial (http://mercurial.selenic.com/). This chapter is 
necessarily a brief introduction to a large topic. Luckily, however, Pro Git by Scott Chacon (Apress, 2014) covers 
the topic with depth and clarity. Not only that, but a web version is available online at https://git-scm.com/
book/en/v2.

Let’s get on and look at some of these features in practice.

Getting Git
If you are working with a Unix-like operating system (such as Linux or FreeBSD), you may already have Git 
installed and ready to use.

■■ Note   I show commands that are input at the command line in bold to distinguish them from any output 
they may produce.

Try typing this from the command line:

$ git help

You should see some usage information that will confirm that you are ready to get started. If you do 
not already have Git, you should consult your distribution’s documentation. You will almost certainly have 
access to a simple installation mechanism such as Yum or Apt, or you can acquire Git directly from  
http://git-scm.com/downloads.

http://subversion.apache.org/
http://mercurial.selenic.com/
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
http://git-scm.com/downloads


Chapter 17 ■ Version Control with Git

413

■■ Note   Throughout this chapter, I denote command line input by displaying it in bold text. A dollar sign ($) 
represents the command prompt.

Using an Online Git Repository
You may have noticed by now that this book often goes it alone. I almost never argue that you should 
reinvent the wheel; rather, you should at least get a sense of what goes into wheel construction before buying 
one ready-made. For this reason, I’ll be covering the mechanics of setting up and maintaining your own 
central git repository in the next section. Let’s get real, though. You’ll almost certainly use a specialized host 
to manage your repositories. There are a number of these to choose from, though the biggest players are 
probably Bitbucket (https://bitbucket.org) and GitHub (https://github.org).

So, which should you choose? As a rule of thumb, GitHub is probably the standard for open source 
products. Startups often opt for Bitbucket because it offers free private repositories and only charges as 
your team grows. That seems like a good deal; after all, if your team is growing, then you’ve probably either 
secured funding or you’re seeing some revenue. If that’s true, then well done, you!

More or less on the basis of a coin toss, I’ll sign up with GitHub for my project. Figure 17-1 shows my 
next decision, which is between a public or private repository. I’ll opt for a public project (because I’m a 
cheapskate).

Figure 17-1.  Getting started with a GitHub project

https://bitbucket.org/
https://github.org/


Chapter 17 ■ Version Control with Git

414

At this point, GitHub offers some helpful instructions for importing my project. You can see those in 
Figure 17-2.

I’m not ready to run those commands yet, though. GitHub needs to be able to validate me when I push 
files to the server. In order to do that, it requires my public key. I describe one way of generating such a key in 
the next section, “Configuring a Git Server.” Once I have a public key, I can add it from the SSH and GPG keys 
link in GitHub’s User Settings screen.

You can see GitHub’s settings screen for SSH and GPG keys in Figure 17-3.

Figure 17-2.  GitHub’s import instructions



Chapter 17 ■ Version Control with Git

415

Now I’m ready to start adding files to my repository. Before we get into that, though, we should step 
back and spend some time following the do-it-yourself route.

Configuring a Git Server
Git is different from traditional version-control systems in two key ways. First, under the hood, it stores 
snapshots of files, rather than the changes made to files between commits. Second, and more obviously to 
the user, it operates locally to your system until you choose to push to or pull from a remote repository. This 
means that you are not dependent on an Internet connection to get on with your work.

You do not need a single remote repository in order to work with Git; but in practice, it almost always 
makes sense to have a shared source of authority if you are working with a team.

In this section, I look at the steps needed to get a remote Git server up and running. I assume root 
access to a Linux machine.

Creating the Remote Repository
In order to create a Git repository, I must first create a containing directory. I log into a freshly provisioned 
remote server via SSH. I am going to create my repository under /var/git. Generally speaking, only the root 
user can create and modify directories there, so I run the following command using sudo:

$ sudo mkdir -p /var/git/megaquiz
$ cd /var/git/megaquiz/

Figure 17-3.  Adding an SSH key



Chapter 17 ■ Version Control with Git

416

I create /var/git, a parent directory for my repositories, and a subdirectory for a sample project called 
megaquiz. Now I can prepare the directory itself:

$ sudo git init --bare

Initialized empty Git repository in /var/git/megaquiz/

The --bare flag tells Git to initialize a repository without a working directory. Git will complain if you 
try to push to a repository that has not been created in this way.

At the moment, only the root user can mess around under /var/git. I can change this by creating a user 
and a group named git and making it the directory’s owner:

$ sudo adduser git
$ sudo chown -R git:git /var/git

Preparing the Repository for Local Users
Although this is a designated remote server, I should also ensure that local users can commit to the 
repository. If you’re not careful, this can cause ownership and permissions issues (especially if users with 
sudo privileges push code).

$ sudo chmod -R g+rws /var/git

This gives members of the git group write access to /var/git and causes all files and directories 
created here to take on the git group. Now, as long as I ensure that they are members of the git group, local 
users will be able to write to the repository. Not only that, any files created will be writable by other members 
of the group.

You can add a local user to the git group like this:

$ sudo usermod -aG git bob

Now user bob is a member of the git group.

Providing Access to Users
The owner of the bob user mentioned in the previous section can log into the server and interact with the 
repository from his shell. Generally, though, you won’t want to provide shell access to all your users. In any 
case, most users will prefer to take advantage of Git’s distributed nature and to work locally with their cloned 
data.

One way to grant a user SSH access is via public-key authentication. To do this, you first need to acquire 
the user’s public SSH key. The user may already have this—on a Linux machine, he will probably find the key 
in the configuration directory, .ssh, in a file named id_rsa.pub. Otherwise, he can easily generate a new key. 
On a Unix-like machine, this is a matter of running the ssh-keygen command and copying the value that it 
generates:

$ ssh-keygen
$ cat .ssh/id_rsa.pub



Chapter 17 ■ Version Control with Git

417

As the repository administrator, I will have asked you for a copy of this key. Once I have it, I must add it 
to the git user’s SSH set up on the repository server. This is merely a matter of pasting the public key into the 
.ssh/authorized_keys file. I may need to create the .ssh configuration directory for the first key I set up (I 
am running these commands from the git user’s home directory):

$ mkdir .ssh
$ chmod 0700 .ssh
# create authorized_keys file and paste in the user's key:
$ vi .ssh/authorized_keys
$ chmod 0700 .ssh/authorized_keys

■■ Note A  common cause of SSH access failure is the creation of configuration files with overly liberal 
permissions. The SSH configuration environment should be readable and writable to the account’s owner, only. 
Pro OpenSSH by Michael Stahnke (Apress, 2005) covers SSH comprehensively.

Closing Down Shell Access for the git User
No server should be any more open than it needs to be. You may want to enable your user to access Git 
commands, but probably not much more.

You can see the shell associated with a user on a Linux server by looking at the file, /etc/passwd. Here is 
the relevant line for the git account on my remote server:

git:x:1001:1001::/home/git:/bin/bash

Git provides a special shell, named git-shell, that restricts the user to selected commands only. I can 
enable this program for logins by editing /etc/passwd:

git:x:1001:1001::/home/git:/usr/bin/git-shell

Now, if I attempt to log in via SSH, I’m told the score and logged out:

$ ssh git@poppch17.vagrant.internal

Last login: Sat Jul 30 11:58:27 2016 from 192.168.33.1
fatal: What do you think I am? A shell?
Connection to poppch17.vagrant.internal closed.

Beginning a Project
Now that I have a remote Git server and access to it from my local account, it’s time to add my work in 
progress to the repository at /var/git/megaquiz.

Before I start, I take a good look at my files and directories, and remove any temporary items I might 
find. Failure to do this is a common annoyance. Temporary items to watch for include automatically 
generated files such as composer packages, build directories, installer logs, and so on.



Chapter 17 ■ Version Control with Git

418

■■ Note   You can specify files and patterns to ignore by placing a file named .gitignore in your repository. 
On a Linux system, the man gitignore command should provide examples of filename wildcarding that you 
can amend to exclude the various lock files and temporary directories created by your build processes, editors, 
and IDEs. This text is also available online at http://git-scm.com/docs/gitignore.

Before I go any further, I should register my identity with Git—this makes it easier to track who did what 
in the repository:

$ git config --global user.name "matt z"
$ git config --global user.email "matt@getinstance.com"

Now that I have established my personal details and ensured that my project is clean, I can set it up and 
push its code to the server:

$ cd megaquiz
$ git init

Initialized empty Git repository in /home/mattz/work/megaquiz/.git/

Now it’s time to add my files:

$ git add .

Git is now tracking all the files and directories under megaquiz. Tracked files can be in three states: 
unmodified, modified, or staged. You can check this by running the command, git status:

$ git status

On branch master

Initial commit

Changes to be committed:
  (use "git rm --cached <file>..." to unstage)
On branch master

Initial commit

Changes to be committed:
  (use "git rm --cached <file>..." to unstage)

      new file:   command/Command.php
      new file:   command/CommandContext.php
      new file:   command/FeedbackCommand.php
      new file:   command/LoginCommand.php
      new file:   main.php
      new file:   quizobjects/User.php
      new file:   quiztools/AccessManager.php
      new file:   quiztools/ReceiverFactory.php

http://git-scm.com/docs/gitignore


Chapter 17 ■ Version Control with Git

419

Thanks to my previous git add command, all my files are staged for commit. I can go ahead now and 
execute the commit command:

$ git commit -m 'my first commit'

[master (root-commit) f147d21] my first commit
 8 files changed, 235 insertions(+)
 create mode 100755 command/Command.php
 create mode 100755 command/CommandContext.php
 create mode 100755 command/FeedbackCommand.php
 create mode 100755 command/LoginCommand.php
 create mode 100755 main.php
 create mode 100755 quizobjects/User.php
 create mode 100755 quiztools/AccessManager.php
 create mode 100644 quiztools/ReceiverFactory.php

I add a message via the -m flag. If I omitted this, then Git would launch an editor that I can use to add my 
check-in message.

If you are accustomed to version-control systems such as CVS and Subversion, you might think that 
we’re done. And although I could happily continue editing, adding, committing, and branching from here, 
there is an additional stage I need to consider if I want to share this code using a central repository. As we 
will see later on in the chapter, Git allows us to manage multiple project branches. Thanks to this feature, I 
can maintain a branch for each release, but also keep my bleeding-edge risky development safely out of my 
production code. When we start out, Git sets up a single branch named master. I can confirm the state of my 
branches with the command, git branch:

$ git branch -a

* master

The -a flag specifies that Git should show us all branches (the default is to omit the remote ones). And 
the output shows the master branch.

In fact, I have done nothing yet to associate my local repository with the remote server. It’s time to put 
that right:

$ git remote add origin git@poppch17.vagrant.internal:/var/git/megaquiz

This command is disappointingly quiet, given the work that it has done. In fact, it is the equivalent of 
telling Git to “associate the nickname origin with the given server location. Furthermore, set up a tracking 
relationship between the local branch master and a remote equivalent.”

To confirm all of this, I check with Git that the remote handle origin has been set up:

$ git remote -v

origin git@poppch17.vagrant.internal:/var/git/megaquiz (fetch)
origin git@poppch17.vagrant.internal:/var/git/megaquiz (push)

Of course, if you used a service like GitHub, you would use your equivalent of the git remote add step 
shown in Figure 17-2. In my case, that looks like this:

$ git remote add origin git@github.com:popp5/megaquiz.git



Chapter 17 ■ Version Control with Git

420

I still haven’t sent any actual files to my Git server, however, so that’s my next step:

$ git push origin master

Counting objects: 12, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (9/9), done.
Writing objects: 100% (12/12), 2.65 KiB, done.
Total 12 (delta 1), reused 0 (delta 0)
To git@poppch17.vagrant.internal:/var/git/megaquiz
 * [new branch]      master -> master

Now I can run the git branch command again to confirm that the remote version of the master branch 
has appeared:

$ git branch -a

* master
  remotes/origin/master

■■ Note   I have established what is called a tracking branch. This is a local branch that is associated with a 
remote twin.

Cloning the Repository
For the purposes of this chapter, I have invented a team member named Bob. Bob is working with me on the 
MegaQuiz project. Naturally, he wants his own version of the code. I have already added his public key to the 
Git server, so he is good to go. In the parallel world of GitHub, I have invited Bob to join my project, and he 
has added his own public key to his account. The effect is the same; Bob can acquire the repository using the 
command, git clone:

$ git clone git@github.com:popp5/megaquiz.git

remote: Counting objects: 14, done.
remote: Compressing objects: 100% (12/12), done.
remote: Total 14 (delta 1), reused 14 (delta 1), pack-reused 0
Receiving objects: 100% (14/14), done.
Resolving deltas: 100% (1/1), done.

Now both of us can develop locally and, when we’re ready, share our code with one another.

Updating and Committing
Bob is, of course, a fine and talented fellow. Except, that is, for one common and highly annoying trait: he 
cannot leave other people’s code alone.

Bob is smart and inquisitive, easily excited by shiny new avenues of development, and he’s keen to 
help optimize new code. As a result, everywhere I turn, I seem to see the hand of Bob. Bob has added to my 
documentation, and he has implemented an idea I mentioned over coffee. I may have to kill Bob. In the meantime, 
however, I must handle the fact that the code on which I am working needs to be merged with Bob’s input.



Chapter 17 ■ Version Control with Git

421

Here’s a file called quizobjects/User.php. At the moment, it contains nothing but the barest of bones:

namespace popp\ch17\megaquiz\quizobjects;

class User
{
}

I have decided to add some documentation. I begin by adding a file comment to my version of the file:

namespace popp\ch17\megaquiz\quizobjects;

/**
 * @license   http://www.example.com Borsetshire Open License
 * @package  quizobjects
 */

class User
{
}

Remember that a file can have three states: unmodified, modified, and staged. The User.php file has 
now moved from unmodified to modified. I can see this with the git status command:

$ git status

On branch master
Your branch is up-to-date with 'origin/master'.
Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)

       modified:   quizobjects/User.php

no changes added to commit (use "git add" and/or "git commit -a")

User.php has been modified, but not yet staged for commit. I can change this state using the command, 
git add:

$ git add quizobjects/User.php
$ git status

On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

       modified:   quizobjects/User.php

Now I am ready to commit:

$ git commit -m'added documentation' quizobjects/User.php



Chapter 17 ■ Version Control with Git

422

[master 97472c4] added documentation
 1 file changed, 5 insertions(+)

A Git commit only affects my local repository. If I am sure that the world is ready for my change, I must 
push my code to the remote repository:

$ git push origin master

Counting objects: 6, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (6/6), 670 bytes | 0 bytes/s, done.
Total 6 (delta 2), reused 0 (delta 0)
To git@github.com:popp5/megaquiz.git
   715fc2f..04d75b4  master -> master

Meanwhile, working in his own sandbox, Bob is keen as ever, and he has created a class comment:

namespace popp\ch17\megaquiz\quizobjects;

/**
 * @package  quizobjects
 */

class User
{
}

Now it’s Bob’s turn to add, commit, and push. Because the adding and committing parts of this are so 
commonly run together, Git allows you to combine them into a single command:

$ git commit -a -m'my great documentation'

[master 161c6c5] my great documentation
 1 files changed, 4 insertions(+), 0 deletions(-)

So we now have two distinct versions of User.php. There’s the version I just pushed to the remote 
repository, and there is Bob’s version, committed, but not yet pushed. Let’s see what happens when Bob tries 
to push his local version to the remote repository:

$ git push origin master

To git@github.com:popp5/megaquiz.git
 ! [rejected]        master -> master (non-fast-forward)
error: failed to push some refs to 'git@github.com:popp5/megaquiz.git'
To prevent you from losing history, non-fast-forward updates were rejected
Merge the remote changes before pushing again.  See the 'Note about
fast-forwards' section of 'git push --help' for details.

As you can see, Git won’t let you push if there’s an update to apply. Bob must first pull down my version 
of the User.php file:



Chapter 17 ■ Version Control with Git

423

$ git pull origin master

remote: Counting objects: 6, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 6 (delta 2), reused 6 (delta 2), pack-reused 0
Unpacking objects: 100% (6/6), done.
From github.com:popp5/megaquiz
 * branch            master     -> FETCH_HEAD
Auto-merging quizobjects/User.php
CONFLICT (content): Merge conflict in quizobjects/User.php
Automatic merge failed; fix conflicts and then commit the result.

Git will happily merge data from two sources into to the same file, so long as the changes don’t overlap. 
Git has no means of handling changes that affect the same lines. How can it decide what is to have priority? 
Should the repository overwrite Bob’s changes, or the other way around? Should both changes coexist? 
Which should go first? Git has no choice but to report a conflict and let Bob sort out the problem.

Here’s what Bob sees when he opens the file:

namespace popp\ch17\megaquiz\quizobjects;

/**
<<<<<<< HEAD
=======
 * @license   http://www.example.com Borsetshire Open License
>>>>>>> 04d75b41c8d972438bd803042f1117e12d2869eb
 * @package  quizobjects
 */

class User
{
}

Git includes both Bob’s comment and the conflicting changes, together with metadata that tells him which 
part originates where. The conflicting information is separated by a line of equals signs. Bob’s input is signaled by 
a line of less-than symbols followed by "HEAD". The remote changes are included on the other side of the divide.

Now that Bob has identified the conflict, he can edit the file to fix the collision:

namespace popp\ch17\megaquiz\quizobjects;

/**
 * @license   http://www.example.com Borsetshire Open License
 * @package   quizobjects
 */

class User
{
}

Next, Bob resolves the conflict by staging the file:

$ git add quizobjects/User.php
$ git commit -m'documentation merged'

[master 89e5e46] documentation merged



Chapter 17 ■ Version Control with Git

424

And now, finally, he can push to the remote repository:

$ git push origin master

Adding and Removing Files and Directories
Projects change shape as they develop. Version-control software must take account of this, allowing users to 
add new files and remove deadwood that would otherwise get in the way.

Adding a File
You have seen the add subcommand many times already. I used it during my project setup to add my code 
to the empty megaquiz repository, and subsequently, to stage files for commit. By running git add on an 
untracked file or directory, you ask Git to track it—and stage it for commit. Here I add a document called 
Question.php to the project:

$ touch quizobjects/Question.php

$ git add quizobjects/Question.php

In a real-world situation, I would probably start out by adding some content to Question.php. Here, I 
confine myself to creating an empty file using the standard touch command. Once I have added a document, 
I must still invoke the commit subcommand to complete the addition:

$ git commit -m'initial checkin'

[master 02cf67c] initial checkin
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 quizobjects/Question.php

Question.php is now in the local repository.

Removing a File
Should I discover that I have been too hasty and need to remove the document, it should come as no 
surprise to learn that I can use a subcommand called rm:

$ git rm quizobjects/Question.php

rm 'quizobjects/Question.php'

Once again, a commit is required to finish the job. As usual, I can confirm this by running git status:

$ git status

On branch master
Your branch is ahead of 'origin/master' by 1 commit.



Chapter 17 ■ Version Control with Git

425

  (use "git push" to publish your local commits)
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

       deleted:    quizobjects/Question.php

$ git commit -m'removed Question'

[master fd4d64e] removed Question
 1 file changed, 0 insertions(+), 0 deletions(-)
 delete mode 100644 quizobjects/Question.php

Adding a Directory
You can also add and remove directories with add and rm. Let’s say Bob wants to make a new directory 
available:

$ mkdir resources
$ touch resources/blah.gif
$ git add resources/

$ git status

On branch master
Your branch is ahead of 'origin/master' by 2 commits.
  (use "git push" to publish your local commits)
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

      new file:   resources/blah.gif

Notice how the contents of resources are added automatically to the repository. Now Bob can commit 
and then push the whole lot to the remote repository in the usual way.

Removing Directories
As you might expect, you can remove directories with the rm subcommand. In this situation, however, I must 
tell Git that I wish it to remove the directory's contents by passing an -r flag to the subcommand. Here, I 
profoundly disagree with Bob’s decision to add a resources directory:

$ git rm -r resources/

rm 'resources/blah.gif'



Chapter 17 ■ Version Control with Git

426

Tagging a Release
All being well, a project will eventually reach a state of readiness, and you will want to ship it or deploy it. 
Whenever you make a release, you should leave a bookmark in your repository, so that you can always revisit 
the code at that point. As you might expect, you can create a tag in your code with the git tag command:

$ git tag -a 'version1.0' -m 'release 1.0'

You can see the tags associated with your repository by running git tag with no arguments:

$ git tag

version1.0

We have been working locally up until this point. In order to get the tag onto the remote repository, we 
must use the --tags flag with the git push subcommand:

$ git push origin --tags

Counting objects: 1, done.
Writing objects: 100% (1/1), 168 bytes | 0 bytes/s, done.
Total 1 (delta 0), reused 0 (delta 0)
To git@github.com:popp5/megaquiz.git
* [new tag]         version1.0 -> version1.0

Using the --tags flag causes all local tags to be pushed to the remote repository.
Of course, any action you take on a GitHub repo can be tracked on the site. You can see my release tag 

in Figure 17-4.

Figure 17-4.  Viewing a tag on GitHub



Chapter 17 ■ Version Control with Git

427

Once you can bookmark your code with a tag, it makes sense to wonder how you might go about 
revisiting old releases. For this, however, you should first spend some time looking at branching—something 
at which Git is particularly good.

Branching a Project
Once my project has been released, I can pack it away and wander off to do something new, right? After all, 
it was so elegantly written that bugs are an impossibility, not to mention so thoroughly specified that no user 
could possibly require any new features!

Meanwhile, back in the real world, I must continue to work with the codebase on at least two levels. 
Bug reports should be trickling in right about now, and the wish list for version 1.2.0 will be swelling with 
demands for fantastic new features. How do I reconcile these forces? I need to fix the bugs as they are 
reported, and I need to push on with primary development. I could fix the bugs as part of development and 
release everything in one go, when the next version is stable. But then users may have a long wait before they 
see any problems addressed. This is plainly unacceptable. On the other hand, I could release as I go. In that 
scenario, I risk shipping broken code. Clearly, I need two strands to my development. I will continue to add 
new and risky features to the project’s main branch (often called the trunk), but I should now create a branch 
for my new release on which I can add only bug fixes.

■■ Note   This way of managing branches is by no means the only game in town. Developers argue constantly about 
the best way of organizing branches and managing releases and bug fixes. One of the most popular approaches is git-
flow (neatly described at http://danielkummer.github.io/git-flow-cheatsheet/). Under this practice, master 
is the release branch. New code goes on a develop branch, and it’s merged to master at release time. Each unit of 
active development has its own feature branch, which gets merged into develop when stable.

I can both create and switch to a new branch using the git checkout command. First, let’s take a quick 
look at the state of my branches:

$ git branch -a

* master
  remotes/origin/master

As you can see, I have a single branch: master, and its remote equivalent. Now, I will create and switch 
to a new branch:

$ git checkout -b megaquiz-branch1.0

Switched to a new branch 'megaquiz-branch1.0'

To track my use of branches I will use a particular file as an example, command/FeedbackCommand.php. 
It seems that I created my bug fix branch just in time. Users have started to report that they are unable to use 
the feedback mechanism in the system. I locate the bug:

//...
$result = $msgSystem->despatch($email, $msg, $topic);

http://danielkummer.github.io/git-flow-cheatsheet/


Chapter 17 ■ Version Control with Git

428

if (! $user) {
    $this->context->setError($msgSystem->getError());
//...

I should, in fact, be testing $result and not $user. Here is my edit:

        //...
        $result = $msgSystem->dispatch($email, $msg, $topic);
        if (! $result) {
            $this->context->setError($msgSystem->getError());
        //...

Because I am working on the branch megaquiz-branch1.0, I can commit this change:

$ git add command/FeedbackCommand.php
$ git commit -m'bugfix'

[megaquiz-branch1.0 d69dfc1] bugfix
 1 file changed, 1 insertion(+), 1 deletion(-)

Of course, this commit is local. I need to use the git push command to get the branch onto the remote 
repository:

$ git push origin megaquiz-branch1.0

Counting objects: 4, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 440 bytes | 0 bytes/s, done.
Total 4 (delta 2), reused 0 (delta 0)
To git@github.com:popp5/megaquiz.git
 * [new branch]      megaquiz-branch1.0 -> megaquiz-branch1.0

Now, what about Bob? He will inevitably want to pitch in and fix some bugs. First, he invokes git pull, 
which helpfully tells him about the new branch (and my recent other activities):

$ git pull

remote: Counting objects: 11, done.
remote: Compressing objects: 100% (7/7), done.
remote: Total 11 (delta 4), reused 11 (delta 4), pack-reused 0
Unpacking objects: 100% (11/11), done.
From github.com:popp5/megaquiz
   f6ab532..cf120a4  master     -> origin/master
 * [new branch]      megaquiz-branch1.0 -> origin/megaquiz-branch1.0
 * [new tag]         version1.0 -> version1.0
Updating f6ab532..cf120a4
Fast-forward
 0 files changed, 0 insertions(+), 0 deletions(-)
 delete mode 100644 resources/blah.gif



Chapter 17 ■ Version Control with Git

429

Now Bob can switch to a local branch which will track the remote one:

$ git checkout megaquiz-branch1.0

Branch megaquiz-branch1.0 set up to track remote branch megaquiz-branch1.0 from origin.
Switched to a new branch 'megaquiz-branch1.0'

Bob is good to go now. He can add and commit his own fixes; and when he pushes, they will end up on 
the remote branch.

Meanwhile, I would like to add some bleeding-edge enhancements on the trunk—that is, my master 
branch. Let’s look again at the state of my branches from the perspective of my local repository:

$ git branch -a

  master
* megaquiz-branch1.0
  remotes/origin/master
  remotes/origin/megaquiz-branch1.0

I can switch to an existing branch by invoking git checkout:

$ git checkout master

Switched to branch 'master'
Your branch is up-to-date with 'origin/master'.

When I look now at command/FeedbackCommand.php, I see that my bug fix has magically disappeared. 
Of course, it’s still stored under megaquiz-branch1.0. Later, I can merge the fix into the master branch, so 
there’s no need to worry. Instead, I can focus on adding new code:

class FeedbackCommand extends Command
{

    public function execute(CommandContext $context)
    {
        // new development
        // goes here
        $msgSystem = ReceiverFactory::getMessageSystem();
        $email = $context->get('email');
        // ...

All I have done here is to add a comment to simulate an addition to the code. I can now commit and 
push this:

$ git commit -am'new development on master'
$ git push origin master



Chapter 17 ■ Version Control with Git

430

So I now have parallel branches. Of course, sooner or later, I will want my master branch to benefit from 
the bug fixes that I have committed on megaquiz-branch1.0.

I can do this on the command line, but first let’s pause to look at a feature supported by GitHub and 
similar services like BitBucket. The pull request (often abbreviated to PR) allows me to request a code review 
before merging a branch. So before magaquiz-branch1.0 hits master, I can ask Bob to check my work. As you 
can see in Figure 17-5, GitHub detects the branch and gives me the opportunity to issue my pull request.

I hit the button and add a comment before submitting the pull request. You can see the result of that in 
Figure 17-6.

Figure 17-5.  GitHub makes issuing pull requests easy



Chapter 17 ■ Version Control with Git

431

Now Bob can examine my changes and add any comments he may have. GitHub shows him exactly 
what has changed. You can see Bob’s comment in Figure 17-7.

Figure 17-6.  Issuing the pull request

Figure 17-7.  The changes covered by a pull request



Chapter 17 ■ Version Control with Git

432

Once Bob approves my pull request, I can merge directly from the browser, or I can return to the 
command line. This is pretty easy. Git provides a subcommand named merge:

$ git checkout master

Already on 'master'
Your branch is up-to-date with 'origin/master'.

In fact, I’m already on the master branch—but it can’t hurt to be sure. Now I perform the actual merge:

$ git merge megaquiz-branch1.0

Auto-merging command/FeedbackCommand.php
Merge made by the 'recursive' strategy.
 command/FeedbackCommand.php | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

■■ Note   To merge or not to merge? The choice is not always as straightforward as it might seem. In some 
cases, for example, your bug fix may be the kind of temporary work that is supplanted by a more thorough 
refactoring on the trunk, or it may no longer apply due to a change in specification. This is necessarily a 
judgment call. Most teams I have worked in, however, tend to merge to the trunk where possible, while keeping 
work on the branch to the bare minimum. New features for us generally appear on the trunk and find their way 
quickly to users through a “release early and often” policy.

Now, when I look at the version of FeedbackCommand in the trunk, I confirm that all changes have been 
merged:

public function execute(CommandContext $context)
{  
    // new development
    // goes here
    $msgSystem = ReceiverFactory::getMessageSystem();
    $email = $context->get('email');
    $msg = $context->get('pass');
    $topic = $context->get('topic');
    $result = $msgSystem->despatch($email, $msg, $topic);
    if (! $result) {
        $this->context->setError($msgSystem->getError());
        return false;
    }



Chapter 17 ■ Version Control with Git

433

The execute() method now includes both my simulated trunk development and the bug fix.
I created a branch when I first “released” MegaQuiz version 1.0 and that’s what we have been working 

with. Remember, however, that I also created a tag at that stage. I promised at the time that I would show you 
how to access the tag. In fact, you’ve already seen how. You can create a local branch based on the tag in just 
the same way that Bob set up his local version of our bug fix branch. The difference is that this new branch is 
entirely fresh. It does not track an existing remote branch:

$ git checkout -b new-version1.0-branch version1.0

Switched to a new branch 'new-version1.0-branch'

However, now that I have this new branch, I can push it and share it just as you have seen.

Summary
Git comprises an enormous number of tools, each with a daunting range of options and capabilities. I can 
only hope to provide a brief introduction in the space available. Nonetheless, if you only use the features 
that I have covered in this chapter, you should see the benefit in your own work, whether through protection 
against data loss or improvements in collaborative working.

In this chapter, we took a tour through the basics of Git. I looked briefly at configuration before 
importing a project. I checked out, committed, and updated code, and then showed you how to tag and 
export a release. I ended the chapter with a brief look at branches, demonstrating their usefulness in 
maintaining concurrent development and bug-fix strands in a project.

There is one issue that I have glossed over here, to some extent. We established the principle that 
developers should check out their own versions of a project. On the whole, however, projects will not 
run in place. In order to test their changes, developers need to deploy code locally. Sometimes, this is as 
simple as copying over a few directories. More often, however, deployment must address a whole range of 
configuration issues. In the next chapter, we will look at some techniques for automating this process.



435© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_18

CHAPTER 18

Testing with PHPUnit

Every component in a system depends for its continued smooth running on the consistency of operation and 
interface of its peers. By definition, then, development breaks systems. As you improve your classes and packages, 
you must remember to amend any code that works with them. For some changes, this can create a ripple effect, 
affecting components far away from the code you originally changed. Eagle-eyed vigilance and an encyclopedic 
knowledge of a system’s dependencies can help to address this problem. Of course, while these are excellent 
virtues, systems soon grow too complex for every unwanted effect to be easily predicted, not least because systems 
often combine the work of many developers. To address this problem, it is a good idea to test every component 
regularly. This, of course, is a repetitive and complex task; and as such, it lends itself well to automation.

Among the test solutions available to PHP programmers, PHPUnit is perhaps the most ubiquitous and 
certainly the most fully featured tool. In this chapter, you will learn the following about PHPUnit:

•	 Installation: Using PEAR to install PHPUnit

•	 Writing Tests: Creating test cases and using assertion methods

•	 Handling Exceptions: Strategies for confirming failure

•	 Running multiple tests: Collecting tests into suites

•	 Constructing assertion logic: Using constraints

•	 Faking components: Mocks and stubs

•	 Testing web applications: Testing with and without additional tools

Functional Tests and Unit Tests
Testing is essential in any project. Even if you don’t formalize the process, you must have found yourself 
developing informal lists of actions that put your system through its paces. This process soon becomes 
wearisome, and that can lead to a fingers-crossed attitude to your projects.

One approach to testing starts at the interface of a project, modeling the various ways in which a user 
might negotiate the system. This is probably the way you would go when testing by hand, although there 
are various frameworks for automating the process. These functional tests are sometimes called acceptance 
tests because a list of actions performed successfully can be used as criteria for signing off a project phase. 
Using this approach, you typically treat the system as a black box—your tests remain willfully ignorant of the 
hidden components that collaborate to form the system under test.

Whereas functional tests operate from without, unit tests work from the inside out. Unit testing tends 
to focus on classes, with test methods grouped together in test cases. Each test case puts one class through a 
rigorous workout, checking that each method performs as advertised and fails as it should. The objective, as 
far as possible, is to test each component in isolation from its wider context. This often supplies you with a 
sobering verdict on the success of your mission to decouple the parts of your system.



Chapter 18 ■ Testing with PHPUnit

436

Tests can be run as part of the build process, directly from the command line, or even via a web page. In 
this chapter, I’ll concentrate on the command line.

Unit testing is a good way of ensuring the quality of design in a system. Tests reveal the responsibilities 
of classes and functions. Some programmers even advocate a test-first approach. You should, they say, write 
the tests before you even begin work on a class. This lays down a class’s purpose, ensuring a clean interface 
and short, focused methods. Personally, I have never aspired to this level of purity—it just doesn’t suit my 
style of coding. Nevertheless, I attempt to write tests as I go. Maintaining a test harness provides me with the 
security I need to refactor my code. I can pull down and replace entire packages with the knowledge that I 
have a good chance of catching unexpected errors elsewhere in the system.

Testing by Hand
In the last section, I said that testing was essential in every project. I could have said instead that testing is 
inevitable in every project. We all test. The tragedy is that we often throw away this good work.

So, let’s create some classes to test. Here is a class that stores and retrieves user information. For the 
sake of demonstration, it generates arrays, rather than the User objects you’d normally expect to use:

// listing 18.01
class UserStore
{
    private $users = [];

    public function addUser(string $name, string $mail, string $pass):bool
    {
        if (isset($this->users[$mail])) {
            throw new \Exception(
                "User {$mail} already in the system"
            );
        }

        if (strlen($pass) < 5) {
            throw new \Exception(
                "Password must have 5 or more letters"
            );
        }

        $this->users[$mail] = [
            'pass' => $pass,
            'mail' => $mail,
            'name' => $name
        ];

        return true;
    }

    public function notifyPasswordFailure(string $mail)
    {
        if (isset($this->users[$mail])) {
            $this->users[$mail]['failed'] = time();
        }
    }



Chapter 18 ■ Testing with PHPUnit

437

    public function getUser(string $mail):array
    {
        return ( $this->users[$mail] );
    }
}

This class accepts user data with the addUser() method and retrieves it via getUser(). The user’s 
e-mail address is used as the key for retrieval. If you’re like me, you’ll write some sample implementation as 
you develop, just to check that things are behaving as you designed them:

// listing 18.02
$store = new UserStore();
$store->addUser(
    "bob williams",
    "bob@example.com",
    "12345"
);
$store->notifyPasswordFailure("bob@example.com");
$user = $store->getUser("bob@example.com");
print_r($user);

This is the sort of thing that I might add to the foot of a file as I work on the class it contains. The test 
validation is performed manually, of course; it’s up to me to eyeball the results and confirm that the data returned 
by UserStore::getUser() corresponds with the information I added initially. It’s a test of sorts, nevertheless.

Here is a client class that uses UserStore to confirm that a user has provided the correct authentication 
information:

// listing 18.03
class Validator
{
    private $store;

    public function __construct(UserStore $store)
    {
        $this->store = $store;
    }

    public function validateUser(string $mail, string $pass): bool
    {
        if (! is_array($user = $this->store->getUser($mail))) {
            return false;
        }

        if ($user['pass'] == $pass) {
            return true;
        }

        $this->store->notifyPasswordFailure($mail);

        return false;
    }
}



Chapter 18 ■ Testing with PHPUnit

438

The class requires a UserStore object, which it saves in the $store property. This property is used by 
the validateUser() method to ensure, first of all, that the user referenced by the given e-mail address exists 
in the store; and, second, that the user’s password matches the provided argument. If both these conditions 
are fulfilled, the method returns true. Once again, I might test this as I go along:

// listing 18.04
$store = new UserStore();
$store->addUser("bob williams", "bob@example.com", "12345");
$validator = new Validator($store);
if ($validator->validateUser("bob@example.com", "12345")) {
    print "pass, friend!\n";
}

I instantiate a UserStore object, which I prime with data and pass to a newly instantiated Validator 
object. I can then confirm a user name and password combination.

Once I’m finally satisfied with my work, I could delete these sanity checks altogether or comment them 
out. This is a terrible waste of a valuable resource. These tests could form the basis of a harness to scrutinize 
the system as I develop. One of the tools that might help me to do this is PHPUnit.

Introducing PHPUnit
PHPUnit is a member of the xUnit family of testing tools. The ancestor of these is SUnit, a framework 
invented by Kent Beck to test systems built with the Smalltalk language. The xUnit framework was probably 
established as a popular tool, however, by the Java implementation, jUnit, and by the rise to prominence 
of agile methodologies like Extreme Programming (XP) and Scrum, all of which place great emphasis on 
testing.

You can get PHPUnit with Composer:

{
    "require-dev": {
        "phpunit/phpunit": "5.3.*"
    }
}

Once you have run composer install, you will find the phpunit script at vendor/bin/phpunit. Or, you 
can download a PHP archive (.phar) file. You can then make the archive executable:

$ wget https://phar.phpunit.de/phpunit.phar
$ chmod 755 phpunit.phar
$ sudo mv phpunit.phar/usr/local/bin/phpunit

■■ Note   I show commands that are input at the command line in bold to distinguish them from any output 
they may produce.



Chapter 18 ■ Testing with PHPUnit

439

Creating a Test Case
Armed with PHPUnit, I can write tests for the UserStore class. Tests for each target component should be 
collected in a single class that extends PHPUnit_Framework_TestCase, one of the classes made available by 
the PHPUnit package. Here’s how to create a minimal test case class:

// listing 18.05
namespace popp\ch18\batch01;

class UserStoreTest extends \PHPUnit_Framework_TestCase
{

    public function setUp()
    {
    }

    public function tearDown()
    {
    }

// ...
}

I named the test case class UserStoreTest. You are not obliged to use the name of the class you are 
testing in the test’s name, although that is what many developers do. Naming conventions of this kind can 
greatly improve the accessibility of a test harness, especially as the number of components and tests in the 
system begins to increase. It is often useful to place your test in the same namespace as the class under test. 
This will give you easy access to the class under test and its peers, and the structure of your test files will 
likely mirror that of your system. Remember that, thanks to Composer’s support for PSR-4, you can maintain 
separate directory structures for class files in the same package.

Here’s how we might do this in Composer:

"autoload": {
    "psr-4": {
        "popp\\": ["myproductioncode/",  "mytestcode/"]
    }
}  

In this code, I have nominated two directories that map to the popp namespace. I can now maintain 
these in parallel, making it easy to keep my test and production code separate.

Each test in a test case class is run in isolation from its siblings. The setUp() method is automatically 
invoked for each test method, allowing us to set up a stable and suitably primed environment for the test. 
tearDown() is invoked after each test method is run. If your tests change the wider environment of your 
system, you can use this method to reset state. The common platform managed by setUp() and tearDown() 
is known as a fixture.

In order to test the UserStore class, I need an instance of it. I can instantiate this in setUp() and assign 
it to a property. Let’s create a test method as well:

// listing 18.05
namespace popp\ch18\batch01;



Chapter 18 ■ Testing with PHPUnit

440

class UserStoreTest extends \PHPUnit_Framework_TestCase
{
    private $store;

    public function setUp()
    {
        $this->store = new UserStore();
    }

    public function tearDown()
    {
    }

    public function testGetUser()
    {
        $this->store->addUser("bob williams", "a@b.com", "12345");
        $user = $this->store->getUser("a@b.com");
        $this->assertEquals($user['mail'], "a@b.com");
        $this->assertEquals($user['name'], "bob williams");
        $this->assertEquals($user['pass'], "12345");
    }

    public function testAddUserShortPass()
    {
        try {
            $this->store->addUser("bob williams", "bob@example.com", "ff");
        } catch (\Exception $e) {
            return;
        }
        $this->fail("Short password exception expected");
    }
}

■■ Note   Remember that setUp() and tearDown() are called once for every test method in your class.

Test methods should be named to begin with the word “test” and should require no arguments. This is 
because the test case class is manipulated using reflection.

■■ Note   Reflection is covered in detail in Chapter 5.

The object that runs the tests looks at all the methods in the class and invokes only those that match this 
pattern (that is, methods that begin with “test”).

http://dx.doi.org/10.1007/978-1-4842-1996-6_5


Chapter 18 ■ Testing with PHPUnit

441

In the example, I tested the retrieval of user information. I don’t need to instantiate UserStore for each 
test because I handled that in setUp(). Because setUp() is invoked for each test, the $store property is 
guaranteed to contain a newly instantiated object.

Within the testgetUser() method, I first provide UserStore::addUser() with dummy data, and then I 
retrieve that data and test each of its elements.

There is one additional issue to be aware of here, before we can run our test. I am using use statements 
without require or require_once. In other words, I am relying on autoloading. That’s fine, but where do I 
tell my tests how to locate the generated autoload.php file? I could put a require_once statement in the test 
class (or a superclass), but that would break the PSR-1 rule that class files should not have side effects. The 
simplest thing to do is to tell PHPUnit about the autoload.php file from the command line:

$ phpunit src/ch18/batch01/UserStoreTest.php --bootstrap vendor/autoload.php

PHPUnit 5.0.10 by Sebastian Bergmann and contributors.

..                                                                  2 / 2 (100%)

Time: 175 ms, Memory: 4.00MB

OK (2 tests, 3 assertions)

Assertion Methods
An assertion in programming is a statement or method that allows you to check your assumptions about an 
aspect of your system. In using an assertion, you typically define an expectation that something is the case, 
that $cheese is "blue" or $pie is "apple". If your expectation is confounded, a warning of some kind will 
be generated. Assertions are such a good way of adding safety to a system that PHP supports them natively 
inline and allows you to turn them off in a production context.

■■ Note   See the manual page at http://php.net/assert for more information on PHP’s support for 
assertions.

PHPUnit supports assertions through a set of static methods.
In the previous example, I used an inherited static method, assertEquals(). This method compares 

its two provided arguments and checks them for equivalence. If they do not match, the test method will 
be chalked up as a failed test. Having subclassed PHPUnit_Framework_TestCase, I have access to a set of 
assertion methods. Some of these methods are listed in Table 18-1.

http://php.net/assert


Chapter 18 ■ Testing with PHPUnit

442

Testing Exceptions
Your focus as a coder is usually to make stuff work and work well. Often, that mentality carries through 
to testing, especially if you are testing your own code. The temptation is to test that a method behaves as 
advertised. It’s easy to forget how important it is to test for failure. How good is a method’s error checking? 
Does it throw an exception when it should? Does it throw the right exception? Does it clean up after an error 
if, for example, an operation is half complete before the problem occurs? It is your role as a tester to check all 
of this. Luckily, PHPUnit can help.

Here is a test that checks the behavior of the UserStore class when an operation fails:

//...
public function testAddUserShortPass()
{
    try {
        this->store->addUser("bob williams", "bob@example.com", "ff");
    } catch (\Exception $e) {
        return;
    }
    $this->fail("Short password exception expected");
}
//...

Table 18-1.  PHPUnit_Framework_TestCase Assert Methods

Method Description

assertEquals($val1, $val2, 
$message, $delta)

Fail if $val1 is not equivalent to $val2 ($delta represents an 
allowable margin of error)

assertFalse($expression, 
$message)

Evaluate $expression; fail if it does not resolve to false

assertTrue($expression, 
$message)

Evaluate $expression; fail if it does not resolve to true

assertNotNull($val, $message) Fail if $val is null

assertNull($val, $message) Fail if $val is anything other than null

assertSame($val1, $val2, 
$message)

Fail if $val1 and $val2 are not references to the same object, or if 
they are variables of different types or values

assertNotSame($val1, $val2, 
$message)

Fail if $val1 and $val2 are references to the same object or variables 
of the same type and value

assertRegExp($regexp, $val, 
$message)

Fail if $val is not matched by the regular expression, $regexp

assertAttributeSame($val, 
$attribute, $classname, 
$message)

Fail if $val is not the same type and value as 
$classname::$attribute

fail() Fail



Chapter 18 ■ Testing with PHPUnit

443

If you look back at the UserStore::addUser() method, you will see that I throw an exception if the 
user’s password is less than five characters long. My test attempts to confirm this. I add a user with an illegal 
password in a try clause. If the expected exception is thrown, then flow skips to the catch clause, and all 
is well. If the addUser() method does not throw an exception as expected, the execution flow reaches the 
fail() method call.

Another way to test that an exception is thrown is to use an assertion method called 
expectException(), which requires the name of the exception type you expect to be thrown (either 
Exception or a subclass). If the test method exits without the correct exception having been thrown, the test 
will fail.

■■ Note   The expectedException() method was added in PHP 5.2.0.

Here’s a quick reimplementation of the previous test:

// listing 18.06
namespace popp\ch18\batch02;

class UserStoreTest extends \PHPUnit_Framework_TestCase
{
    private $store;

    public function setUp()
    {
        $this->store = new UserStore();
    }

    public function testAddUserShortPass()
    {
        $this->expectException('\\Exception');
        $this->store->addUser("bob williams", "a@b.com", "ff");
        $this->fail("Short password exception expected");
    }
}

Running Test Suites
If I am testing the UserStore class, I should also test Validator. Here is a cut-down version of a class called 
ValidateTest that tests the Validator::validateUser() method:

// listing 18.07
namespace popp\ch18\batch02;

class ValidatorTest extends \PHPUnit_Framework_TestCase
{
    private $validator;



Chapter 18 ■ Testing with PHPUnit

444

    public function setUp()
    {
        $store = new UserStore();
        $store->addUser("bob williams", "bob@example.com", "12345");
        $this->validator = new Validator($store);
    }
    public function tearDown()
    {
    }

    public function testValidateCorrectPass()
    {
        $this->assertTrue(
            $this->validator->validateUser("bob@example.com", "12345"),
            "Expecting successful validation"
        );
    }

}

So now that I have more than one test case, how do I go about running them together? The best way is 
to place your test classes in a common root directory. You can then specify this directory, and PHPUnit will 
run all the tests beneath it:

$ phpunit src/ch18/batch02/

PHPUnit 5.0.10 by Sebastian Bergmann and contributors.
......
Time: 104 ms, Memory: 3.75Mb

OK (7 tests, 8 assertions)

Constraints
In most circumstances, you will use off-the-peg assertions in your tests. In fact, at a stretch you can achieve 
an awful lot with AssertTrue() alone. As of PHPUnit 3.0, however, PHPUnit_Framework_TestCase included a 
set of factory methods that return PHPUnit_Framework_Constraint objects. You can combine these and pass 
them to PHPUnit_Framework_TestCase::AssertThat() in order to construct your own assertions.

It’s time for a quick example. The UserStore object should not allow duplicate e-mail addresses to be 
added. Here’s a test that confirms this:

// listing 18.08

    // UserStoreTest

    public function testAddUserDuplicate()
    {
        try {
            $ret = $this->store->addUser("bob williams", "a@b.com", "123456");



Chapter 18 ■ Testing with PHPUnit

445

            $ret = $this->store->addUser("bob stevens", "a@b.com", "123456");
            self::fail("Exception should have been thrown");
        } catch (\Exception $e) {
            $const = $this->logicalAnd(
                $this->logicalNot($this->contains("bob stevens")),
                $this->isType('array')
            );
            self::AssertThat($this->store->getUser("a@b.com"), $const);
        }
    }

This test adds a user to the UserStore object and then adds a second user with the same e-mail address. 
The test thereby confirms that an exception is thrown with the second call to addUser(). In the catch clause, 
I build a constraint object using the convenience methods available to us. These return corresponding 
instances of PHPUnit_Framework_Constraint. Let’s break down the composite constraint in the previous 
example:

$this->contains("bob stevens")

This returns a PHPUnit_Framework_Constraint_TraversableContains object. When passed to 
AssertThat, this object will generate an error if the test subject does not contain an element matching 
the given value ("bob stevens"). I negate this, though, by passing this constraint to another: PHPUnit_
Framework_Constraint_Not. Once again, I use a convenience method, available through the TestCase class 
(actually through a superclass, Assert):

$this->logicalNot( $this->contains("bob stevens"))

Now, the AssertThat assertion will fail if the test value (which must be traversable) contains an element 
that matches the string, "bob stevens". In this way, you can build up quite complex logical structures. By 
the time I have finished, my constraint can be summarized as follows: 'Do not fail if the test value is an array 
and does not contain the string "bob stevens".' You could build much more involved constraints in this 
way. The constraint is run against a value by passing both to AssertThat().

You could achieve all this with standard assertion methods, of course, but constraints have a couple of 
virtues. First, they form nice logical blocks with clear relationships among components (although good use 
of formatting may be necessary to support clarity). Second, and more important, a constraint is reusable. 
You can set up a library of complex constraints and use them in different tests. You can even combine 
complex constraints with one another:

$const = $this->logicalAnd(
    $a_complex_constraint,
    $another_complex_constraint
);

Table 18-2 shows the some of the constraint methods available in a TestCase class.



Chapter 18 ■ Testing with PHPUnit

446

Mocks and Stubs
Unit tests aim to test a component in isolation of the system that contains it to the greatest possible extent. 
Few components exist in a vacuum, however. Even nicely decoupled classes require access to other objects 
as methods arguments. Many classes also work directly with databases or the filesystem.

You have already seen one way of dealing with this. The setUp() and tearDown() methods can be 
used to manage a fixture (i.e., a common set of resources for your tests, which might include database 
connections, configured objects, a scratch area on the file system, etc.)

Another approach is to fake the context of the class you are testing. This involves creating objects 
that pretend to be the objects that do real stuff. For example, you might pass a fake database mapper to 
your test object’s constructor. Because this fake object shares a type with the real mapper class (extends 
from a common abstract base or even overrides the genuine class itself), your subject is none the wiser. 
You can prime the fake object with valid data. Objects that provide a sandbox of this sort for unit tests are 
known as stubs. They can be useful because they allow you to focus in on the class you want to test without 
inadvertently testing the entire edifice of your system at the same time.

Fake objects can be taken a stage further than this, however. Because the object you are testing is likely 
to call a fake object in some way, you can prime it to confirm the invocations you are expecting. Using a fake 
object as a spy in this way is known as behavior verification, and it is what distinguishes a mock object from 
a stub.

Table 18-2.  Some Constraint Methods

TestCase Method Constraint Fails Unless . . .

greaterThan($num) Test value is greater than $num

contains($val) Test value (traversable) contains an element that matches 
$val

identicalTo($val) Test value is a reference to the same object as $val or, for 
nonobjects, is of the same type and value

greaterThanOrEqual($num) Test value is greater than or equal to $num

lessThan($num) Test value is less than $num

lessThanOrEqual($num) Test value is less than or equal to $num

equalTo($value, $delta=0, $depth=10) Test value equals $val. If specified, $delta defines a margin of 
error for numeric comparisons, and $depth determines how 
recursive a comparison should be for arrays or objects

stringContains($str, 
$casesensitive=true)

Test value contains $str. This is case sensitive by default

matchesRegularExpression($pattern) Test value matches the regular expression in $pattern

logicalAnd(PHPUnit_Framework_
Constraint $const,  [, $const..])

All provided constraints pass

logicalOr(PHPUnit_Framework_
Constraint $const,  [, $const..])

At least one of the provided constraints match

logicalNot(PHPUnit_Framework_
Constraint $const)

The provided constraint does not pass



Chapter 18 ■ Testing with PHPUnit

447

You can build mocks yourself by creating classes hard-coded to return certain values and to report on 
method invocations. This is a simple process, but it can be time-consuming.

PHPUnit provides access to an easier and more dynamic solution. It will generate mock objects on the 
fly for you. It does this by examining the class you wish to mock and building a child class that overrides its 
methods. Once you have this mock instance, you can call methods on it to prime it with data and to set the 
conditions for success.

Let’s build an example. The UserStore class contains a method called notifyPasswordFailure(), 
which sets a field for a given user. This should be called by Validator when an attempt to set a password 
fails. Here, I mock up the UserStore class so that it both provides data to the Validator object and confirms 
that its notifyPasswordFailure() method was called as expected:

// listing 18.09

// ValidatorTest

    public function testValidateFalsePass()
    {
        $store = $this->getMock(__NAMESPACE__ . "\\UserStore");
        $this->validator = new Validator($store);

        $store->expects($this->once())
            ->method('notifyPasswordFailure')
            ->with($this->equalTo('bob@example.com'));

        $store->expects($this->any())
            ->method("getUser")
            ->will($this->returnValue([
                "name" => "bob williams",
                "mail" => "bob@example.com",
            "pass" => "right"
        ]));

        $this->validator->validateUser("bob@example.com", "wrong");

Mock objects use a fluent interface; that is, they have a language-like structure. These are much easier to 
use than to describe. Such constructs work from left to right, each invocation returning an object reference, 
which can then be invoked with a further modifying method call (itself returning an object). This can make 
for easy use, but painful debugging.

In the previous example, I called the PHPUnit_Framework_TestCase method: getMock(), passing it 
"UserStore", the name of the class I wish to mock. This dynamically generates a class and instantiates an 
object from it. I store this mock object in $store and pass it to Validator. This causes no error because the 
object’s newly minted class extends UserStore. I have fooled Validator into accepting a spy into its midst.

Mock objects generated by PHPUnit have an expects() method. This method requires a matcher object 
(actually it’s of type PHPUnit_Framework_MockObject_Matcher_Invocation, but don’t worry; you can use 
the convenience methods in TestCase to generate your matcher). The matcher defines the cardinality of the 
expectation; that is, it dictates the number of times a method should be called.

Table 18-3 shows the matcher methods available in a TestCase class.



Chapter 18 ■ Testing with PHPUnit

448

Having set up the match requirement, I need to specify a method to which it applies. For instance, 
expects() returns an object (PHPUnit_Framework_MockObject_Builder_InvocationMocker, if you must 
know) that has a method called method(). I can simply call that with a method name. This is enough to get 
some real mocking done:

$store = $this->getMock("UserStore");
$store->expects($this->once())
    ->method('notifyPasswordFailure');

I need to go further, however, and check the parameters that are passed to notifyPasswordFailure(). 
The InvocationMocker::method() returns an instance of the object it was called on. InvocationMocker 
includes a method name, with(), which accepts a variable list of parameters to match. It also accepts 
constraint objects, so you can test ranges and so on. Armed with this, you can complete the statement and 
ensure that the expected parameter is passed to notifyPasswordFailure():

$store->expects($this->once())
    ->method('notifyPasswordFailure')
    ->with($this->equalTo('bob@example.com'));

You can see why this is known as a fluent interface. It reads a bit like a sentence: “The $store object 
expects a single call to the notifyPasswordFailure() method with parameter bob@example.com.”

Notice that I passed a constraint to with(). Actually, that’s redundant; any bare arguments are 
converted to constraints internally, so I could write the statement like this:

$store->expects($this->once())
    ->method('notifyPasswordFailure')
    ->with('bob@example.com');

Sometimes, you only want to use PHPUnit’s mocks as stubs; that is, as objects that return values 
to allow your tests to run. In such cases, you can invoke InvocationMocker::will() from the call to 
method(). The will() method requires the return value (or values if the method is to be called repeatedly) 
that the associated method should be primed to return. You can pass in this return value by calling either 
TestCase::returnValue() or TestCase::onConsecutiveCalls(). Once again, this is much easier to do than 
to describe. Here’s the fragment from my earlier example in which I prime UserStore to return a value:

$store->expects($this->any())
    ->method("getUser")

Table 18-3.  Some Matcher Methods

TestCase Method Match Fails Unless . . .

any() Zero or more calls are made to the corresponding method (useful for stub objects 
that return values, but don’t test invocations)

never() No calls are made to the corresponding method

atLeastOnce() One or more calls are made to the corresponding method

once() A single call is made to the corresponding method

exactly($num) $num calls are made to the corresponding method

at($num) A call to the corresponding method made at $num index (each method call to a 
mock is recorded and indexed)



Chapter 18 ■ Testing with PHPUnit

449

    ->will($this->returnValue([
        "name" => "bob williams",
        "mail" => "bob@example.com",
        "pass" => "right"
    ]));

I prime the UserStore mock to expect any number of calls to getUser(). Right now, I’m 
concerned with providing data, not with testing calls. Next, I call will() with the result of invoking 
TestCase::returnValue() with the data I want returned (this happens to be a PHPUnit_Framework_
MockObject_Stub_Return object, although if I were you, I’d just remember the convenience method you use 
to get it).

You can alternatively pass the result of a call to TestCase::onConsecutiveCalls() to will(). This 
accepts any number of parameters, each one of which will be returned by your mocked method as it is called 
repeatedly.

Tests Succeed When They Fail
Although most agree that testing is a fine thing, you grow to really love it generally only after it has saved your 
bacon a few times. Let’s simulate a situation where a change in one part of a system has an unexpected effect 
elsewhere.

The UserStore class has been running for a while when, during a code review, it is agreed that it would 
be neater for the class to generate User objects rather than associative arrays. Here is the new version:

// listing 18.10
namespace popp\ch18\batch03;

class UserStore
{
    private $users = [];

    public function addUser(string $name, string $mail, string $pass)
    {
        if (isset($this->users[$mail])) {
            throw new \Exception(
                "User {$mail} already in the system"
            );
        }

        $this->users[$mail] = new User($name, $mail, $pass);

        return true;
    }

    public function notifyPasswordFailure(string $mail)
    {
        if (isset($this->users[$mail])) {
            $this->users[$mail]->failed(time());
        }
    }

    public function getUser(string $mail)



Chapter 18 ■ Testing with PHPUnit

450

    {
        if (isset($this->users[$mail])) {
            return ( $this->users[$mail] );
        }

        return null;
    }
}

Here is the simple User class:

// listing 18.11
namespace popp\ch18\batch03;

class User
{
    private $name;
    private $mail;
    private $pass;
    private $failed;

    public function __construct(string $name, string $mail, string $pass)
    {
        $this->name = $name;
        $this->mail = $mail;

        if (strlen($pass) < 5) {
            throw new \Exception(
                "Password must have 5 or more letters"
            );
        }

        $this->pass = $pass;
    }

    public function getMail(): string
    {
        return $this->mail;
    }

    public function getPass(): string
    {
        return $this->pass;
    }

    public function failed(string $time)
    {
        $this->failed = $time;
    }
}



Chapter 18 ■ Testing with PHPUnit

451

Of course, I amend the UserStoreTest class to account for these changes. Consider this code designed 
to work with an array:

public function testGetUser()
{
    $this->store->addUser("bob williams", "a@b.com", "12345");
    $user = $this->store->getUser("a@b.com");
    $this->assertEquals($user['mail'], "a@b.com");
    //...

It is now converted into code designed to work with an object, like this:

public function testGetUser()
{
    $this->store->addUser("bob williams", "a@b.com", "12345");
    $user = $this->store->getUser("a@b.com");
    $this->assertEquals($user->getMail(), "a@b.com");
}

When I come to run my test suite, however, I am rewarded with a warning that my work is not yet done:

$ phpunit src/ch18/batch03/

PHPUnit 5.0.10 by Sebastian Bergmann and contributors.
....F..                                                             7 / 7 (100%)

Time: 254 ms, Memory: 4.00MB

There was 1 failure:

1) popp\ch18\batch03\ValidatorTest::testValidateCorrectPass
Expecting successful validation
Failed asserting that false is true.

/var/popp/src/ch18/batch03/ValidatorTest.php:24

FAILURES!
Tests: 7, Assertions: 6, Failures: 1.

I invoke getUser(). Although getUser() now returns an object and not an array, my method does not 
generate a warning. getUser() originally returned the requested user array on success or null on failure, 
so I validated users by checking for an array using the is_array() function. Now, of course, getUser() 
returns an object, and the validateUser() method will always return false. Without the test framework, the 
Validator would have simply rejected all users as invalid without fuss or warning.

Now, imagine making this neat little change on a Friday night without a test framework in place. Think 
about the frantic text messages that would drag you out of your pub, armchair, or restaurant: “What have you 
done? All our customers are locked out!”

The most insidious bugs don’t cause the interpreter to report that something is wrong. They hide in perfectly 
legal code, and they silently break the logic of your system. Many bugs don’t manifest themselves where you are 
working; they are caused there, but the effects pop up elsewhere, days or even weeks later. A test framework can 
help you catch at least some of these, preventing rather than discovering problems in your systems.



Chapter 18 ■ Testing with PHPUnit

452

Write tests as you code, and run them often. If someone reports a bug, first add a test to your framework 
to confirm it. Next, fix the bug so that the test is passed. Bugs have a funny habit of recurring in the same 
area. Writing tests to prove bugs and then to guard the fix against subsequent problems is known as 
regression testing. Incidentally, if you keep a separate directory of regression tests, remember to name 
your files descriptively. On one project, our team decided to name our regression tests after Bugzilla ticket 
numbers. We ended up with a directory containing 400 test files, each with a name like test_973892.php. 
Finding an individual test became a tedious chore!

Writing Web Tests
You should engineer your web systems in such a way that they can be invoked easily from the command 
line or an API call. In Chapter 12, you saw some tricks that might help you with this. In particular, if you 
create a Request class to encapsulate an HTTP request, you can just as easily populate an instance from the 
command line or method argument lists as from request parameters. The system can then run in ignorance 
of its context.

If you find a system hard to run in different contexts, that may indicate a design issue. If, for example, 
you have numerous filepaths hard-coded into components, it’s likely you are suffering from tight coupling. 
You should consider moving elements that tie your components to their context into encapsulating objects 
that can be acquired from a central repository. The registry pattern, also covered in Chapter 12, will likely 
help you with this.

Once your system can be run directly from a method call, you’ll find that high-level web tests are 
relatively easy to write without any additional tools.

You may find, however, that even the most well-thought-out project will need some refactoring to get 
things ready for testing. In my experience, this almost always results in design improvements. I’m going to 
demonstrate this by retrofitting one aspect of the WOO example from Chapters 12 and 13 for unit testing.

Refactoring a Web Application for Testing
We actually left the WOO example in a reasonable state from a tester’s point of view. Because the system 
uses a single Front Controller, there’s a simple API interface. This is a simple class called Runner.php:

// listing 18.13
require_once("vendor/autoload.php");

use popp\ch18\batch04\woo\controller\Controller;

Controller::run();

That would be easy enough to add to a unit test, right? But what about command line arguments? To 
some extent, this is already handled in the Request class:

// listing 18.14

    public function init()
    {
        if (isset($_SERVER['REQUEST_METHOD'])) {
            if ($_SERVER['REQUEST_METHOD']) {
                $this->properties = $_REQUEST;
                return;

http://dx.doi.org/10.1007/978-1-4842-1996-6_12
http://dx.doi.org/10.1007/978-1-4842-1996-6_12
http://dx.doi.org/10.1007/978-1-4842-1996-6_12
http://dx.doi.org/10.1007/978-1-4842-1996-6_13


Chapter 18 ■ Testing with PHPUnit

453

            }
        }
        foreach ($_SERVER['argv'] as $arg) {
            if (strpos($arg, '=')) {
                list($key, $val) = explode("=", $arg);
                $this->setProperty($key, $val);
            }
        }
    }

■■ Note   Just a reminder that, if you do implement your own Request class, you should capture and store 
GET, POST and even PUT properties separately, rather than dumping them into a single $request property.

The init() method detects whether the process is running in a server context, and populates the 
$properties array accordingly (either directly or via setProperty()). This works fine for command-line 
invocation. For example, it means I can run something like this:

$ php src/ch18/batch04/Runner.php cmd=AddVenue venue_name=bob

The preceding line generates this response:

<html>
<head>
<title>Add a Space for venue bob</title>
</head>
<body>
<h1>Add a Space for Venue 'bob'</h1>

<table>
<tr>
<td>
'bob' added (18)</td></tr><tr><td>please add name for the space</td>
</tr>
</table>
[add space]
<form method="post">
    <input type="text" value="" name="space_name"/>
    <input type="hidden" name="cmd" value="AddSpace" />
    <input type="hidden" name="venue_id" value="18" />
    <input type="submit" value="submit" />
</form>

</body>
</html>

Although this works for the command line, it remains a little tricky to pass in arguments via a method 
call. One inelegant solution would be to manually set the $argv array before calling the controller’s run() 
method. I don’t much like this, though. Playing directly with magic arrays feels plain wrong, and the string 



Chapter 18 ■ Testing with PHPUnit

454

manipulation involved at each end would compound the sin. Looking at the Controller class more closely, 
however, reveals a design decision that can help us:

// listing 18.15

// Controller

    public function handleRequest()
    {
        $request = ApplicationRegistry::getRequest();
        $app_c = ApplicationRegistry::appController();

        while ($cmd = $app_c->getCommand($request)) {
            $cmd->execute($request);
        }

        $this->invokeView($app_c->getView($request));
    }

This method is designed to be invoked by the static run() method. Note how the Request object is 
not directly instantiated. Instead, I acquire it from the ApplicationRegistry. When the Registry holds a 
single instance of an object like Request, I can acquire a reference to it and load it with data from within my 
test before I start the system running by invoking the controller. In this way, I can simulate a web request. 
Because my system uses a Request object as its only interface to a web request, it is decoupled from the data 
source. As long as Request is sane, the system will not care whether its data originates ultimately from a test 
or from a web server. As a general principle I prefer to push instantiations back to a registry, where possible. 
That way, I can later extend my implementation of the static factory method, ApplicationRegistry::ins
tance() in this case. This approach returns a mock registry populated with fake components if a flag is set, 
thereby creating an entirely mocked environment. I love to fool my systems.

Here, however, I will demonstrate the first, more conservative trick by preloading my Request object 
with test data.

Simple Web Testing
Here’s a test case that performs a very basic test on the WOO system:

// listing 18.16
namespace popp\ch18\batch04;

use popp\ch18\batch04\woo\controller\Controller;
use popp\ch18\batch04\woo\controller\Request;
use popp\ch18\batch04\woo\base\ApplicationRegistry;
use popp\ch18\batch04\woo\controller\ApplicationHelper;

class AddVenueTest extends \PHPUnit_Framework_TestCase
{
    public function testAddVenueVanilla()
    {
        $output = $this->runCommand("AddVenue", ["venue_name"=>"bob"]);
    }



Chapter 18 ■ Testing with PHPUnit

455

    public function runCommand($command = null, array $args = null)
    {
        $applicationHelper = ApplicationHelper::instance();
        $applicationHelper->init();
        $request = ApplicationRegistry::getRequest();
        if (! is_null($args)) {
            foreach ($args as $key => $val) {
                $request->setProperty($key, $val);
            }
        }

        if (! is_null($command)) {
            $request->setProperty('cmd', $command);
        }

        woo\controller\Controller::run();
    }
}

In fact, it does not so much test anything as prove that the system can be invoked. The real work is 
done in the runCommand() method. There is nothing terribly clever here. I get a Request object from the 
RequestRegistry, and I populate it with the keys and values provided in the method call. Because the 
Controller will go to the same source for its Request object, I know that it will work with the values that I 
have set.

Running this test confirms that all is well. I see the output I expect. The problem is that this output is 
printed by the view, so it’s hard to test. I can fix that quite easily by buffering the output:

// listing 18.17
namespace popp\ch18\batch04;

use popp\ch18\batch04\woo\controller\Controller;
use popp\ch18\batch04\woo\controller\Request;
use popp\ch18\batch04\woo\base\ApplicationRegistry;
use popp\ch18\batch04\woo\controller\ApplicationHelper;

class AddVenueTest2 extends \PHPUnit_Framework_TestCase
{

    public function testAddVenueVanilla()
    {
        $output = $this->runCommand("AddVenue", ["venue_name"=>"bob"]);
        self::AssertRegexp("/added/", $output);
    }

    public function runCommand($command = null, array $args = null)
    {
        $applicationHelper = ApplicationHelper::instance();
        $applicationHelper->init();
        ob_start();
        $request = ApplicationRegistry::getRequest();
        if (! is_null($args)) {
            foreach ($args as $key => $val) {



Chapter 18 ■ Testing with PHPUnit

456

                $request->setProperty($key, $val);
            }
        }

        if (! is_null($command)) {
            $request->setProperty('cmd', $command);
        }
        woo\controller\Controller::run();
        $ret = ob_get_contents();
        ob_end_clean();

        return $ret;
    }
}

By catching the system’s output in a buffer, I’m able to return it from the runCommand() method. Next, I 
apply a simple assertion to the return value to examine.

Here is the view from the command line:

$ phpunit src/ch18/batch04/AddVenueTest2.php

PHPUnit 5.0.10 by Sebastian Bergmann and contributors.
.                                                                   1 / 1 (100%)
Time: 194 ms, Memory: 4.00MB
OK (1 test, 1 assertion)

If you are going to be running lots of tests on a system in this way, it would make sense to create a Web 
UI superclass to hold runCommand().

I am glossing over some details here that you will face in your own tests. You will need to ensure that 
the system works with configurable storage locations. You don’t want your tests going to the same datastore 
that you use for your development environment. This is another opportunity for design improvement. Look 
for hard-coded filepaths and DSN values, and push them back to the Registry. Next, ensure your tests work 
within a sandbox, but set these values in your test case’s setUp() method. Finally, look into swapping in a 
MockRequestRegistry, which you can charge up with stubs, mocks, and various other sneaky fakes.

Approaches like this are great for testing the inputs and output of a web application. There are some 
distinct limitations, however. This method won’t capture the browser experience. Where a web application 
uses JavaScript, Ajax, and other client-side cleverness, testing the text generated by your system won’t tell 
you whether the user is seeing a sane interface.

Luckily, there is a solution.

Introducing Selenium
Selenium (http://seleniumhq.org/) consists of a set of commands for defining web tests. It also provides 
tools and APIs for authoring and running browser tests.

In this brief introduction, I’ll create a quick test for the WOO system that I created in Chapter 12. The 
test will work in conjunction with Selenium Server via an API called php-webdriver.

Getting Selenium
You can download Selenium components at http://seleniumhq.org/download/. For the purposes of this 
example, you will need the Selenium Standalone Server.

http://seleniumhq.org/
http://dx.doi.org/10.1007/978-1-4842-1996-6_12
http://seleniumhq.org/download/


Chapter 18 ■ Testing with PHPUnit

457

Once you’ve downloaded the package, you should find a file named selenium-server-standalone-
2.53.0.jar (although, of course, your version number will probably be different). Copy this file somewhere 
central. To proceed further, you’ll need Java installed on your system. Once you’ve confirmed this, you can 
start the Selenium Server.

Here, I copy the server to the /usr/local/lib directory. Then I start the server:

$ sudo cp selenium-server-standalone-2.53.0.jar /usr/local/lib/
$ java -jar /usr/local/lib/selenium-server-standalone-2.53.0.jar

20:20:06.501 INFO - Launching a standalone Selenium Server
20:20:06.673 INFO - Java: Oracle Corporation 25.65-b01
20:20:06.673 INFO - OS: Linux 4.0.4-303.fc22.x86_64 amd64
20:20:06.746 INFO - v2.53.0, with Core v2.53.0. Built from revision 35ae25b
20:20:06.922 INFO - Driver provider org.openqa.selenium.ie.InternetExplorerDriver 
registration is skipped:
registration capabilities Capabilities [{ensureCleanSession=true, browserName=internet 
explorer, version=, platform=WINDOWS}] does not match the current platform LINUX
20:20:06.923 INFO - Driver provider org.openqa.selenium.edge.EdgeDriver registration is 
skipped:
registration capabilities Capabilities [{browserName=MicrosoftEdge, version=, 
platform=WINDOWS}] does not match the current platform LINUX
20:20:06.923 INFO - Driver class not found: com.opera.core.systems.OperaDriver
20:20:06.923 INFO - Driver provider com.opera.core.systems.OperaDriver is not registered
20:20:06.925 INFO - Driver provider org.openqa.selenium.safari.SafariDriver registration is 
skipped:
registration capabilities Capabilities [{browserName=safari, version=, platform=MAC}] does 
not match the current platform LINUX
20:20:06.926 INFO - Driver class not found: org.openqa.selenium.htmlunit.HtmlUnitDriver
20:20:06.927 INFO - Driver provider org.openqa.selenium.htmlunit.HtmlUnitDriver is not 
registered
20:20:07.254 INFO - RemoteWebDriver instances should connect to: http://127.0.0.1:4444/wd/hub
20:20:07.254 INFO - Selenium Server is up and running

Note that the startup output tells us the URL we should use in order to communicate with the server. 
This will come in handy later.

Now I’m ready to proceed.

PHPUnit and Selenium
Although PHPUnit has provided APIs for working with Selenium in the past, its support has been patchy and its 
documentation has been even more so. In order to access as many of Selenium’s features as possible, therefore, it 
makes sense to use PHPUnit in conjunction with a tool that is designed to provide the bindings that we need.

Introducing php-webdriver
WebDriver is the mechanism by which Selenium controls browsers, and it was introduced with Selenium 
2. Selenium developers provide Java, Python, and C# APIs for WebDriver. There are a few PHP APIs 
available. I have chosen to use php-webdriver, which was created by Facebook developers. It is under 
active development and mirrors the official APIs. This is very handy when you want to look up a technique, 
since many examples you’ll find online will be offered in Java, which means they will apply readily to php-
webdriver with a little porting of code.



Chapter 18 ■ Testing with PHPUnit

458

You can add php-webdriver it to your project with Composer:

"require-dev": {
    "phpunit/phpunit": "5.0.*",
    "facebook/webdriver" : "*"
},

Update your composer.json file, run composer update, and you should be ready to go.

Creating the Test Skeleton
I will be working with an instance of the WOO application, which will run on my system at the URL, http://
popp.vagrant.internal/webwoo/.

I’ll start off with a boilerplate test class:

// listing 18.18
namespace popp\ch18\batch04;

use Facebook\WebDriver\Remote\DesiredCapabilities;
use Facebook\WebDriver\Remote\RemoteWebDriver;
use Facebook\WebDriver\Remote\WebDriverCapabilityType;
use Facebook\WebDriver\WebDriverBy;

class SeleniumTest extends \PHPUnit_Framework_TestCase
{
    protected function setUp()
    {
    }

    public function testAddVenue()
    {
    }
}

I specify some of the php-webdriver classes I will be using, and then create a bare bones test class. Now 
it’s time to make this test do something.

Connecting to Selenium
Remember that, on start up, the server outputs its connection URL. In order to make the connection to 
Selenium, I need to pass this URL and a capabilities array to a class named RemoteWebDriver:

// listing 18.19
namespace popp\ch18\batch04;

http://popp.vagrant.internal/webwoo/
http://popp.vagrant.internal/webwoo/


Chapter 18 ■ Testing with PHPUnit

459

use Facebook\WebDriver\Remote\DesiredCapabilities;
use Facebook\WebDriver\Remote\RemoteWebDriver;
use Facebook\WebDriver\Remote\WebDriverCapabilityType;
use Facebook\WebDriver\WebDriverBy;

class SeleniumTest extends PHPUnit_Framework_TestCase
{
    private $driver;

    protected function setUp()
    {
        $host = "http://127.0.0.1:4444/wd/hub";
        $capabilities = [WebDriverCapabilityType::BROWSER_NAME => 'firefox'];
        $this->driver = RemoteWebDriver::create($host, $capabilities);
    }

    public function testAddVenue()
    {
    }
}

If you installed php-webdriver with Composer, you can see a full list of capabilities in the class file 
at vendor/facebook/webdriver/lib/Remote/WebDriverCapabilityType.php. For my present purposes, 
however, I really only need to specify the browser name. I pass the host string and the $capabilities array 
to the static RemoteWebDriver::create() method, and store the resulting object reference in the $driver 
property. When I run this test, I should see that Selenium launches a fresh browser window in preparation 
for my tests.

■■ Note   These code examples were tested with Selenium 2.53 and Firefox 43.0, and then tested again with 
Selenium 2.53 and Firefox 45.0. There have been reports that some later versions of Firefox have manifested 
compatibility issues with Selenium. Hopefully, by the time you read this, these issues will have been resolved!

Writing the Test
I would like to test a simple workflow. I will navigate to the AddVenue page, add a venue, and then add a 
space. This involves interacting with three web pages.

Here is my test:

// listing 18.20
namespace popp\ch18\batch04;

use Facebook\WebDriver\Remote\DesiredCapabilities;
use Facebook\WebDriver\Remote\RemoteWebDriver;
use Facebook\WebDriver\Remote\WebDriverCapabilityType;
use Facebook\WebDriver\WebDriverBy;



Chapter 18 ■ Testing with PHPUnit

460

class seleniumtest3 extends \PHPUnit_Framework_TestCase {

    protected function setUp() {
        $host = "http://127.0.0.1:4444/wd/hub";
        $capabilities = array(WebDriverCapabilityType::BROWSER_NAME => 'firefox');
        $this->driver = RemoteWebDriver::create($host, $capabilities);
    }

    public function testAddVenue() {
        $this->driver->get("http://popp.vagrant.internal/webwoo/AddVenue.php");

        $venel = $this->driver->findElement(WebDriverBy::name("venue_name"));
        $venel->sendKeys("my_test_venue");
        $venel->submit();

        $tdel = $this->driver->findElement( WebDriverBy::xpath("//td[1]") );
        $this->assertRegexp("/'my_test_venue' added/", $tdel->getText());

        $spacel = $this->driver->findElement(WebDriverBy::name("space_name"));
        $spacel->sendKeys("my_test_space");
        $spacel->submit();

        $el = $this->driver->findElement(WebDriverBy::xpath("//td[1]"));
        $this->assertRegexp("/'my_test_space' added/", $el->getText());

    }
}

Here’s what happens when I run this test on the command line:

$ phpunit src/ch18/batch04/seleniumtest3.php

PHPUnit 5.0.10 by Sebastian Bergmann and contributors.
.                                                                   1 / 1 (100%)
Time: 3.11 seconds, Memory: 3.00MB
OK (1 test, 2 assertions)

Of course, it’s not all that happens. Selenium also launches a browser window and performs my 
specified operations upon it. I have to admit, I find this effect a little eerie!

Let’s run through the code. First, I invoke WebDriver::get(), which acquires my starting page. Note 
that this method expects a full URL (which does not need to be local to the Selenium Server host). In this 
case, I configured an Apache server on a Vagrant virtual machine to serve up a mocked up AddVenue.php 
script. Selenium will load the specified document into the browser it has launched. You can see this page in 
Figure 18-1.



Chapter 18 ■ Testing with PHPUnit

461

Once the page has loaded, I have access to it via the WebDriver API. I can acquire a reference to a page 
element using the RemoteWebDriver::findElement() method. This requires an object of type WebDriverBy. 
The WebDriverBy class provides a set of factory methods, each of which returns a WebDriverBy object 
configured to specify a particular means of locating an element. My form element has a name attribute set to 
"venue_name", so I use the WebDriverBy::name() method to tell findElement() to look for an element this 
way. Table 18-4 lists all of the available factory methods.

Figure 18-1.  The AddVenue page loaded by Selenium

Table 18-4.  WebDriverBy factory methods

Method Description

className() Find elements by CSS class name

cssSelector() Find elements by CSS selector

id() Find an element by its id

name() Find elements by name attribute

linkText() Find elements by their link text

partialLinkText() Find elements by a fragment of link text

tagName() Find elements by their tag

xpath() Find elements that match an Xpath expression



Chapter 18 ■ Testing with PHPUnit

462

Once I have a reference to the venue_name form element, an object of type RemoteWebElement, I can use 
its sendKeys() method to set a value. It’s important to note that sendKeys() does more than just set a value. 
It also simulates the act of typing into an element. This is useful for testing systems that use JavaScript to 
capture keyboard events.

With my new value set, I submit the form. The API is smart about this. When I call submit() on an 
element, Selenium locates the containing form and submits it.

Submitting the form, of course, causes a new page to be loaded. So, next I check that all is as I expect. 
Once again, I use WebDriver::findElement(), although this time I pass it a WebDriverBy object configured 
for Xpath. If my search is successful, findElement() will return a new RemoteWebElement object. If my search 
fails, on the other hand, the resulting exception will bring down my test. Assuming that all is well, I acquire 
the element’s value using the RemoteWebElement::getText() method.

At this stage, I have submitted the form and checked the state of the returned web page. You can see the 
page in Figure 18-2.

Now all that remains is to populate the form once again, submit, and check the new page. I use 
techniques that you have already encountered to achieve this.

Of course, I’ve only just scratched the surface of Selenium here. But I hope this discussion has been 
enough to give you an idea of the possibilities. If you want to learn more, there is a complete Selenium 
manual at http://seleniumhq.org/docs/index.html.

Figure 18-2.  The AddSpace page

http://seleniumhq.org/docs/index.html


Chapter 18 ■ Testing with PHPUnit

463

A Note of Caution
It’s easy to get carried away with the benefits that automated tests can offer. I add unit tests to my projects, 
and I use PHPUnit for functional tests, as well. That is, I test at the level of the system, as well as that of the 
class. I have seen real and observable benefits, but I believe that these come at a price.

Tests add a number of costs to your development. As you build safety into the project, for example, 
you are also adding a time penalty into the build process that can impact releases. The time it takes to write 
tests is part of this, but so is the time it takes to run them. On one system, we may have suites of functional 
tests that run against more than one database and more than one version control system. Add a few more 
contextual variables like that, and we face a real barrier to running the test suite. Of course, tests that aren’t 
run aren’t useful. One answer to this is to fully automate your tests, so runs are kicked off by a scheduling 
application like cron. Another is to maintain a subset of your tests that can be easily run by developers as 
they commit code. These should sit alongside your longer, slower test run.

Another issue to consider is the brittle nature of many test harnesses. Your tests may give you 
confidence to make changes, but as your test coverage increases along with the complexity of your system, 
it becomes easier to break multiple tests. Of course, this is often what you want. You want to know when 
expected behavior does not occur or when unexpected behavior does.

Oftentimes, however, a test harness can break because of a relatively trivial change, such as the wording 
of a feedback string. Every broken test is an urgent matter, but it can be frustrating to have to change 30 test 
cases to address a minor alteration in architecture or output. Unit tests are less prone to problems of this sort 
because, by and large, they focus on each component in isolation.

The cost involved in keeping tests in step with an evolving system is a tradeoff that you simply have to 
factor in. On the whole, I believe the benefits justify the costs.

You can also do some things to reduce the fragility of a test harness. It’s a good idea to write tests with 
the expectation of change built in, to some extent. I tend to use regular expressions to test output rather than 
direct equality tests, for example. Testing for a few key words is less likely to make my test fail when I remove 
a newline character from an output string. Of course, making your tests too forgiving is also a danger, so it is 
a matter of using your judgment.

Another issue is the extent to which you should use mocks and stubs to fake the system beyond the 
component you wish to test. Some insist that you should isolate your component as much as possible 
and mock everything around it. This works for me in some projects. In others, however, I have found that 
maintaining a system of mocks can become a time sink. Not only do you have the cost of keeping your tests 
in line with your system, but you must keep your mocks up-to-date. Imagine changing the return type of a 
method. If you fail to update the method of the corresponding stub object to return the new type, client tests 
may pass in error. With a complex fake system, there is a real danger of bugs creeping into mocks. Debugging 
tests is frustrating work, especially when the system itself is not at fault.

I tend to play this by ear. I use mocks and stubs by default, but I’m unapologetic about moving to real 
components if the costs begin to mount up. You may lose some focus on the test subject, but this comes with 
the bonus that errors originating in the component’s context are at least real problems with the system. You 
can, of course, use a combination of real and fake elements. I routinely use an in-memory database in test 
mode, for example.

As you may have gathered, I am not an ideologue when it comes to testing. I routinely “cheat” by 
combining real and mocked components; and because priming data is repetitive, I often centralize test 
fixtures into what Martin Fowler calls Object Mothers. These classes are simple factories that generate 
primed objects for the purpose of testing. Shared fixtures of this sort are anathema to some.



Chapter 18 ■ Testing with PHPUnit

464

Having pointed out some of the problems that testing may force you to confront, it is worth reiterating a 
few points that, for my money, trump all objections. Testing accomplishes several things:

•	 It helps you prevent bugs (to the extent that you find them during development and 
refactoring)

•	 It helps you discover bugs (as you extend test coverage)

•	 It encourages you to focus on the design of your system

•	 It lets you improve code design with less fear that changes will cause more problems 
than they solve

•	 It gives you confidence when you ship code

In every project for which I’ve written tests, I’ve had occasion to be grateful for that fact sooner or later.

Summary
In this chapter, I revisited the kinds of tests we all write as developers, but all too often thoughtlessly 
discard. From there, I introduced PHPUnit, which lets you write the same kind of throwaway tests during 
development, but then keep them and feel the lasting benefit! I created a test-case implementation, and 
I covered the available assertion methods. I also examined constraints and explored the devious world 
of mock objects. Next, I showed how refactoring for testing can improve design, demonstrating some 
techniques for testing web applications—first by using just PHPUnit, and then by using Selenium. Finally, I 
risked the ire of some by warning of the costs that tests incur and discussing the trade-offs involved.



465© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_19

CHAPTER 19

Automated Build with Phing

If version control is one side of the coin, then automated build is the other. Version control allows multiple 
developers to work collaboratively on a single project. With many coders each deploying a project in her 
own space, automated build soon becomes essential. One developer may have her web-facing directory in 
/usr/local/apache/htdocs; another might use /home/bibble/public_html. Developers may use different 
database passwords, library directories, or mail mechanisms. A flexible codebase might easily accommodate 
all of these differences, but the effort of changing settings and manually copying directories around your file 
system to get things working would soon become tiresome—especially if you need to install code in progress 
several times a day (or several times an hour).

You have already seen that Composer automates package installation. You’ll almost certainly want to 
deliver a project to an end user via a Composer or PEAR package because that mechanism is straightforward 
for the user and because package-management systems handle dependencies. But there’s a lot of work that 
might need automating before a package has been created. You may need to generate template-generated 
code, for example. You should run tests and provide mechanisms for creating and updating database tables. 
Finally, you may want to automate the creation of a production-ready package. In this chapter, I introduce 
you to Phing, which handles just such jobs. This chapter will cover the following:

•	 Getting and installing Phing: Who builds the builder?

•	 Properties: Setting and getting data

•	 Types: Describing complex parts of a project

•	 Targets: Breaking a build into callable, interdependent sets of functionality

•	 Tasks: The things that get stuff done

What Is Phing?
Phing is a PHP tool for building projects. It is very closely modeled on the hugely popular (and very 
powerful) Java tool called Ant. Ant was so named because it is small but capable of constructing things that 
are very large indeed. Both Phing and Ant use an XML file (usually named build.xml) to determine what to 
do in order to install or otherwise work with a project.

The PHP world really needs a good build solution. Serious developers have had a number of options 
in the past. First, it is possible to use make, the ubiquitous Unix build tool that is still used for most C and 
Perl projects. However, make is extremely picky about syntax and requires quite a lot of shell knowledge, 
up to and including scripting—this can be challenging for some PHP programmers who have not come 
to programming via the Unix or Linux command line. What’s more, make provides very few built-in tools 
for common build operations such as transforming file names and contents. It is really just a glue for shell 
commands. This makes it hard to write programs that will install across platforms. Not all environments 
will have the same version of make, or even have it at all. Even if you have make, you may not have all the 
commands the makefile (the configuration file that drives make) requires.



Chapter 19 ■ Automated Build with Phing

466

Phing’s relationship with make is illustrated in its name: Phing stands for PHing Is Not Gnu make. This 
playful recursion is a common coder’s joke (for example, GNU itself stands for Gnu is Not Unix).

Phing is a native PHP application that interprets a user-created XML file in order to perform operations 
on a project. Such operations would typically involve the copying of files from a distribution directory 
to various destination directories, but there is much more to Phing. Phing can be used to generate 
documentation, run tests, invoke commands, run arbitrary PHP code, create packages, replace keywords 
in files, strip comments, and generate tar/gzipped package releases. Even if Phing does not yet do what you 
need, it is designed to be easily extensible.

Because Phing is itself a PHP application, all you need to run it is a recent PHP engine. As Phing is an 
application for installing PHP applications, the presence of a PHP executable is a reasonably safe bet.

Getting and Installing Phing
If it is difficult to install an install tool, then something is surely wrong! However, assuming that you have PHP 5 
or better on your system (and if you haven’t, this isn’t the book for you!), installation of Phing could not be easier.

You can acquire and install Phing with two simple commands:

$ pear channel-discover pear.phing.info
$ pear install phing/phing

This will install Phing as a PEAR package. You should have write permission for your PEAR directories, 
which, on most Unix or Linux systems, will mean running the command as the root user.

■■ Note   At the time of this writing, Phing installed with Pear is broken due to a namespacing issue. This problem 
will likely be resolved by the time you read this. If not, however, we have had good results using Composer.

You can also install Phing with Composer. You should add this to your composer.json file:

{
    "require-dev": {
        "phing/phing": "2.*"
    }
}

If you run into any installation problems, you should visit the download page at http://phing.info/
trac/wiki/Users/Download. You will find plenty of installation instructions there.

Composing the Build Document
You should now be ready to get cracking with Phing! Let’s test things out:

$ phing -v

Phing 2.14.0

The -v flag to the phing command causes the script to return version information. By the time you 
read this, the version number may have changed, but you should see a similar message when you run the 
command on your system.

http://phing.info/trac/wiki/Users/Download
http://phing.info/trac/wiki/Users/Download


Chapter 19 ■ Automated Build with Phing

467

■■ Note   If you installed Phing using Composer, the runnable script file will be installed in your local  
vendor/bin/ directory. To run Phing you should either add this directory to your $PATH environment variable or 
use an explicit path to the executable.

Now I’ll run the phing command without arguments:

$ phing

Buildfile: build.xml does not exist!

As you can see, Phing is lost without instructions. By default, it will look for a file called build.xml. Let’s 
build a minimal document so that we can at least make that error message go away:

<?xml version="1.0"?>
<!-- build xml -->

<project name="megaquiz" default="main">
    <target name="main"/>
</project>

This is the bare minimum you can get away with in a build file. If we save the previous example as 
build.xml and run phing again, we should get some more interesting output:

$ phing

Buildfile: /home/bob/working/megaquiz/build.xml
Warning: target 'main' has no tasks or dependencies

megaquiz > main:

BUILD FINISHED

Total time: 1.3404 second

A lot of effort to achieve precisely nothing, you may think, but we have to start somewhere! As you can 
see, Phing also helpfully points out there’s nothing very useful about this build file. Look again at that build 
file. Because we are dealing with XML, I include an XML declaration. As you probably know, XML comments 
look like this:

<!-- this is an XML comment. OK? -->

So, because it’s a comment, the second line in my build file is ignored. You can put as many comments 
as you like in your build files, and as they grow, you should make full use of this fact. Large build files can be 
hard to follow without suitable comments.



Chapter 19 ■ Automated Build with Phing

468

The real start of any build file is the project element. The project element can include up to five 
attributes. Of these, name and default are compulsory. The name attribute establishes the project’s name; 
default defines a target to run if none are specified on the command line. An optional description 
attribute can provide summary information. You can specify the context directory for the build using a 
basedir attribute. If this is omitted, the current working directory will be assumed. Finally, you can specify 
the minimum version of the Phing application with which the build file should work using phingVersion. 
You can see these attributes summarized in Table 19-1.

Once I have defined a project element, I must create at least one target—the one I reference in the 
default attribute.

Targets
Targets are similar, in some senses, to functions. A target is a set of actions grouped together to achieve an 
objective: to copy a directory from one place another, for example, or to generate documentation.

In my previous example, I included a bare-minimum implementation for a target:

<target name="main"/>

As you can see, a target must define at least a name attribute. I have made use of this in the project 
element. Because the default element points to the main target, this target will be invoked whenever Phing is 
run without command-line arguments. This was confirmed by the output:

megaquiz > main:

Targets can be organized to depend on one another. By setting up a dependency between one target 
and another, you tell Phing that the first target should not run before the target it depends on has been run. 
Now, I’ll add a dependency to my build file:

<?xml version="1.0"?>
<!-- build xml -->

<project name="megaquiz"
         default="main"
>
    <target name="runfirst" />
    <target name="runsecond" depends="runfirst"/>
    <target name="main" depends="runsecond"/>
</project>

Table 19-1.  The Attributes of the Project Element

Attribute Required Description Default Value

name Yes The name of the project None

description No A brief project summary None

default Yes The default target to run None

phingVersion No The minimum version of Phing to run against None

basedir No The file system context in which build will run Current directory (.)



Chapter 19 ■ Automated Build with Phing

469

As you can see, I have introduced a new attribute for the target element. depends tells Phing that the 
referenced target should be executed before the current one, so I might want a target that copies certain 
files to a directory to be invoked before one that runs a transformation on all files in that directory. I added 
two new targets in the example: runsecond, on which main depends; and runfirst, on which runsecond 
depends. Here’s what happens when I run Phing with this build file:

$ phing

Buildfile: /home/bob/working/megaquiz/build.xml
Warning: target 'runfirst' has no tasks or dependencies

megaquiz > runfirst:
megaquiz > runsecond:
megaquiz > main:

BUILD FINISHED

Total time: 0.3029 seconds

As you can see, the dependencies are honored. Phing encounters the main target, sees its dependency, 
and moves back to runsecond. runsecond has its own dependency, and Phing invokes runfirst. Having 
satisfied its dependency, Phing can invoke runsecond. Finally, main is invoked. The depends attribute can 
reference more than one target at a time. A comma-separated list of dependencies can be provided, and 
each will be honored in turn.

Now that I have more than one target to play with, I can override the project element’s default attribute 
from the command line:

$ phing runsecond

Buildfile: /home/bob/working/megaquiz/build.xml
Warning: target 'runfirst' has no tasks or dependencies

megaquiz > runfirst:
megaquiz > runsecond:

BUILD FINISHED

Total time: 0.2671 seconds

By passing in a target name, I cause the default attribute to be ignored. The target matching my 
argument is invoked instead (as well as the target on which it depends). This is useful for invoking 
specialized tasks, such as cleaning up a build directory or running post-install scripts.

The target element also supports an optional description attribute, to which you can assign a brief 
description of the target’s purpose:

<?xml version="1.0"?>
<!-- build xml -->

<project name="megaquiz"
         default="main"



Chapter 19 ■ Automated Build with Phing

470

         description="A quiz engine">
    <target name="runfirst"
            description="The first target" />
    <target name="runsecond"
            depends="runfirst"
            description="The second target" />
    <target name="main"
            depends="runsecond"
            description="The main target" />
</project>

Adding a description to your targets makes no difference to the normal build process. If the user runs 
Phing with a -projecthelp flag, however, the descriptions will be used to summarize the project:

$ phing -projecthelp

Buildfile: /home/bob/working/megaquiz/build.xml
Warning: target 'runfirst' has no tasks or dependencies
A quiz engine
Default target:
-------------------------------------------------------------------------------
 main       The main target

Main targets:
-------------------------------------------------------------------------------
 main       The main target
 runfirst   The first target
 runsecond  The second target

Notice that I added the description attribute to the project element, too. If you want to hide a target 
from a listing like this, you can add a hidden attribute. This is useful for targets that provide housekeeping 
functionality, but which should not be invoked directly from the command line:

    <target name="housekeeping" hidden="true">
        <!-- useful things that should not be called directly -->
    </target>

Properties
Phing allows you to set such values using the property element.

Properties are similar to global variables in a script. As such, they are often declared toward the top of a 
project to make it easy for developers to work out what’s what in the build file. Here I create a build file that 
works with database information:

<?xml version="1.0"?>
<!-- build xml -->

<project name="megaquiz"
         default="main">



Chapter 19 ■ Automated Build with Phing

471

    <property name="dbname" value="megaquiz" />
    <property name="dbpass" value="default" />
    <property name="dbhost" value="localhost" />

    <target name="main">
        <echo>database: ${dbname}</echo>
        <echo>pass:     ${dbpass}</echo>
        <echo>host:     ${dbhost}</echo>
    </target>
</project>

I introduced a new element: property. property requires name and value attributes. Notice also that 
I have added this to the main target. echo is an example of a task. I will explore tasks more fully in the next 
section. For now, though, it’s enough to know that echo does exactly what you would expect—it causes its 
contents to be output. Notice the syntax used to reference the value of a property here. By using a dollar sign, 
and wrapping the property name in curly brackets, you tell Phing to replace the string with the property value:

${propertyname}

All this build file achieves is to declare three properties and to print them to standard output. Here it is 
in action:

$ phing

Buildfile: /home/bob/working/megaquiz/build.xml

megaquiz > main:

     [echo] database: megaquiz
     [echo] pass:     default
     [echo] host:     localhost

BUILD FINISHED

Total time: 0.4402 seconds

Now that I have introduced properties, I can wrap up my exploration of targets. The target element 
accepts two additional attributes: if and unless. Each of these should be set with the name of a property. 
When you use if with a property name, the target will only be executed if the given property is set. If the 
property is not set, the target will exit silently. Here, I comment out the dbpass property and make the main 
task require it using the if attribute:

    <property name="dbname"  value="megaquiz" />
    <!--<property name="dbpass"  value="default" />-->
    <property name="dbhost" value="localhost" />

    <target name="main" if="dbpass">
        <echo>database: ${dbname}</echo>
        <echo>pass:     ${dbpass}</echo>
        <echo>host:     ${dbhost}</echo>
    </target>



Chapter 19 ■ Automated Build with Phing

472

Let’s run phing again:

$ phing

Buildfile: /home/bob/working/megaquiz/build.xml
megaquiz > main:

BUILD FINISHED

Total time: 0.2628 seconds

As you can see, I have raised no error, but the main task did not run. Why might I want to do this? There 
is another way of setting properties in a project. They can be specified on the command line. You tell Phing 
that you are passing it a property with the -D flag followed by a property assignment. So the argument should 
look like this:

-Dname=value

In my example, I want the dbname property to be made available via the command line:

$ phing -Ddbpass=userset

Buildfile: /home/bob/working/megaquiz/build.xml

megaquiz > main:

     [echo] database: megaquiz
     [echo] pass:     userset
     [echo] host:     localhost

BUILD FINISHED

Total time: 0.4611 seconds

The if attribute of the main target is satisfied that the dbpass property is present, and the target is 
allowed to execute.

As you might expect, the unless attribute is the opposite of if. If a property is set and it is referenced 
in a target’s unless attribute, then the target will not run. This is useful if you want to make it possible to 
suppress a particular target from the command line. So I might add something like this to the main target:

<target name="main" unless="suppressmain">

main will be executed unless a suppressmain property is present:

$ phing -Dsuppressmain=yes

I have wrapped up the target element; Table 19-2 shows a summary of its attributes.



Chapter 19 ■ Automated Build with Phing

473

When a property is set on the command line, it overrides any and all property declarations within the 
build file. There is another condition in which a property value can be overwritten. By default, if a property is 
declared twice, the original value will have primacy. You can alter this behavior by setting an attribute called 
override in the second property element. Here’s an example:

<?xml version="1.0"?>
<!-- build xml -->

<project name="megaquiz"
         default="main"
>

    <property name="dbpass"  value="default" />

    <target name="main">
        <property name="dbpass" override="yes" value="specific" />
        <echo>pass:     ${dbpass}</echo>
    </target>

</project>

I set a property called dbpass, giving it the initial value "default". In the main target I set the property 
once again, adding an override attribute set to "yes" and providing a new value. The new value is reflected 
in the output:

$ phing

Buildfile: /home/bob/working/megaquiz/build.xml

megaquiz > main:

     [echo] pass:     specific

BUILD FINISHED

Table 19-2.  The Attributes of the Target Element

Attribute Required Description

name Yes The name of the target

depends No Targets on which the current depends

if No Execute target only if given property is present

unless No Execute target only if given property is not present

logskipped No If a target is skipped (e.g., because of if / unless), add a notification to 
output

hidden No Hide target from lists and summaries

description No A short summary of the target’s purpose



Chapter 19 ■ Automated Build with Phing

474

If I had not set the override element in the second property element, the original value of "default" 
would have stayed in place. It is important to note that targets are not functions: there is no concept of 
local scope. If you override a property within a task, it remains overridden for all other tasks throughout the 
build file. You could get around this, of course, by storing a property value in a temporary property before 
overriding, and then resetting it when you have finished working locally.

So far, I have dealt with properties that you define yourself. Phing also provides built-in properties. You 
reference these in exactly the same way that you would reference properties you have declared yourself. 
Here’s an example:

<?xml version="1.0"?>
<!-- build xml -->

<project name="megaquiz"
         default="main"
>

    <target name="main">
        <echo>name:     ${phing.project.name}</echo>
        <echo>base:     ${project.basedir}</echo>
        <echo>home:     ${user.home}</echo>
        <echo>pass:     ${env.DBPASS}</echo>
    </target>

</project>

I reference just a few of the built-in Phing properties. phing.project.name resolves to the name of 
the project as defined in the name attribute of the project element; project.basedir gives the starting 
directory; and user.home provides the executing user’s home directory (this is useful for providing default 
install locations).

Finally, the env prefix in a property reference indicates an operating system environment variable. So by 
specifying ${env.DBPASS}, I am looking for an environment variable called DBPASS. Here I run Phing on this file:

$ phing

Buildfile: /home/bob/working/megaquiz/build.xml

megaquiz > main:

     [echo] name:     megaquiz
     [echo] base:     /home/bob/working/megaquiz
     [echo] home:     /home/bob
     [echo] pass:     ${env.DBPASS}

BUILD FINISHED

Total time: 0.1120 seconds

Notice that the final property has not been translated. This is the default behavior when a property is 
not found—the string referencing the property is left untransformed. If I set the DBPASS environment variable 
and run again, I should see the variable reflected in the output:



Chapter 19 ■ Automated Build with Phing

475

$ export DBPASS=wooshpoppow
$ phing

Buildfile: /home/bob/working/megaquiz/build.xml

megaquiz > main:
     ...
     [echo] pass:     whooshpoppow

BUILD FINISHED

Total time: 0.2852 seconds

So now you have seen three ways of setting a property: the property element, a command-line 
argument, and an environment variable.

There is a fourth approach that complements these. You can use a separate file to specify property 
values. As my projects grow in complexity, I tend to favor this approach. Let’s return to a basic build file:

<?xml version="1.0"?>
<!-- build xml -->

<project name="megaquiz"
         default="main">

    <target name="main">
        <echo>database: ${dbname}</echo>
        <echo>pass:     ${dbpass}</echo>
        <echo>host:     ${dbhost}</echo>
    </target>
</project>

As you can see, this build file simply outputs properties without first declaring them, or checking that 
their values exist. This is what I get when I run this with no arguments:

$ phing

...
     [echo] database: ${dbname}
     [echo] pass:     ${dbpass}
     [echo] host:     ${dbhost}
...

Now I’ll declare my properties in a separate file. I’ll call it megaquiz.properties:

dbname=filedb
dbpass=filepass
dbhost=filehost

Now I can apply this file to my build process with Phing’s propertyfile option:



Chapter 19 ■ Automated Build with Phing

476

$ phing -propertyfile megaquiz.properties

...
     [echo] database: filedb
     [echo] pass:     filepass
     [echo] host:     filehost
...

I find this mechanism much more convenient than managing long lists of command-line options. 
However, you do need to be careful not to check your property file into your version-control system!

You can use targets to ensure that properties are populated. Let’s say, for example, that my project 
requires a dbpass property. I would like the user to set dbpass on the command line (this always has priority 
over other property-assignment methods). Failing that, I should look for an environment variable. Finally, I 
should give up and go for a default value:

<?xml version="1.0"?>
<!-- build xml -->

<project name="megaquiz"
         default="main">

    <target name="setenvpass" if="env.DBPASS" unless="dbpass">
        <property name="dbpass" override="yes" value="${env.DBPASS}" />
    </target>

    <target name="setpass" unless="dbpass" depends="setenvpass">
        <property name="dbpass" override="yes" value="default" />
    </target>

    <target name="main" depends="setpass">
        <echo>pass:     ${dbpass}</echo>
    </target>

</project>

So, as usual, the default target main is invoked first. This has a dependency set, so Phing goes back to the 
setpass target. setpass, though, depends on setenvpass, so I start there. setenvpass is configured to run 
only if dbpass has not been set and if env.DBPASS is present. If these conditions are met, then I set the dbpass 
property using the property element. At this stage then, dbpass is populated either by a command-line 
argument or by an environment variable. If neither of these were present, then the property would remain 
unset at this stage. The setpass target is now executed, but only if dbpass is not yet present. In this case, it 
sets the property to the default string: "default".

Conditionally Setting Property Values with the Condition Task
The previous example set up quite a complex assignment logic. More often, however, you’ll need a simple 
default value. The condition task allows you to set a property’s value based upon configurable conditions. 
Here is an example:



Chapter 19 ■ Automated Build with Phing

477

<?xml version="1.0"?>

<!-- build xml -->

<project name="megaquiz"
         default="main">

    <condition property="dbpass" value="default">
        <not>
            <isset property="dbpass" />
        </not>
    </condition>

    <target name="main">
        <echo>pass:     ${dbpass}</echo>
    </target>

</project>

The condition task requires a property attribute. It also optionally accepts a value attribute, which is 
assigned to the property if the nested test clause resolves to true. If no value attribute is provided, then the 
property will be set to true if the nested test resolves to true.

The test clause is one of a number of tags, some of which, like not in this example, accept their own 
nested elements. I used the isset element, which returns true if the referenced property is set. Because I 
want to assign a value to the dbpass property if it is not set, I need to negate this result by wrapping it in the 
not tag. This inverts the resolution of the tag it contains. So, in terms of PHP syntax, the condition task in my 
example is analogous to this:

if (! isset($dbpass)) {
    $dbpass = "default";
}

Types
You may think that having looked at properties, you are now through with data. In fact, Phing supports a set 
of special elements called types. These encapsulate different kinds of information useful to the build process.

FileSet
Let’s say that you need to represent a directory in your build file. This is a common situation as you might 
imagine. You could use a property to represent this directory, certainly, but you’d run into problems 
straightaway if your developers use different platforms that support distinct directory separators. The answer 
is the FileSet data type. FileSet is platform independent, so if you represent a directory with forward slashes 
in the path, they will be automatically translated behind the scenes into backslashes when the build is run 
on a Windows machine. You can define a minimal fileset element like this:

    <fileset dir="src/lib" />



Chapter 19 ■ Automated Build with Phing

478

As you can see, I use the dir attribute to set the directory I wish to represent. You can optionally add an 
id attribute, so that you can refer to the fileset later on:

    <fileset dir="src/lib" id="srclib">

The FileSet data type is particularly useful in specifying types of documents to include or exclude. 
When installing a set of files, you may not wish those that match a certain pattern to be included. You can 
handle conditions like this in an excludes attribute:

    <fileset dir="src/lib" id="srclib"
         excludes="**/*_test.php **/*Test.php" />

Notice the syntax I have used in the excludes attribute. Double asterisks represent any directory or 
subdirectory within src/lib. A single asterisk represents zero or more characters. So I am specifying that 
I would like to exclude files that end in _test.php or Test.php in all directories below the starting point 
defined in the dir attribute. The excludes attribute accepts multiple patterns separated by white space.

I can apply the same syntax to an includes attribute. Perhaps my src/lib directories contain many 
non-PHP files that are useful to developers, but which should not find their way into an installation. I could 
exclude those files, of course, but it might be simpler just to define the kinds of files I can include. In this 
case, if a file doesn’t end in .php, it isn’t going to be installed:

    <fileset dir="src/lib" id="srclib"
         excludes="**/*_test.php **/*Test.php"
         includes="**/*.php" />

As you build up include and exclude rules, your fileset element is likely to become overly long. 
Luckily, you can pull out individual exclude rules and place each one in its own exclude subelement. You 
can do the same for include rules. I can now rewrite my FileSet like this:

    <fileset dir="src/lib" id="srclib">
        <exclude name="**/*_test.php" />
        <exclude name="**/*Test.php" />
        <include name="**/*.php" />
    </fileset>

You can see some of the attributes of the fileset element in Table 19-3.

Table 19-3.  Some Attributes of the Fileset Element

Attribute Required Description

refid No Current fileset is a reference to fileset of given ID

dir No The starting directory

expandsymboliclinks No If set to 'true' follow symbolic links

includes No A comma-separated list of patterns—those that match will be 
included

excludes No A comma-separated list of patterns—those that match will be 
excluded



Chapter 19 ■ Automated Build with Phing

479

PatternSet
As you build up patterns in your fileset elements (and in others), there is a danger that you will begin to 
repeat groups of exclude and include elements. In my previous example, I defined patterns for test files and 
regular code files. I may add to these over time (perhaps I wish to include .conf and .inc extensions to my 
definition of code files). If I define other fileset elements that also use these patterns, I will be forced to 
make any adjustments across all relevant fileset elements.

You can overcome this problem by grouping patterns into patternset elements. The patternset 
element groups include and exclude elements so that they can be referenced later from within other types. 
Here I extract the include and exclude elements from my fileset example and add them to patternset 
elements:

    <patternset id="inc_code">
        <include name="**/*.php" />
        <include name="**/*.inc" />
        <include name="**/*.conf" />
    </patternset>

    <patternset id="exc_test">
        <exclude name="**/*_test.php" />
        <exclude name="**/*Test.php" />
    </patternset>

I create two patternset elements, setting their id attributes to inc_code and exc_test respectively. 
inc_code contains the include elements for including code files, and exc_test contains the exclude files for 
excluding test files. I can now reference these patternset elements within a fileset:

    <fileset dir="src/lib" id="srclib">
        <patternset refid="inc_code" />
        <patternset refid="exc_test" />
    </fileset>

To reference an existing patternset, you must use another patternset element. The second element 
must set a single attribute: refid. The refid attribute should refer to the id of the patternset element you 
wish to use in the current context. In this way, I can reuse patternset elements across different fileset 
elements:

    <fileset dir="src/views" id="srcviews">
        <patternset refid="inc_code" />
    </fileset>

Any changes I make to the inc_code patternset will automatically update any types that use it. As with 
FileSet, you can place exclude rules either in an excludes attribute or a set of exclude subelements. The 
same is true of include rules.

Some patternset element attributes are summarized in Table 19-4.



Chapter 19 ■ Automated Build with Phing

480

FilterChain
The types that I have encountered so far have provided mechanisms for selecting sets of files. FilterChain, by 
contrast, provides a flexible mechanism for transforming the contents of text files.

In common with all types, defining a filterchain element does not in itself cause any changes to take 
place. The element and its children must first be associated with a task—that is, an element that tells Phing 
to take a course of action. I will return to tasks a little later.

A filterchain element groups any number of filters together. Filters operate on files like a pipeline—
the first alters its file and passes its results on to the second, which makes its own alterations, and so on. By 
combining multiple filters in a filterchain element, you can effect flexible transformations.

Here I dive straight in and create a filterchain that removes PHP comments from any text passed to it:

<filterchain>
    <stripphpcomments />
</filterchain>

The StripPhpComments task does just what the name suggests. If you have provided detailed API 
documentation in your source code, you may have made life easy for developers, but you have also added 
a lot of dead weight to your project. Because all the work that matters takes place within your source 
directories, there is no reason why you should not strip out comments on installation.

■■ Note   If you use a build tool for your projects, ensure that no-one makes changes in the installed code. The 
installer will copy over any altered files, and the changes will be lost. I have seen it happen.

Let’s sneak a peek at the next section and place the filterchain element in a task:

    <target name="main">
        <copy todir="build/lib">
            <fileset refid="srclib"/>
            <filterchain>
                <stripphpcomments />
            </filterchain>
        </copy>
    </target>

The Copy task is probably the one you get most use out of. It copies files from place to place. As you can 
see, I define the destination directory in the todir attribute. The source of the files is defined by the fileset 
element I created in the previous section. Then comes the filterchain element. Any file copied by the Copy 
task will have this transformation applied to it.

Table 19-4.  Some Attributes of the Patternset Element

Attribute Required Description

id No A unique handle for referring to the element

excludes No A list of patterns for exclusion

includes No A list of patterns for inclusion

refid No Current patternset is a reference to patternset of given ID



Chapter 19 ■ Automated Build with Phing

481

Phing supports filters for many operations, including stripping new lines (StripLineBreaks) and 
replacing tabs with spaces (TabToSpaces). There is even an XsltFilter for applying XSLT transformations to 
source files! Perhaps the most commonly used filter, however, is ReplaceTokens. This allows you to swap 
tokens in your source code for properties defined in your build file, whether pulled from environment variables 
or passed in on the command line. This is very useful for customizing an installation. It’s a good idea to 
centralize your tokens into a central configuration file for easy overview of the variable aspects of your project.

ReplaceTokens optionally accepts two attributes, begintoken and endtoken. You can use these to define 
the characters that delineate token boundaries. If you omit these, Phing will assume the default character 
of @. In order to recognize and replace tokens, you must add token elements to the replacetokens element. 
Now I’ll add a replacetokens element to my example:

    <copy todir="build/lib">
        <fileset refid="srclib"/>
        <filterchain>
            <stripphpcomments />
            <replacetokens>
                <token key="dbname" value="${dbname}" />
                <token key="dbhost" value="${dbhost}" />
                <token key="dbpass" value="${dbpass}" />
            </replacetokens>
        </filterchain>
    </copy>

As you can see, token elements require key and value attributes. Let’s see the effect of  
running this task with its transformations on a file in my project. The original file lives in a source directory, 
src/lib/Config.php:

/**
 * Quick and dirty Conf class
**/
class Config {
    public $dbname ="@dbname@";
    public $dbpass ="@dbpass@";
    public $dbhost ="@dbhost@";
}

Running my main target containing the Copy task defined previously gives the following output:

$ phing

Buildfile: /home/bob/working/megaquiz/build.xml

megaquiz > main:

     [copy] Copying 8 files to /home/bob/working/megaquiz/build/lib

BUILD FINISHED

Total time: 0.1413 seconds

The original file is untouched, of course, but thanks to the Copy task, it has been reproduced at build/
lib/Config.php:



Chapter 19 ■ Automated Build with Phing

482

class Config {
    public $dbname ="megaquiz";
    public $dbpass ="default";
    public $dbhost ="localhost";
}

Not only has the comment been removed, but the tokens have been replaced with their property 
equivalents.

Tasks
Tasks are the elements in a build file that get things done. You won’t achieve much without using a task, 
which is why I have cheated and used a couple already. I’ll reintroduce these.

Echo
The Echo task is perfect for the obligatory “Hello World” example. In the real world, you can use it to tell 
the user what you are about to do or what you have done. You can also sanity-check your build process by 
displaying the values of properties. As you have seen, any text placed within the opening and closing tags of 
an echo element will be printed to the browser:

<echo>The pass is '${dbpass}', shhh!</echo>

Alternatively, you can add the output message to a msg attribute:

<echo msg="The pass is '${dbpass}', shhh!" />

This will have the identical effect of printing the following to standard output:

[echo] The pass is 'default', shhh!

Copy
Copying is really what installation is all about. Typically, you will create one target that copies files from your 
source directories and assembles them in a temporary build directory. You will then have another target 
that copies the assembled (and transformed) files to their output locations. Breaking the installation into 
separate build and install phases is not absolutely necessary, but it does mean that you can check the results 
of the initial build before committing to overwriting production code. You can also change a property and 
install again to a different location without the need to run a potentially expensive copy/replace phase again.

At its simplest, the Copy task allows you to specify a source file and a destination directory or file:

<copy file="src/lib/Config.php" todir="build/conf" />

As you can see, I specify the source file using the file attribute. You may be familiar already with the 
todir attribute, which is used to specify the target directory. If the target directory does not exist, Phing will 
create it for you.

If you need to specify a target file, rather than a containing directory, you can use the tofile attribute 
instead of todir:

<copy file="src/lib/Config.php" tofile="build/conf/myConfig.php" />



Chapter 19 ■ Automated Build with Phing

483

Once again, the build/conf directory is created if necessary, but this time, Config.php is renamed to 
myConfig.php.

As you have seen, to copy more than one file at a time, you need to add a fileset element to copy:

        <copy todir="build/lib">
            <fileset refid="srclib"/>
        </copy>

The source files are defined by the srclib fileset element, so all you have to set in copy is the todir 
attribute.

Phing is smart enough to test whether or not your source file has been changed since the target file was 
created. If no change has been made, then Phing will not copy. This means that you can build many times, 
and only the files that have changed in the meantime will be installed. This is fine, as long as other things are 
not likely to change. If a file is transformed according to the configuration of a replacetokens element, for 
example, you may want to ensure that the file is transformed every time that the Copy task is invoked. You 
can do this by setting an overwrite attribute:

        <copy todir="build/lib" overwrite="yes">
            <fileset refid="srclib"/>
            <filterchain>
                <stripphpcomments />
                <replacetokens>
                    <token key="dbpass" value="${dbpass}" />
                </replacetokens>
            </filterchain>
        </copy>

Now whenever copy is run, the files matched by the fileset element are replaced whether or not the 
source has been recently updated.

You can see the copy element summarized in Table 19-5.

Table 19-5.  The Attributes of the Copy Element

Attribute Required Description Default Value

todir Yes (if tofile 
not present)

Directory to copy into None

tofile Yes (if todir 
not present)

The file to copy to None

tstamp No Match the timestamp of any file overwritten (it will 
appear unaltered)

false

preservemode No Match the permissions of any file overwritten false

includeemptydirs No Copy empty directories over false

mode No Set the (octal) mode 755

haltonerror No Build process will be stopped if an error encountered true

overwrite No Overwrite target if it already exists no



Chapter 19 ■ Automated Build with Phing

484

Input
You have seen that the echo element is used to send output to the user. To gather input from the user, I have 
used separate methods involving the command line and an environment variable. These mechanisms are 
neither very structured nor interactive, however.

■■ Note   One reason for allowing users to set values at build time is to allow for flexibility from build 
environment to build environment. In the case of database passwords, another benefit is that this sensitive data 
is not enshrined in the build file itself. Of course, once the build has been run, the password will be saved into a 
source file, so it is up to the developer to ensure the security of his system!

The input element allows you to present the user with a prompt message. Phing then awaits input 
which it assigns it to a property. Here’s an example:

    <target name="setpass" unless="dbpass">
        <input message="You don't seem to have set a db password"
               propertyName="dbpass"
               defaultValue="default"
               promptChar=" >" />
    </target>

    <target name="main" depends="setpass">
        <echo>pass:     ${dbpass}</echo>
    </target>

Once again, I have a default target: main. This depends on another target, setpass, which is responsible 
for ensuring that the dbpass property is populated. To this end, I use the target element’s unless attribute, 
which ensures that it will not run if dbpass is already set.

The setpass target consists of a single input task element. An input element can have a message 
attribute, which should contain a prompt for the user. The propertyName attribute is required and defines 
the property to be populated by user input. If the user presses Enter at the prompt without setting a value, 
the property is given a fallback value if the defaultValue attribute is set. Finally, you can customize the 
prompt character using the promptChar attribute—this provides a visual cue for the user to input data. Let’s 
run Phing using the previous targets:

$ phing
Buildfile: /home/bob/working/megaquiz/build.xml

megaquiz > setpass:
You don't seem to have set a db password [default] > mypass
megaquiz > main:
     [echo] pass:     mypass

BUILD FINISHED

Total time: 6.0322 seconds



Chapter 19 ■ Automated Build with Phing

485

The input element is summarized in Table 19-6.

Delete
Installation is generally about creating, copying, and transforming files. Deletion has its place as well, 
however. This is particularly the case when you wish to perform a clean install. As I have already discussed, 
files are generally only copied from source to destination for source files that have changed since the last 
build. By deleting a build directory, you ensure that the full compilation process will take place.

Here I delete a directory:

    <target name="clean">
        <delete dir="build" />
    </target>

When I run phing with the argument clean (the name of the target), my delete task element is invoked. 
Here’s Phing’s output:

$ phing clean

Buildfile: /home/bob/working/megaquiz/build.xml
megaquiz > clean:
   [delete] Deleting directory /home/bob/working/megaquiz/build

BUILD FINISHED

The delete element accepts an attribute, file, which can be used to point to a particular file. 
Alternatively, you can fine-tune your deletions by adding a fileset subelement to delete.

Summary
Serious development rarely happens all in one place. A codebase needs to be separated from its installation, 
so that work in progress does not pollute production code that needs to remain functional at all times. 
Version control allows developers to check out a project and work on it in their own space. This requires 
that they should be able to configure the project easily for their environments. Finally, and perhaps most 
importantly, the customer (even if the customer is yourself in a year’s time, when you’ve forgotten the ins-
and-outs of your code) should be able to install your project after a glance at a Read Me file.

Table 19-6.  The Attributes of the Input Element

Attribute Required Description

propertyName Yes The property to populate with user input

message No The prompt message

defaultValue No A value to assign to the property if the user does not provide input

validArgs No A list of acceptable input values separated by commas. If the user inputs 
a value that is not on this list Phing will re-present the prompt

promptChar No A visual cue that the user should provide input



Chapter 19 ■ Automated Build with Phing

486

In this chapter, I have covered some of the basics of Phing, a fantastic tool, which brings much of the 
functionality of Apache Ant to the PHP world. I have only scratched the surface of Phing’s capabilities. 
Nevertheless, once you are up and running with the targets, tasks, types, and properties discussed here, 
you’ll find it easy to bolt on new elements for advanced features like creating tar/gzipped distributions, 
automatically generating PEAR package installations, and running PHP code directly from the build file.

If Phing does not satisfy all your build needs, you will discover that, like Ant, it is designed to be 
extensible—get out there and build your own tasks! Even if you don’t add to Phing, you should take some 
time to examine the source code. Phing is written entirely in object-oriented PHP, and its code is chock-full 
of design examples.



487© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_20

CHAPTER 20

Vagrant

Where do you run your code?
Maybe you have a development environment you have honed to perfection with a favorite editor and 

any number of useful development tools. Of course, your perfect set up for writing code is probably very 
different from the best system on which to run it. And that’s a challenge that Vagrant can help you with. 
Using Vagrant you get to work on your local machine and run your code on a system that’s all but identical to 
your production server. In this chapter I will show you how. We will cover the following:

•	 Basic set up: From installation to choosing your first box

•	 Logging in: Investigating your virtual machine with ssh

•	 Mounting host directories: Editing code on your host machine and having it available 
transparently in your Vagrant box

•	 Provisioning: Writing a script to install packages and configure Apache and MySQL

•	 Set a hostname: Configuring your box so that you can access it using a custom 
hostname

The Problem
As always, let’s spend a little time defining the problem space. It is relatively easy, these days, to configure a 
LAMP stack on most desktop or laptop computers. Even so, a personal computer is unlikely to match your 
production environment. Is it running the same version of PHP? What about Apache and MySQL? If you’re using 
Elasticsearch, you may need to consider Java, too. The list soon grows. Developing against one set of tools on a 
particular platform can sometimes be problematic if your production stack is significantly different.

You might give up and shift your development to a remote machine—there are plenty of cloud vendors 
who will allow you to spin up a box quickly. But that’s not a free option, and, depending upon your editor of 
choice, a remote system may not integrate well with the development tools you wish to use.

So it may be worth the effort of matching the packages on your computer as closely as possible with 
those installed on the production system. The match won’t be perfect, but perhaps it will be good enough, 
and you’ll probably catch most issues on the staging server.

What happens, though, when you begin work on a second project with radically different requirements? 
We have seen that Composer does a great job of keeping dependencies separate, but there are still global 
packages like PHP, MySQL, and Apache to keep in line.

■■ Note   If you decide to develop on remote systems, I recommend making the effort to learn how to use the 
vim editor. Despite its quirks, it is extremely powerful, and you can be 99% certain that either vim or its more 
basic ancestor vi will available on any Unix-like system you encounter.



Chapter 20 ■ Vagrant

488

Virtualization is a potential solution, and a good one. It can be a pain installing an operating system, 
though, and there can be considerable configuration hassles.

If only there were a tool that made creating a production-like development environment on a local 
machine really simple. OK, it’s obvious that now I’m going to say that just such a tool exists. Well, one does. 
It’s called Vagrant, and it is truly amazing.

A Little Setup
It is tempting to say that Vagrant gives you a development environment with a single command. That can be 
true—but you do have to install the requisite software first. Given that, and a configuration file that you can 
check out from your project’s version-control repository, launching a new environment truly can involve a 
single command.

Let’s get started with the setup first. Vagrant requires a virtualization platform. It supports several, but I 
will use VirtualBox. My host machine runs Fedora, but you can install VirtualBox on any Linux distribution 
and on OSX or Windows. You can find the download page at https://www.virtualbox.org/wiki/
Downloads, together with instructions for your platform.

Once you have VirtualBox installed, you’ll need Vagrant, of course. The download page is at https://
www.vagrantup.com/downloads.html. Once we have installed these applications, our next task will be to 
choose the box we’ll run our code on.

Choosing and Installing a Vagrant Box
Probably the easiest way to acquire a Vagrant box is to use the search interface at https://atlas.
hashicorp.com/search. Since many production systems run CentOS, that’s what I will look for. You can see 
the fruits of my research in Figure 20-1.

Figure 20-1.  Searching for a Vagrant box

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://atlas.hashicorp.com/search
https://atlas.hashicorp.com/search


Chapter 20 ■ Vagrant

489

CentOS 6.7 looks about right for my needs. I now have enough information to get a Vagrant 
environment running. Usually when you run Vagrant, it will read a configuration file named Vagrantfile—
but since I am starting from scratch, I need to ask Vagrant to generate one:

$ vagrant init bento/centos-6.7

A 'Vagrantfile' has been placed in this directory. You are now
ready to 'vagrant up' your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
'vagrantup.com' for more information on using Vagrant.

As you can see, I pass Vagrant the name of the box I want to work with, and it uses this information to 
generate some minimal configuration.

If I open up the generated Vagrantfile document, I can see this (among much other boilerplate):

  # Every Vagrant development environment requires a box. You can search for
  # boxes at https://atlas.hashicorp.com/search.
  config.vm.box = "bento/centos-6.7"

At this point, I have only gotten as far as generating configuration. Next, I must run the all-important 
vagrant up command. If you work with Vagrant often, you will soon find this command very familiar. It 
kicks off your Vagrant session by downloading and provisioning your new box (if necessary), then booting it:

$ vagrant up

Because I am running this command for the first time with the bento/centos-6.7 virtual machine, 
Vagrant starts by downloading the box:

Bringing machine 'default' up with 'virtualbox' provider...
==> default: Box 'bento/centos-6.7' could not be found. Attempting to find and install...
    default: Box Provider: virtualbox
    default: Box Version: >= 0
==> default: Loading metadata for box 'bento/centos-6.7'
    default: URL: https://atlas.hashicorp.com/bento/centos-6.7
==> default: Adding box 'bento/centos-6.7' (v2.2.7) for provider: virtualbox
    default: Downloading: https://atlas.hashicorp.com/bento/boxes/centos-6.7/versions/2.2.7/
providers/virtualbox.box
==> default: Successfully added box 'bento/centos-6.7' (v2.2.7) for 'virtualbox'!

Vagrant stores the box (under ~/.vagrant.d/boxes/ if you are running Linux) so that you won’t have to 
download it again on your system—even if you run multiple virtual machines. Then it configures and boots 
the machine (it provides lots of detail as it does so). Once it has finished running, I can test it out by logging 
in to my new machine:

$ vagrant ssh
$ pwd

/home/vagrant

$ cat /etc/redhat-release



Chapter 20 ■ Vagrant

490

CentOS release 6.7 (Final)

We’re in! So what have we won? Well, we have access to a machine that somewhat resembles our 
production environment. Anything else? Quite a lot, in fact. I said earlier that I would like to edit files on my 
local machine but run them in a production-like space. Let’s set that up.

Mounting Local Directories on the Vagrant Box
Let’s put some sample files together. I ran my first vagrant init and vagrant up commands in a 
directory I named infrastructure. I will resurrect the webwoo project I used in Chapter 18 (a cut down 
version of the system I developed for Chapter 12). Putting all that together, my development environment 
looks a little like this:

ch20/
    infrastructure/
        Vagrantfile
    webwoo/
         AddVenue.php
         index.php
         Main.php
         AddSpace.php

Our challenge is to set up the environment so that we can work with webwoo files locally, but run them 
transparently using a stack installed on the CentOS box. Depending upon our configuration, Vagrant will 
attempt to mount directories on the host machine within the guest box. In fact, Vagrant has already mounted 
one directory for us. Let’s check it out:

$ vagrant ssh

Last login: Tue Jul  5 15:36:19 2016 from 10.0.2.2

$ ls -a /vagrant

.  ..   .vagrant  Vagrantfile

So Vagrant has mounted the infrastructure directory as /vagrant on the box. That will come in handy 
when we write a script to provision the box. For now, though, let’s focus on mounting the webwoo directory. 
We can do this by editing Vagrantfile:

    config.vm.synced_folder "../webwoo", "/var/www/poppch20"

So with this directive, I am telling Vagrant to mount the webwoo directory on the guest box at /var/www/
poppch20. In order to see that in effect, I need to reboot the box. There’s a new command for this (which 
should be run on the host system and not within the virtual machine):

$ vagrant reload

The virtual machine shuts down and reboots cleanly. Vagrant mounts the infrastructure (/vagrant)
and webwoo (/var/www/poppch20) directories. Here’s an extract from the command’s output:

http://dx.doi.org/10.1007/978-1-4842-1996-6_18
http://dx.doi.org/10.1007/978-1-4842-1996-6_12


Chapter 20 ■ Vagrant

491

    ==> default: Mounting shared folders...
    default: /vagrant => /home/mattz/ch20/infrastructure
    default: /var/www/poppch20 => /home/mattz/ch20/webwoo

I can log in quickly to confirm that /var/www/poppch20 is in place:

$ vagrant ssh

Last login: Thu Jul  7 15:25:16 2016 from 10.0.2.2

$ ls /var/www/poppch20/

AddSpace.php  AddVenue.php  index.php  Main.php

So now I can run a sexy IDE on my local machine and have the changes it makes transparently available 
on the guest box!

Of course, placing files on a CentOS VM is not the same as running the system. A typical Vagrant box 
comes without too much pre-installed. The assumption is that the developer will want to customize the 
environment according to need and circumstance.

The next stage is to provision our box.

Provisioning
Once again, provisioning is directed by the Vagrantfile document. Vagrant supports several tools designed 
for provisioning machines, including chef (https://www.chef.io/chef/), puppet (https://puppet.com), 
and ansible (https://www.ansible.com). They’re all worth investigating. For the purposes of this example, 
though, I’m going to use a good old-fashioned shell script.

Once again I begin with Vagrantfile:

config.vm.provision "shell", path: "setup.sh"

This should be reasonably clear. I’m telling Vagrant to use a shell script to provision my box, and I 
specify setup.sh as the script which should be executed.

What you put in your shell script depends upon your requirements, of course. I’m going to begin by 
setting t couple of variables, and installing some packages:

#!/bin/bash

VAGRANTDIR=/vagrant
SERVERDIR=/var/www/poppch20/

sudo rpm -Uvh https://mirror.webtatic.com/yum/el6/latest.rpm
sudo yum install -y patch
sudo yum install -y vim

sudo yum -q -y install mysql-server
sudo yum -q -y install httpd;
sudo yum -q -y install php70w
sudo yum -q -y install php70w-mysql

https://www.chef.io/chef/
https://puppet.com/
https://www.ansible.com/


Chapter 20 ■ Vagrant

492

sudo yum -q -y install php70w-xml
sudo yum -q -y install php70w-dom

PHP 7 is not available by default on CentOS 6. However, installing a yum repository from webtatic.
com provides access to a package named php70w and a stack of related extensions. I write my script to a file 
named setup.sh which I place in the infrastructure directory alongside Vagrantfile.

Now, how do I kick off the provisioning process? If the config.vm.provision directive and the setup.
sh script had both been in place when I ran vagrant up, then the provisioning would have been automatic. 
As it is, I’ll now need to run it manually:

$ vagrant provision

This will spew an awful lot of information onto your terminal as the setup.sh script is run within the 
Vagrant box. Let’s see if it worked:

$ vagrant ssh
$ php -v

PHP 7.0.7 (cli) (built: May 28 2016 08:26:36) ( NTS )
Copyright (c) 1997-2016 The PHP Group
Zend Engine v3.0.0, Copyright (c) 1998-2016 Zend Technologies

Setting Up the Web Server
Of course, even with MySQL and Apache installed, the system is not ready to be run. First of all, we should 
configure Apache. The easiest way to do this is to create a configuration file that can be copied into Apache’s 
conf.d directory. Let’s call the file poppch20.conf, and drop it into the infrastructure directory:

NameVirtualHost *:80

<VirtualHost *:80>
    ServerAdmin matt@getinstance.com
    DocumentRoot /var/www/poppch20
    ServerName poppch20.vagrant.internal
    ErrorLog logs/poppch20-error_log
    CustomLog logs/poppch20-access_log common 
</VirtualHost>

<Directory /var/www/poppch20>
AllowOverride all
</Directory>

I’ll return to that hostname a little later. Leaving aside that tantalizing detail, this is enough to tell 
Apache about our /var/www/poppch20 directory and to set up logging. Of course, I’ll also have to update 
setup.sh to copy the configuration file at provision time:

sudo cp $VAGRANTDIR/poppch20.conf /etc/httpd/conf.d/
sudo service httpd restart
sudo /sbin/chkconfig httpd on



Chapter 20 ■ Vagrant

493

I copy the configuration file into place and restart the web server so that the configuration is picked up. I 
also run chkconfig to ensure that the server will be started at boot time.

After making this change, I can re-run this script:

$ vagrant provision

It’s important to note that those parts of the set up script we previously covered will also be re-run. When you 
create a provisioning script, you must design it so it can be executed repeatedly without serious repercussions. 
Luckily, Yum detects that my specified packages have already been installed and grumbles harmlessly, in part 
because I take the precaution of passing it -q flag, which keeps the complaints relatively muted.

Setting Up MySQL
For many applications you’ll need to make sure that a database is available and ready for connections. Here’s 
a simple addition to my setup script:

sudo service mysqld start
/usr/bin/mysqladmin -s -u root password 'vagrant' || echo "** unable to create pass - 
probably already done"
echo "CREATE DATABASE IF NOT EXISTS poppch20_vagrant" | mysql -u root -pvagrant
# install data here if needed
#
echo "GRANT ALL PRIVILEGES  ON poppch20_vagrant.* TO
'vagrant'@'localhost' IDENTIFIED BY 'vagrant'
WITH GRANT OPTION" | mysql -u root -pvagrant
echo "FLUSH PRIVILEGES" | mysql -u root -pvagrant
sudo /sbin/chkconfig mysqld on

I start MySQL. Then I run the mysqladmin command to create a root password. This will fail after the 
first run because the password will already be set, so I use the -s flag to suppress error messages and print 
a message of my own if the command fails. Then I create a database, a user, and a password. Finally, I run 
chkconfig to ensure that the MySQL daemon will start at boot time.

With that in place, I can provision again, and then test my database:

$ vagrant provision

# much output

$ vagrant ssh
$ mysql -uvagrant -pvagrant poppch20_vagrant

Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 9
Server version: 5.1.73 Source distribution

Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.



Chapter 20 ■ Vagrant

494

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql>

We now have a running database and a web server. It’s time to see the code in action.

Configuring a Host Name
We have logged in to our new production-like development environment several times, so networking is 
more or less taken care of. Even though I’ve configured a web server, I’ve yet to use it. That’s because we still 
need to support a hostname for our VM. So let’s add one to Vagrantfile:

config.vm.hostname = "poppch20.vagrant.internal"
config.vm.network :private_network, ip: "192.168.33.148"

I invent a hostname and use the config.vm.hostname directive to add it. I also configure private 
networking with config.vm.network, assigning a static IP address. You should use private address space for 
this—an unused IP address beginning with 192.168 should work.

Because this is an invented hostname, we must configure our operating system to handle the resolution. 
On a Unix-like system that means editing a system file, /etc/hosts. In this case, I would add the following:

192.168.33.148  poppch20.vagrant.internal

Not overly onerous, but we are working towards a one-command install for our team, so it would be 
good to have a way of automating this step. Fortunately, Vagrant supports plug-ins, and the hostmanager 
plug-in does exactly what we need.

You can see what plug-ins are installed with this command:

$ vagrant plugin list

vagrant-login (1.0.1, system)
vagrant-share (1.1.5, system)

To add a plug-in, you simply run the vagrant plugin install command:

$ vagrant plugin install vagrant-hostmanager

Installing the 'vagrant-hostmanager' plugin. This can take a few minutes...
Installed the plugin 'vagrant-hostmanager (1.8.2)'!

Then you can explicitly tell the plug-in to update /etc/hosts, like this:

$ vagrant hostmanager

[default] Updating /etc/hosts file...

In order to make this process automatic for our team members, we should explicitly enable hostmanger 
in Vagrantfile:

 config.hostmanager.enabled = true



Chapter 20 ■ Vagrant

495

Wrapping It Up
So we have gone from nothing to a fully working development environment. Given that it took a chapter’s 
worth of effort to get here, it might seem like a bit of a cheat to say that Vagrant is quick and easy. There are 
two answers to that. First, once you have done this a few times, it becomes a pretty simple matter to spin up 
yet another Vagrant setup—certainly much easier than trying to juggle multiple dependency stacks by hand.

More importantly, though, the real speed and efficiency gain does not lie with the person who sets 
Vagrant up. Imagine a new developer coming in to your project expecting days' worth of downloads, 
configuration file edits, and wiki-clicking. Imagine telling her, “Install Vagrant and VirtualBox. Check out 
the code. From the infrastructure directory, run 'vagrant up'.” And that’s it! Compare that with some of the 
painful onboarding processes you have experienced or heard described.

Of course, we’ve only scratched the surface in this chapter. As you need to configure Vagrant to do more 
for you, the official site at https://www.vagrantup.com will provide you with all the support you need.

Table 20-1 provides a quick reminder of the Vagrant commands we encountered in this chapter.

Figure 20-2.  Accessing a configured system on a Vagrant box

With the configuration changes in place, we should run vagrant reload in order to apply them.  
Then it’s the moment of truth! Will our system run in the browser? As you can see in Figure 20-2, the system 
should work just fine.

https://www.vagrantup.com/


Chapter 20 ■ Vagrant

496

Summary
In this chapter, I introduced Vagrant, the application that lets you work in a production-like development 
environment without sacrificing your authoring tools. I covered installation, the choosing of a distribution, 
and initial setup—including mounting your development directories. Once we had a virtual machine to play 
with, I moved on to the provisioning process—covering package installation, as well as database and web 
server configuration. Finally, I looked at hostname management, and I showed our system working in the 
browser!

Table 20-1.  Some Vagrant Commands

Command Description

vagrant up Boot the virtual machine and provision if not yet 
provisioned

vagrant reload Halt the system and bring it back up

vagrant plugin list List the installed plug-ins

vagrant plugin install <plugin-name> Install a plug-in

vagrant provision Run the provision step again (useful if you have 
updated provision scripts)

vagrant halt Gracefully shut down the virtual machine

vagrant init Create a new Vagrantfile document

vagrant destroy Destroy the virtual machine. Don’t worry, you can 
always start again with vagrant up!



497© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_21

CHAPTER 21

Continuous Integration

In previous chapters, you’ve seen a plethora of tools that are designed to support a well-managed project. 
Unit testing, documentation, build, and version control are all fantastically useful. But tools, and testing in 
particular, can be bothersome.

Even if your tests only take a few minutes to run, you’re often too focused on coding to bother with 
them. Not only that, but you have clients and colleagues waiting for new features. The temptation to keep 
on coding is always there. But bugs are much easier to fix close to the time they are hatched. That’s because 
you’re more likely to know which change caused the problem and are better able to come up with a quick fix.

In this chapter, I introduce Continuous Integration, a practice that automates test and build, and brings 
together the tools and techniques you’ve encountered in recent chapters.

This chapter will cover these topics:

•	 Defining Continuous Integration

•	 Preparing a project for CI

•	 Looking at Jenkins: a CI server

•	 Customizing Jenkins for PHP projects with specialized plug-ins

What Is Continuous Integration?
In the bad old days, integration was something you did after you’d finished the fun stuff. It was also the stage 
at which you realized how much work you still had to do. Integration is the process by which all of the parts 
of your project are bundled up into packages that can be shipped and deployed. It’s not glamorous, and it’s 
actually hard.

Integration is tied up also with QA. You can’t ship a product if it isn’t fit for purpose. That means tests. 
Lots of tests. If you haven’t been testing much prior to the integration stage, it probably also means nasty 
surprises. Lots of them.

You know from Chapter 18 that it’s best practice to test early and often. You know from Chapters 15 and 
19 that you should design with deployment in mind right from the start. Most of us accept that this is the 
ideal, but how often does the reality match up?

If you practice test-oriented development (a term I prefer to test-first development, because it better 
reflects the reality of most good projects I’ve seen), then the writing of tests is less hard than you might 
think. After all, you write tests as you code anyway. Every time you develop a component, you create 
code fragments, perhaps at the bottom of the class file, that instantiate objects and call their methods. If 
you gather up those throwaway scraps of code, written to put your component through its paces during 
development, you’ve got yourself a test case. Stick them into a class and add them to your suite.

http://dx.doi.org/10.1007/978-1-4842-1996-6_18
http://dx.doi.org/10.1007/978-1-4842-1996-6_15
http://dx.doi.org/10.1007/978-1-4842-1996-6_19


Chapter 21 ■ Continuous Integration

498

Oddly, it’s often the running of tests that people avoid. Over time, tests take longer to run. Failures 
related to known issues creep in, making it hard to diagnose new problems. Also, you suspect someone else 
committed code that broke the tests, and you don’t have time to hold up your own work while you fix issues 
that are someone else’s fault. Better to run a couple of tests related to your work than the whole suite.

Failing to run tests, and therefore to fix the problems that they could reveal, makes issues harder and harder 
to address. The biggest overhead in hunting for bugs is usually the diagnosis and not the cure. Very often, a fix 
can be applied in a matter of minutes, set against perhaps hours searching for the reason a test failed. If a test 
fails within minutes or hours of a commit, however, you’re more likely to know where to look for the problem.

Software build suffers from a similar problem. If you don’t install your project often, you’re likely to find that, 
although everything runs fine on your development box, an installed instance falls over with an obscure error 
message. The longer you’ve gone between builds, the more obscure the reason for the failure will likely be to you.

It’s often something simple: an undeclared dependency upon a library on your system, or some class 
files you failed to check in. These are easy to fix if you’re on hand. But what if a build failure occurs when 
you’re out the office? Whichever unlucky team member gets the job of building and releasing the project 
won’t know about your setup and won’t have easy access to those missing files.

Integration issues are magnified by the number of people involved in a project. You may like and 
respect all of your team members, but we all know that they are much more likely than you are to leave tests 
unrun. And then they commit a week’s work of development at 4 p.m. on Friday, just as you’re about to 
declare the project good-to-go for a release.

Continuous Integration (CI) reduces some of these problems by automating the build and test process.
CI is both a set of practices and tools. As a practice, it requires frequent commits of project code (at least 

daily). With each commit, tests should be run and any packages should be built. You’ve already seen some 
of the tools required for CI, in particular PHPUnit and Phing. Individual tools aren’t enough, however. A 
higher-level system is required to coordinate and automate the process.

Without the higher system, a CI server, it’s likely that the practice of CI will simply succumb to our 
natural tendency to skip the chores. After all, we’d rather be coding.

Having a system like this in place offers clear benefits. First, your project gets built and tested frequently. 
That’s the ultimate aim and good of CI. That it’s automated, however, adds two further dimensions. The test and 
build happens in a different thread to that of development. It happens behind the scenes and doesn’t require 
that you stop work to run tests. Also, as with testing, CI encourages good design. In order for it to be possible to 
automate installation in a remote location, you’re forced to consider ease of installation from the start.

I don’t know how many times I’ve come across projects where the installation procedure was an arcane 
secret known only to a few developers. “You mean you didn’t set up the URL rewriting?” asks one old hand 
with barely concealed contempt. “Honestly, the rewrite rules are in the Wiki, you know. Just paste them into 
the Apache config file.” Developing with CI in mind means making systems easier to test and install. This 
might mean a little more work up front, but it makes our lives easier down the line. Much easier.

So, to start off, I’m going to lay down some of that expensive groundwork. In fact, you’ll find that in most 
of the sections to come, you’ve encountered these preparatory steps already.

Preparing a Project for CI
First of all, of course, I need a project to integrate continuously. Now, I’m a lazy soul, so I’ll look for some 
code that comes with tests already written. The obvious candidate is the project I created in Chapter 18 to 
illustrate PHPUnit. I’m going to name it userthing, because it’s a thing, with a User object in it.

First of all, here is a breakdown of my project directory:

$ find src/ test/

src/
src/persist
src/persist/UserStore.php

http://dx.doi.org/10.1007/978-1-4842-1996-6_18


Chapter 21 ■ Continuous Integration

499

src/util
src/util/Validator.php
src/domain
src/domain/User.php
test/
test/persist
test/persist/UserStoreTest.php
test/util
test/util/ValidatorTest.php

As you can see, I’ve tidied up the structure a little, adding some package directories. Within the code, 
I’ve supported the package structure with the use of namespaces.

Now that I have a project, I should add it to a version-control system.

CI and Version Control
Version control is essential for CI. A CI system needs to acquire the most recent version of a project without 
human intervention (at least once things have been set up).

For this example, I’ll use a repository I set up on BitBucket. I’ll configure code on my local development 
machine, add and commit it, and then push to the remote server:

$ cd path/to/userthing
$ git init
$ git remote add origin git@bitbucket.org:getinstance/userthing.git
$ git add build.xml composer.json src/ test/
$ git commit -m 'initial commit'
$ git push -u origin master

I navigated to my development directory and initialized it. Then I added the origin remote, to which I 
pushed the code. I like to confirm that everything is working by performing a fresh clone:

$ git clone git@bitbucket.org:getinstance/userthing.git

Cloning into 'userthing'...
X11 forwarding request failed on channel 0
remote: Counting objects: 16, done.
remote: Compressing objects: 100% (11/11), done.
remote: Total 16 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (16/16), done.

Checking connectivity… done. Now I have a userthing repository and a local clone.Time to automate 
build and test.

Phing
We encountered Phing in Chapter 19. Here is one way to install the tool:

$ sudo pear channel-discover pear.phing.info
$ sudo pear install phing/phing

http://dx.doi.org/10.1007/978-1-4842-1996-6_19


Chapter 21 ■ Continuous Integration

500

I’ll use Composer for this, however. Here’s the require-dev directive in my composer.json file:

    "require-dev": {
        "phing/phing": "2.*"
    }

I will be using this essential build tool as the glue for my project’s CI environment, so I run this install on 
the server I intend to use for testing (or, of course, you could try this out on virtual server using Vagrant and 
VirtualBox). I will define targets for building and testing the code and for running the various other quality 
assurance tools you will meet in this chapter.

■■ Note   Be sure to check the output of PEAR when installing a package. You may encounter error messages 
that prompt you to acquire dependencies before your target can be installed. The pear application is helpful 
and will tell you exactly what you need to do in order to install dependencies, but it is easy to miss the fact that 
more work is required on your part if you don’t check the application’s command-line output.

Let’s build a sample task:

<project name="userthing" default="build" basedir=".">
    <property name="build" value="./build" />
    <property name="test" value="./test" />
    <property name="src" value="./src" />
    <property name="version" value="1.1.1" />

    <target name="build">
        <mkdir dir="${build}" />
        <copy todir="${build}/src">
            <fileset dir="${src}">
            </fileset>
        </copy>

        <copy todir="${build}/test">
            <fileset dir="${test}">
            </fileset>
        </copy>

    </target>

    <target name="clean">
        <delete dir="${build}" />
    </target>
    <!-- ... -->  
</project>

I set up four properties. build refers to the directory in which I might assemble my files before 
generating a package. test points to the test directory. src refers to the source directory. version defines the 
version number for the package.



Chapter 21 ■ Continuous Integration

501

The build target copies the src and test directories into the build environment. In a more complex 
project, I might also perform transformations, generate configuration files, and assemble binary assets at 
this stage. This target is the project’s default.

The clean target removes the build directory and anything it contains. Let’s run a build:

$ vendor/bin/phing

Buildfile: /var/popp/src/ch21/build.xml
userthing > build:

    [mkdir] Created dir: /var/popp/src/ch21/build
     [copy] Created 4 empty directories in /var/popp/src/ch21/build/src
     [copy] Copying 3 files to /var/popp/src/ch21/build/src
     [copy] Created 3 empty directories in /var/popp/src/ch21/build/test
     [copy] Copying 2 files to /var/popp/src/ch21/build/test

BUILD FINISHED

Total time: 1.8206 second

Unit Tests
Unit tests are the key to continuous integration. It’s no good successfully building a project that contains 
broken code. I covered unit testing with PHPUnit in Chapter 18. If you’re reading out of order, however, 
you’ll want to install this invaluable tool before proceeding. Here is one way to install PHPUnit globally:

$ wget https://phar.phpunit.de/phpunit.phar
$ chmod 755 phpunit.phar
$ sudo mv phpunit.phar /usr/local/bin/phpunit

You can also install PHPUnit with Composer:

    "require-dev": {
        "phing/phing": "2.*",
         "phpunit/phpunit": "5.4.*"
    }

Again, this is the approach I’ll take for my example. Because PHPUnit will be installed under the 
vendor/ directory, my development directory will remain independent of the wider system.

I’ve separated my test directory from the rest of my source code, so I’ll need to set up my autoload rules 
so that PHP can locate all the system’s classes during testing. Here’s my complete composer.json:

{
    "require-dev": {
        "phing/phing": "2.*",
         "phpunit/phpunit": "5.4.*"
    },
    "autoload": {
        "psr-4": {
            "userthing\\": ["src/", "test/"]
        }
    }

http://dx.doi.org/10.1007/978-1-4842-1996-6_18


Chapter 21 ■ Continuous Integration

502

Also in Chapter 18, I wrote tests for a version of the userthing code I’ll be working with in this chapter. 
Here I run them once again (from within the src directory), to make sure my reorganization has not broken 
anything new:

$ vendor/bin/phpunit test/
PHPUnit 5.4.6 by Sebastian Bergmann and contributors.

...... 6 / 6 (100%)

Time: 378 ms, Memory: 4.00MB

OK (6 tests, 5 assertions)

So this confirms that my tests work. However, I would like to invoke them with Phing.
Phing provides an exec task which we might use to invoke the phpunit command. However, it’s always 

best to use a specialized tool if there’s one available. There is a built-in task for this job:

    <target name="test" depends="build">
        <phpunit bootstrap="vendor/autoload.php" printsummary="true">
            <formatter type="plain" usefile="false"/>
            <batchtest>
                <fileset dir="${test}">
                    <include name="**/*Test.php"/>
                </fileset>
            </batchtest>
        </phpunit>
    </target>

Because these are unit tests and not functional tests, we can run them against the local src/ directory 
rather than requiring an installed instance (with a functioning database or web server). Among many other 
attributes, the phpunit task accepts a printsummary attribute, which causes an overview of the test process 
to be output.

Much of this task’s functionality is configured using nested elements. The formatter element manages 
the way that test information is generated. In this case, I have opted to output basic human-readable data. 
batchtest lets you define multiple test files using the nested fileset element.

■■ Note   The phpunit task is highly configurable. The Phing manual provides full documentation at https://
www.phing.info/docs/guide/stable/PHPUnitTask.html.

Here, I run the tests with Phing:

$ vendor/bin/phing test

Buildfile: /var/poppch21/build.xml

userthing > build:

http://dx.doi.org/10.1007/978-1-4842-1996-6_18
https://www.phing.info/docs/guide/stable/PHPUnitTask.html
https://www.phing.info/docs/guide/stable/PHPUnitTask.html


Chapter 21 ■ Continuous Integration

503

userthing > test:

  [phpunit] Testsuite: userthing\persist\UserStoreTest
  [phpunit] Tests run: 4, Failures: 0, Errors: 0, Incomplete: 0, Skipped: 0, Time elapsed: 
0.01105 s
  [phpunit] Testsuite: userthing\util\ValidatorTest
  [phpunit] Tests run: 2, Failures: 0, Errors: 0, Incomplete: 0, Skipped: 0, Time elapsed: 
0.00864 s
  [phpunit] Total tests run: 6, Failures: 0, Errors: 0, Incomplete: 0, Skipped: 0, Time 
elapsed: 0.02641 s

BUILD FINISHED

Total time: 0.5815 seconds

BUILD FINISHED

Total time: 1.0921 second

Documentation
Transparency is one of the principles of CI. When you’re looking at a build in a Continuous Integration 
environment, therefore, it’s important to be able to check that the documentation is up-to-date, and covers 
the most recent classes and methods. You can install phpDocumentor with PEAR like this:

$ pear channel-discover pear.phpdoc.org
$ pear install phpdoc/phpdocumentor

Or, once again, you can use Composer:

    "require-dev": {
        "phing/phing": "2.*",
        "phpunit/phpunit": "5.4.*",
        "phpdocumentor/phpdocumentor": "2.*"
    }

I’d better invoke the tool just to be sure, this time from the build directory:

$ ./vendor/bin/phpdoc --directory=src --target=docs --title=userthing

This generates some pretty bare documentation. Once it’s published on a CI server, I’m sure to be 
shamed into writing some real inline documentation.

Once again, I want to add this to my build.xml document. There is a task named phpdoc2 that is 
designed to integrate with PHPDocumentor:

    <target name="doc" depends="build">
        <mkdir dir="reports/docs" />



Chapter 21 ■ Continuous Integration

504

        <phpdoc2 title="API Documentation" destdir="reports/docs">
           <fileset dir="${src}">
              <include name="**/*.php" />
           </fileset>
        </phpdoc2>
    </target>

Again, my doc target depends upon the build target. I create the reports/docs output directory, 
and then invoke the phpdoc2 task. phpdoc2 accepts a nested fileset element, which specifies the files to 
document.

■■ Note   The full documentation for PhpDocumentor2Task is available at https://www.phing.info/docs/
guide/stable/PhpDocumentor2Task.html.

Code Coverage
It’s no good relying on tests if they don’t apply to the code you have written. PHPUnit includes the ability to 
report on code coverage. Here’s an extract from PHPUnit’s usage information:

  --coverage-html <dir>    Generate code coverage report in HTML format.
  --coverage-clover <file> Write code coverage data in Clover XML format.

In order to use this feature, you must have the Xdebug extension installed. You can find more about 
this at http://pecl.php.net/package/Xdebug (installation information is at http://xdebug.org/docs/
install). You may also be able to install directly using your Linux distribution’s package-management 
system. This should work for you in Fedora, for example:

$ yum install php-pecl-xdebug

Or, if you’re using a version-specific repository, you might do something like this:

$ sudo yum -y install php70w-pecl-xdebug

Here I run PHPUnit from the src/ directory with code coverage enabled:

https://www.phing.info/docs/guide/stable/PhpDocumentor2Task.html
https://www.phing.info/docs/guide/stable/PhpDocumentor2Task.html
http://pecl.php.net/package/Xdebug
http://xdebug.org/docs/install
http://xdebug.org/docs/install


Chapter 21 ■ Continuous Integration

505

$ ./vendor/bin/phpunit --whitelist src/ --coverage-html coverage test

PHPUnit 5.4.6 by Sebastian Bergmann and contributors.
......                                                              6 / 6 (100%)

Time: 1.84 seconds, Memory: 6.00MB

OK (6 tests, 5 assertions)

Generating code coverage report in HTML format ... done

Now you can see the report in your browser (see Figure 21-1).

Figure 21-1.  The code coverage report



Chapter 21 ■ Continuous Integration

506

It’s important to note that achieving full coverage is not the same as adequately testing a system. On the 
other hand, it’s good to know about any gaps in your tests. As you can see from Figure 21-2, I’ve still got some 
work to do.

Having confirmed that I can check coverage from the command line, I need to add this functionality to 
my build document:

    <target name="citest" depends="build">
        <mkdir dir="reports/coverage" />

        <coverage-setup database="reports/coverage.db">
            <fileset dir="${src}">
                <include name="**/*.php"/>
            </fileset>
        </coverage-setup>

        <phpunit codecoverage="true" bootstrap="vendor/autoload.php" printsummary="true">
            <formatter type="plain" usefile="false"/>
            <formatter type="xml" outfile="testreport.xml" todir="reports" />
            <formatter type="clover" outfile="cloverreport.xml" todir="reports" />

Figure 21-2.  The install screen



Chapter 21 ■ Continuous Integration

507

            <batchtest>
                <fileset dir="${test}">
                    <include name="**/*Test.php"/>
                </fileset>
            </batchtest>
        </phpunit>

        <coverage-report outfile="reports/coverage.xml">
           <report todir="reports/coverage" />
        </coverage-report>
    </target>

I have created a new task named citest. Much of it is a reproduction of the test task you have already 
seen.

I start by creating a reports directory and a coverage subdirectory.
I use the coverage-setup task to provide configuration information for the coverage feature. I specify 

where raw coverage data should be stored using the database attribute. The nested fileset element defines 
the files that should be subject to coverage analysis.

I have added two formatter elements to the phpunit task. The formatter of type xml will generate a file 
named testreport.xml, which will contain the test results. The clover formatter will generate coverage 
information, also in XML format. Finally, in the citest target, I deploy the coverage-report task. This takes 
existing coverage information, generates a new XML file, and then outputs an HTML report.

■■ Note   The CoverageReportTask element is documented at https://www.phing.info/docs/guide/
stable/CoverageReportTask.html.

Coding Standards
I discussed coding standards at length in Chapter 16. Although it can be annoying to have your individual 
style cramped by a shared standard, it can make a project easier to work with for the wider team. For that 
reason, many teams enforce a standard. It’s hard to enforce this by eye, however, so it makes sense to 
automate the process.

Once again, I will use Composer. This time I’ll be configuring it to install PHP_CodeSniffer:

    "require-dev": {
        "phing/phing": "2.*",
        "phpunit/phpunit": "5.4.*",
        "phpdocumentor/phpdocumentor": "2.*",
        "squizlabs/php_codesniffer": "2.*"
    }

Now I will apply the PSR2 coding standard to my code:

$ vendor/bin/phpcs—standard=PSR2 src/util/Validator.php

FILE: /var/poppch21/src/util/Validator.php
----------------------------------------------------------------------
FOUND 6 ERRORS AFFECTING 4 LINES

https://www.phing.info/docs/guide/stable/CoverageReportTask.html
https://www.phing.info/docs/guide/stable/CoverageReportTask.html
http://dx.doi.org/10.1007/978-1-4842-1996-6_16


Chapter 21 ■ Continuous Integration

508

----------------------------------------------------------------------
  8 | ERROR | [x] Opening brace of a class must be on the line after
    |       |     the definition
 11 | ERROR | [ ] Visibility must be declared on method "__construct"
 11 | ERROR | [x] Opening brace should be on a new line
 15 | ERROR | [ ] Visibility must be declared on method
    |       |     "validateUser"
 15 | ERROR | [x] Opening brace should be on a new line
 26 | ERROR | [x] Function closing brace must go on the next line
    |       |     following the body; found 1 blank lines before
    |       |     brace
----------------------------------------------------------------------
PHPCBF CAN FIX THE 4 MARKED SNIFF VIOLATIONS AUTOMATICALLY
----------------------------------------------------------------------

Time: 358ms; Memory: 4Mb

Clearly, I need to clean up my code a little!
One benefit of an automated tool is its impersonal nature. If your team does decide to impose a set of 

coding conventions, it’s arguably better having a humorless script correcting your style than a humorless 
coworker doing the same thing.

As you might expect by now, I would like to add a CodeSniffer target to my build file:

    <target name="sniff" depends="build">
        <phpcodesniffer standard="PSR2">
            <fileset dir="src">
                <include name="**/*.php"/>
            </fileset>
            <formatter type="checkstyle" outfile="reports/checkstyle.xml"/>
        </phpcodesniffer>
    </target>

The phpcodesniffer task will do this job for me. I use the standard attribute to specify PSR2 rules. I 
define the files to check using the nested fileset element. I define a formatter element with a checkstyle 
type attribute. This will generate an XML file in the reports directory.

So I have a lot of useful tools that I can use to monitor my project. Of course, left to myself I’d soon lose 
interest in running them, even with my useful Phing build file. In fact, I’d probably revert to the old idea of an 
integration phase, and pull out the tools only when I’m close to a release, by which time their effectiveness 
as early-warning systems will be irrelevant. What I need is a CI server to run the tools for me.

Jenkins (formerly named Hudson) is an open source-continuous integration server. Although it is 
written in Java, Jenkins is easy to use with PHP tools. That’s because the continuous-integration server 
stands outside of the projects it builds, kicking off and monitoring the results of various commands. 
Jenkins also integrates well with PHP because it is designed to support plug-ins, and there is a highly active 
developer community working to extend the server’s core functionality.

■■ Note  Why Jenkins? Jenkins is very easy to use and extend. It is well established, and it has an active user 
community. It’s free and open source. Plug-ins that support integration with PHP (and that includes most build and test 
tools you might think of) are available. There are many CI server solutions out there, however. A previous version of 
this book focused on CruiseControl (http://cruisecontrol.sourceforge.net/), and this remains a good option.

http://cruisecontrol.sourceforge.net/


Chapter 21 ■ Continuous Integration

509

Installing Jenkins
Jenkins is a Java system, so you will need to have Java installed. How you go about this will vary from system 
to system. On a Fedora distribution you might do something like this:

$ yum install java-1.7.0

Otherwise, you can get Java directly from www.java.com.
You can confirm that you have Java by running it from the command line:

$ java -version

java version "1.7.0_101"
OpenJDK Runtime Environment (rhel-2.6.6.4.el6_8-x86_64 u101-b00)
OpenJDK 64-Bit Server VM (build 24.95-b01, mixed mode)

You can get Jenkins from the project homepage at http://jenkins-ci.org/. It can be installed 
via a Java Web Archive (WAR) file, or there are native packages for most distributions, all linked from the 
homepage. I will use the Fedora option:

$ wget -O /etc/yum.repos.d/jenkins.repo http://pkg.jenkins-ci.org/redhat/jenkins.repo
$ rpm --import http://pkg.jenkins-ci.org/redhat/jenkins-ci.org.key
$ yum install jenkins

The Jenkins site provides installation instructions for most distributions.
Once Jenkins is installed you could run it directly via Java like this:

$ sudo java -jar /usr/lib/jenkins/jenkins.war

However, you may run in to trouble later on if you do this. It’s almost certainly better to use a startup 
script, which will run Jenkins as the jenkins user. In the case of Fedora, you can start Jenkins like this:

$ service jenkins start

You can also find a generic startup script at https://wiki.jenkins-ci.org/display/JENKINS/
JenkinsLinuxStartupScript.

By default, Jenkins runs on port 8080, so you can find out whether you’re ready to proceed by firing up 
your browser and visiting http://yourhost:8080/. You should see something like the screen in Figure 21-2.

The instructions in Figure 21-2 are pretty self-explanatory. I grab the password from /var/lib/
jenkins/secrets/initialAdminPassword and enter it into the box provided. Then I’m presented with a 
choice: install with popular plug-ins or pick my own? I opt for the most popular plug-ins, which I know will 
get me support for Git among other things. If you want a slim system, you might choose to select only those 
plug-ins you need. After that it’s time to create a user name and password before finishing up installation.

Installing Jenkins Plug-ins
Jenkins is highly customizable, and I will need quite a few plug-ins to integrate with the features I have 
described so far in this chapter. From within the Jenkins web interface, I click on Manage Jenkins and then 
Manage Plugins. Beneath the Available tab, I find a long list. I select the checkboxes in the Install column 
for all plug-ins that I wish to add to Jenkins.

Table 21-1 describes the plug-ins that I will be using.

http://www.java.com/
http://jenkins-ci.org/
https://wiki.jenkins-ci.org/display/JENKINS/JenkinsLinuxStartupScript
https://wiki.jenkins-ci.org/display/JENKINS/JenkinsLinuxStartupScript
http://yourhost:8080/


Chapter 21 ■ Continuous Integration

510

You can see the Jenkins plug-in page in Figure 21-3.

Having installed these plug-ins, I’m almost ready to create and configure my project.

Table 21-1.  Some Jenkins Plug-ins

Plug-in Description

Git Plug-in Allows interaction with Git repositories

xUnit Plug-in Integration with the xUnit family of tools including PHPUnit

Phing Plug-in Invoke Phing targets

Clover PHP Plug-in Accesses clover XML file and HTML files generated by PHPUnit and 
generates report

HTML Publisher Plug-in Integrates HTML reports. Used for PHPDocumentor output

Checkstyle Plug-in Accesses the XML file generated by PHPCodeSniffer and generates report

Figure 21-3.  The Jenkins plug-in screen



Chapter 21 ■ Continuous Integration

511

Setting up the Git Public Key
Before I can use the Git plug-in, I need to ensure that I have access to a Git repository. In Chapter 17 I 
described the process of generating a public key in order to access a remote Git repository. We need to 
repeat this process here. But where does Jenkins call home?

This location is configurable, but naturally Jenkins will clue you in. I click on Manage Jenkins and then 
Configure System. I find Jenkins’ home directory listed there. Of course, I could also check the /etc/passwd 
file for information relating to the jenkins user. In my case, the directory is /var/lib/jenkins.

Now I need to configure an SSH directory:

$ sudo su jenkins -s /bin/bash
$ cd ~ 
$ mkdir .ssh
$ chmod 0700 .ssh
$ ssh-keygen

I switch to the jenkins user, specifying the shell to use (because shell access may be deactivated by 
default). I change to this user’s home directory. The ssh-keygen command generates the SSH keys. When 
prompted for a password, I just hit Return, so Jenkins will be authenticated by its key only. I make sure that 
the file generated at .ssh/id_rsa is neither world- nor group-readable:

$ chmod 0600 .ssh/id_rsa

Now I can acquire the public key from .ssh/id_rsa.pub and add it to my remote Git repository. See 
Chapter 17 for more on that.

I’m not quite there yet. I need to ensure that my Git server is an SSH known host. I can combine setting 
this up with a command-line test of my Git configuration. I make sure I’m still logged in as the jenkins user 
when I do this:

$ cd /tmp
$ git clone git@bitbucket.org:getinstance/userthing.git

I am prompted to confirm my Git host, and it’s then added to the jenkins user’s .ssh/known_hosts file. 
This prevents Jenkins from tripping over later when it makes its Git connection.

Installing a Project
From the Jenkins dashboard page, I click on New Item. From this new screen I can, at last, create my 
userthing project. You can see the setup screen in Figure 21-4.

http://dx.doi.org/10.1007/978-1-4842-1996-6_17
http://dx.doi.org/10.1007/978-1-4842-1996-6_17


Chapter 21 ■ Continuous Integration

512

I chose Freestyle project and hit OK. That leads me to the project configuration screen. My first order 
of business is to link up with the remote Git repository. I choose the Git radio button in the Source Code 
Manager section and add my repository. You can see this in Figure 21-5.

Figure 21-4.  The project setup screen



Chapter 21 ■ Continuous Integration

513

If all has gone well, I should be able to access my source code. I can check that by saving and choosing 
Build from the dashboard page. In order to see some meaningful action, however, I should also set up Phing. 
This is simple if you’ve installed Phing centrally. If you’re using Composer, however, things are just a little 
more complicated. You must tell Jenkins where to find the Phing executable. You can do this by choosing 
Manage Jenkins from the main menu, and then Global Tool Configuration. Because I have installed the 
Phing plug-in, I will find a configuration area for the tool there. In Figure 21-6, I add the path to the phing 
script’s location (or at least to the location it will end up once Composer has been run).

Figure 21-5.  Setting up the version-control repository



Chapter 21 ■ Continuous Integration

514

With that step complete I can configure Phing for my project. I return to the userthing project area and 
the Configure menu. I scroll to the Build section and choose two items from the Add build step pulldown. 
First, I choose Execute shell. I need to make sure that Jenkins runs composer install, or none of the tools 
my project depends upon will be installed. Figure 21-7 shows the configuration.

Figure 21-6.  Specifying Phing’s location



Chapter 21 ■ Continuous Integration

515

The next item I choose from the Add build step pulldown is Invoke Phing targets. Here can I add 
my Phing targets to the text field. You can see this step in Figure 21-8.

Figure 21-7.  Setting up shell execution



Chapter 21 ■ Continuous Integration

516

Running the First Build
I save the configuration screen and click Build Now to run the build and test process. This is the moment 
of truth! A build link should appear in the Build History area of the screen. I click on that, and then on 
Console Output to confirm that the build went ahead as hoped. You can see the output (albeit from a later 
build) in Figure 21-9.

Figure 21-8.  Configuring Phing



Chapter 21 ■ Continuous Integration

517

Jenkins checks the userthing code out from the Git server, and runs all the build and test targets.

Configuring the Reports
Thanks to my build file, Phing saves reports into the build/reports directory and documentation into 
build/docs. The plug-ins that I activated can be configured from the Add post-build action pulldown in 
the project-configuration screen.

Figure 21-10 shows some of these configuration items.

Figure 21-9.  Console output



Chapter 21 ■ Continuous Integration

518

Rather than subject you to screenshot after screenshot, it will be clearer to compress the configuration 
items into a table. Table 21-2 shows some post-build action fields and the corresponding values I set up in 
my Phing build file.

Figure 21-10.  Configuring report plug-in items



Chapter 21 ■ Continuous Integration

519

You encountered all of the configuration values in Table 21-2 as I constructed the project’s build file. All, 
that is, apart from the last. The E-mail Notification field allows you to define a list of developers who will 
all receive notifications when a build fails.

With all that set up, I can return to the project screen and run another build. Figure 21-11 shows my 
newly enhanced output.

Table 21-2.  Report configuration

Configuration item Phing Task Field Value

Publish Checkstyle 
analysis results

phpcodesniffer Checkstyle results reports/checkstyle.xml

Publish Clover PHP 
Coverage Report

phpunit Clover XML Location reports/cloverreport.xml

Clover HTML report 
directory

reports/clovercoverage/

Publish HTML reports phpdoc2 HTML directory to 
archive

reports/docs

Index page[s] index.html

Publish Junit test result 
report

phpunit Test report XMLs reports/testreport.xml

E-mail Notification Recipients someone@somemail.com



Chapter 21 ■ Continuous Integration

520

Over time, the project screen will plot trends for test performance, coverage, and style compliance. 
There are also links to the latest API Documentation, detailed test results, and full coverage information.

Triggering Builds
All of this rich information is almost useless if someone in your team must remember to kick off each build 
with a manual click. Naturally, Jenkins provides mechanisms by which builds can be automatically triggered.

You can set Jenkins to build at fixed intervals or to poll the version-control repository, again at specified 
intervals. Intervals can be set using cron format, which provides fine, although somewhat arcane, control 

Figure 21-11.  The Project screen showing trend information



Chapter 21 ■ Continuous Integration

521

over scheduling. Luckily, Jenkins provides good online help for the format, and there are simple aliases if 
you don’t require precision scheduling. The aliases include @hourly, @midnight, @daily, @weekly, and @
monthly. In Figure 21-12, I configure the build to run once daily, or every time the repository changes, based 
upon a poll for changes that should take place once an hour.

Test Failures
So far everything seems to be going well, even if userthing won’t be winning any code-compliance badges 
any time soon. But tests succeed when they fail, so I’d better break something to make sure that Jenkins 
reports on it.

Here is a part of a class named Validate in the namespace userthing\util:

    public function validateUser(string $mail, string $pass): boolean
    {

Figure 21-12.  Scheduling builds



Chapter 21 ■ Continuous Integration

522

        // make it always fail
        return false;
        $user = $this->store->getUser($mail);
        if (is_null($user)) {
            return null;
        }
        if ($user->getPass() == $pass) {
            return true;
        }

        $this->store->notifyPasswordFailure($mail);

        return false;
    }

See how I’ve sabotaged the method? As it now stands, validateUser() will always return false.
Here’s the test that should choke on that. It’s in test/util/ValidatorTest.php:

    public function testValidateCorrectPass()
    {
        $this->assertTrue(
            $this->validator->validateUser("bob@example.com", "12345"),
            "Expecting successful validation"
        );
    }

Having made my change, all I need do is commit, and wait. Sure enough, before long, the project status 
shows a build marked by a yellow icon. Once I click on the build link, I find more details. You can see the 
screen in Figure 21-13.



Chapter 21 ■ Continuous Integration

523

Summary
In this chapter, I brought together many of the tools that you have seen in previous chapters and glued them 
in place with Jenkins. I prepared a small project for CI, applying a range of tools including PHPUnit (both for 
testing and code coverage), PHP_CodeSniffer, phpDocumentor, and Git. Then I set up Jenkins and showed 
you how to add a project to the system. I put the system through its paces and, finally, showed you how to 
extend Jenkins so that it can bug you with e-mails, and test both build and installation.

Figure 21-13.  The Unstable Build



525© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_22

CHAPTER 22

Objects, Patterns, Practice

From object basics through design pattern principles, and on to tools and techniques, this book has focused 
on a single objective: the successful PHP project.

In this chapter, I recap some of the topics I have covered and points made throughout the book:

•	 PHP and objects: How PHP continues to increase its support for object-oriented 
programming, and how to leverage these features

•	 Objects and design: Summarizing some OO design principles

•	 Patterns: What makes them cool

•	 Pattern principles: A recap of the guiding object-oriented principles that underlie 
many patterns

•	 The tools for the job: Revisiting the tools I have described, and checking out a few I 
haven’t

Objects
As you saw in Chapter 2, for a long time objects were something of an afterthought in the PHP world. 
Support was rudimentary, to say the least, in PHP 3, with objects barely more than associative arrays in fancy 
dress. Although things improved radically for the object enthusiast with PHP 4, there were still significant 
problems. Not the least of these was that by default, objects were assigned and passed by reference.

The introduction of PHP 5 finally dragged objects center stage. You could still program in PHP without 
ever declaring a class, but the language was finally optimized for object-oriented design. PHP 7 rounded 
this out, introducing long-awaited features such as scalar and return type declarations. Probably for reasons 
of backward compatibility, a few popular frameworks remain essentially procedural in nature (notably 
WordPress); by-and-large, however, most new PHP projects today are object-oriented.

In Chapters 3, 4, and 5, I looked at PHP’s object-oriented support in detail. Here are some of the new 
features PHP has introduced since version 5: reflection, exceptions, private and protected methods and 
properties, the __toString() method, the static modifier, abstract classes and methods, final methods 
and properties, interfaces, iterators, interceptor methods, type declarations, the const modifier, passing by 
reference, __clone(), the __construct() method, late static binding, namespaces, and anonymous classes. 
The extensive length of this incomplete list reveals the degree to which the future of PHP is bound up with 
object-oriented programming.

The Zend Engine 2 and PHP 5 have made object-oriented design central to the PHP project, opening up 
the language to a new set of developers and opening up new possibilities for existing devotees.

In Chapter 6, I looked at the benefits that objects can bring to the design of your projects. Because objects 
and design are one of the central themes of this book, it is worth recapping some conclusions in detail.

http://dx.doi.org/10.1007/978-1-4842-1996-6_2
http://dx.doi.org/10.1007/978-1-4842-1996-6_3
http://dx.doi.org/10.1007/978-1-4842-1996-6_4
http://dx.doi.org/10.1007/978-1-4842-1996-6_5
http://dx.doi.org/10.1007/978-1-4842-1996-6_6


Chapter 22 ■ Objects, Patterns, Practice

526

Choice
There is no law that says you have to develop with classes and objects only. Well-designed object-oriented 
code provides a clean interface that can be accessed from any client code, whether procedural or object-
oriented. Even if you have no interest in writing objects (unlikely if you are still reading this book), you will 
probably find yourself using them, if only as a client of Composer packages.

Encapsulation and Delegation
Objects mind their own business and get on with their allotted tasks behind closed doors. They provide an 
interface through which requests and results can be passed. Any data that need not be exposed, and the 
dirty details of implementation, are hidden behind this front.

This gives object-oriented and procedural projects different shapes. The controller in an  
object-oriented project is often surprisingly sparse, consisting of a handful of instantiations that acquire 
objects and invocations that call up data from one set and pass it on to another.

A procedural project, on the other hand, tends to be much more interventionist. The controlling logic 
descends into implementation to a greater extent, referring to variables, measuring return values, and taking 
turns along different pathways of operation according to circumstance.

Decoupling
To decouple is to remove interdependence between components, so that making a change to one 
component does not necessitate changes to others. Well-designed objects are self-enclosed. That is, they do 
not need to refer outside of themselves to recall a detail they learned in a previous invocation.

By maintaining an internal representation of state, objects reduce the need for global variables—a 
notorious cause of tight coupling. In using a global variable, you bind one part of a system to another. If a 
component (whether a function, a class, or a block of code) refers to a global variable, there is a risk that 
another component will accidentally use the same variable name and substitute its value for the first. There 
is a chance that a third component will come to rely on the value in the variable as set by the first. Change 
the way that the first component works, and you may cause the third to stop working. The aim of object-
oriented design is to reduce such interdependence, making each component as self-sufficient as possible.

Another cause of tight coupling is code duplication. When you must repeat an algorithm in different 
parts of your project, you will find tight coupling. What happens when you come to change the algorithm? 
Clearly you must remember to change it everywhere it occurs. Forget to do this, and your system is in trouble.

A common cause of code duplication is the parallel conditional. If your project needs to do things 
in one way according to a particular circumstance (e.g., running on Linux), and another according to an 
alternative circumstance (e.g., running on Windows), you will often find the same if/else clauses popping 
up in different parts of your system. If you add a new circumstance together with strategies for handling it 
(MacOS), you must ensure that all conditionals are updated.

Object-oriented programming provides a technique for handling this problem. You can replace 
conditionals with polymorphism. Polymorphism, also known as class switching, is the transparent use of 
different subclasses according to circumstance. Because each subclass supports the same interface as the 
common superclass, the client code neither knows nor cares which particular implementation it is using.

Conditional code is not banished from object-oriented systems; it is merely minimized and centralized. 
Conditional code of some kind must be used to determine which particular subtypes are to be served up to 
clients. This test, though, generally takes place once, and in one place, thus reducing coupling.



Chapter 22 ■ Objects, Patterns, Practice

527

Reusability
Encapsulation promotes decoupling, which promotes reuse. Components that are self-sufficient and 
communicate with wider systems only through their public interface can often be moved from one system 
and used in another without change.

In fact, this is rarer than you might think. Even nicely orthogonal code can be project-specific. When 
creating a set of classes for managing the content of a particular web site, for example, it is worth taking 
some time in the planning stage to look at those features that are specific to your client, and those that might 
form the foundation for future projects with content management at their heart.

Another tip for reuse: centralize those classes that might be used in multiple projects. Do not, in other 
words, copy a nicely reusable class into a new project. This will cause tight coupling on a macro level, as you 
will inevitably end up changing the class in one project and forgetting to do so in another. You would do 
better to manage common classes in a central repository that can be shared by your projects.

Aesthetics
This is not going to convince anyone who is not already convinced, but to me, object-oriented code is 
aesthetically pleasing. The messiness of implementation is hidden away behind clean interfaces, making an 
object a thing of apparent simplicity to its client.

I love the neatness and elegance of polymorphism, so that an API allows you to manipulate vastly 
different objects that nonetheless perform interchangeably and transparently—the way that objects can be 
stacked up neatly or slotted into one another like children’s blocks.

Of course, there are those who argue that the converse is true. Object-oriented code can manifest 
itself as an explosion of classes all so decoupled from one another that piecing together their relationships 
can be a headache. This is a code smell in its own right. It is often tempting to build factories that produce 
factories that produce factories, until your code resembles a hall of mirrors. Sometimes it makes sense to 
do the simplest thing that works, and then refactor in just enough elegance for testing and flexibility. Let the 
problem space determine your solution, rather than a list of best practices.

■■ Note   The rigid application of so-called best practice is also often an issue in project management, too. 
Whenever the use of a technique or a process begins to resemble ritual, applied automatically and inflexibly, it’s 
worth taking a moment to investigate the reasoning behind your current approach. It could be you’re drifting 
from the realm of tools to that of the cargo cult.

It is also worth mentioning that a beautiful solution is not always the best, or most efficient. It is 
tempting to use a full-blown object-oriented solution where a quick script or a few system calls might have 
gotten the job done.

Patterns
Recently, a Java programmer applied for a job in a company with which I have some involvement. In his cover 
letter, he apologized for only having used patterns for a couple of years. This assumption that design patterns 
are a recent discovery—a transformative advance—is testament to the excitement they have generated. In 
fact, it is likely that this experienced coder has been using patterns for a lot longer than he thinks.



Chapter 22 ■ Objects, Patterns, Practice

528

Patterns describe common problems and tested solutions. Patterns name, codify, and organize real-
world best practice. They are not components of an invention or clauses in a doctrine. A pattern would not 
be valid if it did not describe practices that are already common at the time of hatching.

Remember that the concept of a pattern language originated in the field of architecture. People 
were building courtyards and arches for thousands of years before patterns were proposed as a means of 
describing solutions to problems of space and function.

Having said that, it is true that design patterns often provoke the kind of emotions associated with 
religious or political disputes. Devotees roam the corridors with an evangelistic gleam in their eye and a 
copy of the Gang of Four book under their arm. They accost the uninitiated and reel off pattern names like 
articles of faith. It is little wonder that some critics see design patterns as hype.

In languages such as Perl and PHP, patterns are also controversial because of their firm association 
with object-oriented programming. In a context in which objects are a design decision and not a given, 
associating oneself with design patterns amounts to a declaration of preference, not least because patterns 
beget more patterns, and objects beget more objects.

What Patterns Buy Us
I introduced patterns in Chapter 7. Let’s reiterate some of the benefits that patterns can buy us.

Tried and Tested
First of all, as I’ve noted, patterns are proven solutions to particular problems. Drawing an analogy between 
patterns and recipes is dangerous: recipes can be followed blindly, whereas patterns are “half-baked” 
(Martin Fowler) by nature and need more thoughtful handling. Nevertheless, both recipes and patterns 
share one important characteristic: they have been tried out and tested thoroughly before inscription.

Patterns Suggest Other Patterns
Patterns have grooves and curves that fit one another. Certain patterns slot together with a satisfying click. 
Solving a problem using a pattern will inevitably have ramifications. These consequences can become the 
conditions that suggest complementary patterns. It is important, of course, to be careful that you are addressing 
real needs and problems when you choose related patterns, and not just building elegant but useless towers of 
interlocking code. It is tempting to build the programming equivalent of an architectural folly.

A Common Vocabulary
Patterns are a means of developing a common vocabulary for describing problems and solutions. Naming 
is important—it stands in for describing, and therefore lets us cover lots of ground very quickly. Naming, 
of course, also obscures meaning for those who do not yet share the vocabulary, which is one reason why 
patterns can be so infuriating at times.

Patterns Promote Design
As discussed in the next section, patterns can encourage good design when used properly. There is an 
important caveat, of course. Patterns are not fairy dust.

http://dx.doi.org/10.1007/978-1-4842-1996-6_7


Chapter 22 ■ Objects, Patterns, Practice

529

Patterns and Principles of Design
Design patterns are, by their nature, concerned with good design. Used well, they can help you build 
loosely coupled and flexible code. Pattern critics have a point, though, when they say that patterns can be 
overused by the newly infected. Because pattern implementations form pretty and elegant structures, it can 
be tempting to forget that good design always lies in fitness for purpose. Remember that patterns exist to 
address problems.

When I first started working with patterns, I found myself creating Abstract Factories all over my code. I 
needed to generate objects, and Abstract Factory certainly helped me to do that.

In fact, though, I was thinking lazily and making unnecessary work for myself. The sets of objects I 
needed to produce were indeed related, but they did not yet have alternative implementations. The classic 
Abstract Factory pattern is ideal for situations in which you have alternative sets of objects to generate 
according to circumstance. To make Abstract Factory work, you need to create factory classes for each type 
of object and a class to serve up the factory class. It’s exhausting just describing the process.

My code would have been much cleaner had I created a basic factory class, only refactoring to 
implement Abstract Factory if I found myself needing to generate a parallel set of objects.

The fact that you are using patterns does not guarantee good design. When developing, it is a good idea 
to bear in mind two expressions of the same principle: KISS (“Keep it simple, stupid”) and “Do the simplest 
thing that works.” eXtreme programmers also give us another, related, acronym: YAGNI. “You aren’t going to 
need it,” meaning that you should not implement a feature unless it is truly required.

With the warnings out of the way, I can resume my tone of breathless enthusiasm. As I laid out in 
Chapter 9, patterns tend to embody a set of principles that can be generalized and applied to all code.

Favor Composition over Inheritance
Inheritance relationships are powerful. We use inheritance to support runtime class switching (polymorphism), 
which lies at the heart of many of the patterns and techniques I explored in this book. By relying on solely on 
inheritance in design, though, you can produce inflexible structures that are prone to duplication.

Avoid Tight Coupling
I have already talked about this issue in this chapter, but it is worth mentioning here for the sake of 
completeness. You can never escape the fact that change in one component may require changes in other 
parts of your project. You can, however, minimize this by avoiding both duplication (typified in our examples 
by parallel conditionals) and the overuse of global variables (or Singletons). You should also minimize the 
use of concrete subclasses when abstract types can be used to promote polymorphism. This last point leads 
us to another principle.

Code to an Interface, Not an Implementation
Design your software components with clearly defined public interfaces that make the responsibility of each 
transparent. If you define your interface in an abstract superclass and have client classes demand and work 
with this abstract type, you then decouple clients from specific implementations.

Having said that, remember the YAGNI principle. If you start out with the need for only one 
implementation for a type, there is no immediate reason to create an abstract superclass. You can just as 
well define a clear interface in a single concrete class. As soon as you find that your single implementation 
is trying to do more than one thing at the same time, you can redesignate your concrete class as the abstract 
parent of two subclasses. Client code will be none the wiser, as it continues to work with a single type.

http://dx.doi.org/10.1007/978-1-4842-1996-6_9


Chapter 22 ■ Objects, Patterns, Practice

530

A classic sign that you may need to split an implementation and hide the resultant classes behind an 
abstract parent is the emergence of conditional statements in the implementation.

Encapsulate the Concept that Varies
If you find that you are drowning in subclasses, it may be that you should be extracting the reason for all this 
subclassing into its own type. This is particularly the case if the reason is to achieve an end that is incidental 
to your type’s main purpose.

Given a type UpdatableThing, for example, you may find yourself creating FtpUpdatableThing, 
HttpUpdatableThing, and FileSystemUpdatableThing subtypes. The responsibility of your type, though, 
is to be a thing that is updatable—the mechanism for storage and retrieval is incidental to this purpose. 
Ftp, Http, and FileSystem are the things that vary here, and they belong in their own type—let’s call it 
UpdateMechanism. UpdateMechanism will have subclasses for the different implementations. You can then 
add as many update mechanisms as you want without disturbing the UpdatableThing type, which remains 
focused on its core responsibility.

Notice also that I have replaced a static compile-time structure with a dynamic runtime arrangement 
here, bringing us (as if by accident) back to our first principle: “Favor composition over inheritance.”

Practice
The issues that I covered in this section of the book (and introduced in Chapter 14) are often ignored by texts 
and coders alike. In my own life as a programmer, I discovered that these tools and techniques were at least 
as relevant to the success of a project as design. There is little doubt that issues such as documentation and 
automated build are less revelatory in nature than wonders such as the Composite pattern.

■■ Note   Let’s just remind ourselves of the beauty of Composite: a simple inheritance tree whose objects 
can be joined at runtime to form structures that are also trees, but are orders of magnitude more flexible 
and complex. Multiple objects share a single interface by which they are presented to the outside world. The 
interplay between simple and complex, multiple and singular, has got to get your pulse racing—that’s not just 
software design, it’s poetry.

Even if issues such as documentation and build, testing, and version control are more prosaic than 
patterns, they are no less important. In the real world, a fantastic design will not survive if multiple 
developers cannot easily contribute to it or understand the source. Systems become hard to maintain and 
extend without automated testing. Without build tools, no one is going to bother to deploy your work. As 
PHP’s user base widens, so does our responsibility as developers to ensure quality and ease-of-deployment.

A project exists in two modes. A project is its structures of code and functionality, and it is also set of 
files and directories, a ground for cooperation, a set of sources and targets, and a subject for transformation. 
In this sense, a project is a system from the outside as much as it is within its code. Mechanisms for 
build, testing, documentation, and version control require the same attention to detail as the code such 
mechanisms support. Focus on the metasystem with as much fervor as you do on the system itself.

Testing
Although testing is part of the framework that one applies to a project from the outside, it is intimately 
integrated into the code itself. Because total decoupling is not possible, or even desirable, test frameworks are 
a powerful way of monitoring the ramifications of change. Altering the return type of a method could influence 

http://dx.doi.org/10.1007/978-1-4842-1996-6_14


Chapter 22 ■ Objects, Patterns, Practice

531

client code elsewhere, causing bugs to emerge weeks or months after the change is made. A test framework 
gives you half a chance of catching errors of this kind (the better the tests, the better the odds here).

Testing is also a tool for improving object-oriented design. Testing first (or at least concurrently) helps 
you to focus on a class’s interface and think carefully about the responsibility and behavior of every method. 
I introduced PHPUnit, which is used for testing, in Chapter 18.

Standards
I am a contrarian by nature. I hate being told what to do. Words like compliance instantly invoke a fight-or-
flight response in me. But, counter-intuitive as it may seem, standards drive innovation. That is because they 
drive interoperability. The rise of the Internet was fueled in part by the fact that open standards are built in to 
its core. Web sites can link to one another, and web servers can be reused in any domain because protocols 
are well-known and respected. A solution in a silo may be better than a widely accepted and applied 
standard, but what if the silo burns down? What if it is bought, and the new owner decides to charge for 
access? What happens when some people decide that the silo next door is better? In Chapter 16 I discussed 
PSR, PHP Standard Recommendations. I focused in particular on standards for autoloading, which have 
done much to clean up the way that PHP developers include classes. I also looked at PSR-2, the standard 
for coding style. Programmers have strong feelings about the placement of braces and the deployment of 
argument lists, but agreeing to abide by a common set of rules makes for readable and consistent code, 
and allows us to use tools to check and reformat our source files. In that spirit I have reformatted all code 
examples in this edition to comply with PSR-2.

Version Control
Collaboration is hard. Let’s face it: people are awkward. Programmers are even worse. Once you’ve sorted 
out the roles and tasks on your team, the last thing you want to deal with is clashes in the source code itself. 
As you saw in Chapter 17, Git (and similar tools such as CVS and Subversion) enable you to merge the work 
of multiple programmers into a single repository. Where clashes are unavoidable, Git flags the fact and 
points you to the source to fix the problem.

Even if you are a solo programmer, version control is a necessity. Git supports branching, so that you 
can maintain a software release and develop the next version at the same time, merging bug fixes from the 
stable release to the development branch.

Git also provides a record of every commit ever made on your project. This means that you can roll back 
by date or tag to any moment. This will save your project someday—believe me.

Automated Build
Version control without automated build is of limited use. A project of any complexity takes work to deploy. 
Various files need to be moved to different places on a system, configuration files need to be transformed 
to have the right values for the current platform and database, and database tables need to be set up or 
transformed. I covered two tools designed for installation. The first, Composer (see Chapter 15), is ideal 
for standalone packages and small applications. The second build tool I covered was Phing (see Chapter 
19), which is a tool with enough power and flexibility to automate the installation of the largest and most 
labyrinthine project.

Automated build transforms deployment from a chore to a matter of a line or two at the command line. 
With little effort, you can invoke your test framework and your documentation output from your build tool. 
If the needs of your developers do not sway you, bear in mind the pathetically grateful cries of your users as 
they discover that they need no longer spend an entire afternoon copying files and changing configuration 
fields every time you release a new version of your project.

http://dx.doi.org/10.1007/978-1-4842-1996-6_18
http://dx.doi.org/10.1007/978-1-4842-1996-6_16
http://dx.doi.org/10.1007/978-1-4842-1996-6_17
http://dx.doi.org/10.1007/978-1-4842-1996-6_15
http://dx.doi.org/10.1007/978-1-4842-1996-6_19


Chapter 22 ■ Objects, Patterns, Practice

532

Continuous Integration
It is not enough to be able to test and build a project; you have do it all the time. This becomes increasingly 
important as a project grows in complexity and you manage multiple branches. You should build and test 
the stable branch from which you make minor bug fix releases, an experimental development branch or two, 
and your main trunk. If you were to try to do all that manually, even with the aid of build and test tools, you’d 
never get around to any coding. Of course, all coders hate that, so build and testing inevitably get skimped on.

In Chapter 20, I looked at Continuous Integration, a practice and a set of tools that automate the build 
and test processes as much as possible.

What I Missed
A few tool categories I have had to omit from this book due to time and space constraints are, nonetheless, 
supremely useful for any project. In most cases, there is more than one good tool for the job at hand so, 
although I’ll suggest one or two, you may want to spend some time talking with other developers and digging 
around with your favorite search engine before you make your choice.

If your project has more than one developer or even just an active client, then you will need a tool to 
track bugs and tasks. Like version control, a bug tracker is one of those productivity tools that, once you 
have tried it on a project, you cannot imagine not using. Trackers allow users to report problems with 
a project, but they are just as often used as a means of describing required features and allocating their 
implementation to team members.

You can get a snapshot of open tasks at any time, narrowing the search according to product, task 
owner, version number, and priority. Each task has its own page, in which you can discuss any ongoing 
issues. Discussion entries and changes in task status can be copied by mail to team members, so it’s easy to 
keep an eye on things without going to the tracker URL all the time.

There are many tools out there. Even after all this time, though, I usually return to the venerable Bugzilla 
(http://www.bugzilla.org). Bugzilla is free and open source, and has all the features most developers 
could need. It is a downloadable product, so you will have to run it on your own server. It still looks a little 
Web 1.0, but it’s none the worse for that. If you do not want to host your own tracker, and you have or prefer 
your interfaces a little prettier (and have deeper pockets), you might look at the Atlassian’s SAAS solution, 
Jira (https://www.atlassian.com/software/jira).

For high level task tracking and project planning (especially if you’re interested in using a Kanban 
system), you might also look at Trello (http://www.trello.com).

A tracker is generally just one of a suite of collaboration tools you will want to use to share information 
around a project. At a price, you can use an integrated solution such as Basecamp (https://basecamp.com/) 
or Atlassian tools (https://www.atlassian.com/). Or you may choose to stitch together a tools ecosystem 
using a variety of tools. To facilitate communication within your team, for example, you will probably need 
a mechanism for chat or messaging. Perhaps the most popular tool for this at the time of this writing is Slack 
(https://www.slack.com). Slack is a multi-roomed web-based chat environment. If you’re old school like 
me, you might instantly think of IRC (Internet Relay Chat)—and you’d be right: there’s little you can do with 
Slack that you couldn’t do with IRC. Except that Slack is browser-based, easy-to-use, and has integration 
with other services already built-in. Slack is free unless you need premium features.

Speaking of old school, you might also consider using a mailing list for your project. My favorite mailing 
list software is Mailman (http://www.gnu.org/software/mailman/), which is free, relatively easy to install, 
and highly configurable.

For co-operatively editable text documents and spreadsheets, Google Docs (https://docs.google.
com/) is probably the easiest solution.

Your code is not as clear as you think it is. A stranger visiting a codebase for the first time can be faced 
with a daunting task. Even you, as author of the code, will eventually forget how it all hangs together. For 
inline documentation, you should look at phpDocumentor (https://www.phpdoc.org/) which allows you 
to document as you go, and automatically generates hyperlinked output. The output from phpDocumentor 

http://dx.doi.org/10.1007/978-1-4842-1996-6_20
http://www.bugzilla.org/
https://www.atlassian.com/software/jira
http://www.trello.com/
https://basecamp.com/
https://www.atlassian.com/
https://www.slack.com/
http://www.gnu.org/software/mailman/
https://docs.google.com/
https://docs.google.com/
https://www.phpdoc.org/


Chapter 22 ■ Objects, Patterns, Practice

533

is particularly useful in an object-oriented context, as it allows the user to click around from class to class. As 
classes are often contained in their own files, reading the source directly can involve following complex trails 
from source file to source file.

Although inline documentation is important, projects also generate a broiling heap of written material. 
This includes usage instructions, consultation on future directions, client assets, meeting minutes, and party 
announcements. During the lifetime of a project, such materials are very fluid, and a mechanism is often 
needed to allow people to collaborate in their evolution.

A wiki (wiki is apparently Hawaiian for “very fast”) is the perfect tool for creating collaborative webs 
of hyperlinked documents. Pages can be created or edited at the click of a button, and hyperlinks are 
automatically generated for words that match page names. A wiki is another one of those tools that seems 
so simple, essential, and obvious that you are sure you probably had the idea first, but just didn’t get around 
to doing anything about it. There are a number of wikis to choose from. I have had good experience with 
PhpWiki, which can be downloaded from http://phpwiki.sourceforge.net, and DokuWiki, which you can 
find at http://wiki.splitbrain.org/wiki:dokuwiki.

Summary
In this chapter I wrapped things up, revisiting the core topics that make up the book. Although I haven’t 
tackled any concrete issues such as individual patterns or object functions here, this chapter should serve as 
a reasonable summary of this book’s concerns.

There is never enough room or time to cover all the material that one would like. Nevertheless, I hope 
that this book has served to make one argument: PHP is growing up. It is now one of the most popular 
programming languages in the world. I hope that PHP remains the hobbyist’s favorite language, and that 
many new PHP programmers are delighted to discover how far they can get with just a little code. At the 
same time, though, more and more professional teams are building large systems with PHP. Such projects 
deserve more than a just-do-it approach. Through its extension layer, PHP has always been a versatile 
language, providing a gateway to hundreds of applications and libraries. Its object-oriented support, on the 
other hand, gains you access to a different set of tools. Once you begin to think in objects, you can chart the 
hard-won experience of other programmers. You can navigate and deploy pattern languages developed with 
reference, not just to PHP, but to Smalltalk, C++, C#, or Java, too. It is our responsibility to meet this challenge 
with careful design and good practice. The future is reusable.

http://phpwiki.sourceforge.net/
http://wiki.splitbrain.org/wiki:dokuwiki


535© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_23

CHAPTER 23

Appendix A: Bibliography

Books
Alexander, Christopher, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid Fiksdahl-King, and Shlomo 
Angel. A Pattern Language: Towns, Buildings, Construction. Oxford, UK: Oxford University Press, 1977.

Alur, Deepak, John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices and Design Strategies. 
Englewood Cliffs, NJ: Prentice Hall PTR, 2001.

Beck, Kent. Extreme Programming Explained: Embrace Change. Reading, MA: Addison-Wesley, 1999.
Chacon, Scott. Pro Git. New York, NY: Apress, 2009.
Fogel, Karl, and Moshe Bar. Open Source Development with CVS, Third Edition. Scottsdale, AZ: 

Paraglyph Press, 2003.
Fowler, Martin, and Kendall Scott. UML Distilled, Second Edition: A Brief Guide to the Standard Object 

Modeling Language. Reading, MA: Addison-Wesley Professional, 1999.
Fowler, Martin, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring: Improving the 

Design of Existing Code. Reading, MA: Addison-Wesley Professional, 1999.
Fowler, Martin. Patterns of Enterprise Application Architecture. Reading, MA: Addison-Wesley 

Professional, 2002.
Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable 

Object-Oriented Software. Reading, MA: Addison-Wesley Professional, 1995.
Hunt, Andrew, and David Thomas. The Pragmatic Programmer: From Journeyman to Master. Reading, 

MA: Addison-Wesley Professional, 2000.
Kerievsky, Joshua. Refactoring to Patterns. Reading, MA: Addison-Wesley Professional, 2004.
Metsker, Steven John. Building Parsers with Java. Reading, MA: Addison-Wesley Professional, 2001.
Nock, Clifton. Data Access Patterns: Database Interactions in Object-Oriented Applications. Reading, 

MA: Addison-Wesley Professional, 2003.
Shalloway, Alan, and James R. Trott. Design Patterns Explained: A New Perspective on Object-Oriented 

Design. Reading, MA: Addison Wesley, 2001.
Stelting, Stephen, and Olav Maasen. Applied Java Patterns. Palo Alto, CA: Sun Microsystems Press, 2002.

Articles
Beck, Kent, and Erich Gamma. “Test Infected: Programmers Love Writing Tests.” http://junit.
sourceforge.net/doc/testinfected/testing.htm

Collins-Sussman, Ben, Brian W. Fitzpatrick, C. Michael Pilato. “Version Control with Subversion.” 
http://svnbook.red-bean.com/

Lerdorf, Rasmus. “PHP/FI Brief History.” http://www.php.net//manual/phpfi2.php#history

http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/doc/testinfected/testing.htm
http://svnbook.red-bean.com/
http://www.php.net//manual/phpfi2.php#history


Chapter 23 ■ Appendix A: Bibliography

536

Gutmans, Andi. “Zend’s Andi Gutmans on PHP 6 & how Apple is the ‘biggest barrier’ to mobile’s future.” 
http://venturebeat.com/2012/10/24/zends-andi-gutmans-on-php-6-being-a-developer-ceo-and-how-
apple-is-the-biggest-barrier-to-the-future-of-mobile/

Suraski, Zeev. “The Object-Oriented Evolution of PHP.” http://www.devx.com/webdev/
Article/10007/0/page/1
Wikipedia. “Law of Triviality.” https://en.wikipedia.org/wiki/Law_of_triviality

Sites
Ansible: https://www.ansible.com
Basecamp: https://basecamp.com/
Bugzilla: http://www.bugzilla.org
BitBucket: https://bitbucket.org
Composer: https://getcomposer.org/download/
Chef: https://www.chef.io/chef/
CruiseControl: http://cruisecontrol.sourceforge.net/
CVS: http://www.cvshome.org/
CvsGui: http://www.wincvs.org/
CVSNT: http://www.cvsnt.org/wiki
DokuWiki: http://wiki.splitbrain.org/wiki:dokuwiki
Foswiki: http://foswiki.org/
Eclipse: http://www.eclipse.org/
Java: http://www.java.com
Jenkins: http://jenkins-ci.org/
Jira: https://www.atlassian.com/software/jira
GNU: http://www.gnu.org/
Git: http://git-scm.com/Github: https://github.org
Git Flow Cheat Sheet: http://danielkummer.github.io/git-flow-cheatsheet/
Google Code: http://code.google.com
Hashicorp Vagrant Box Search: https://atlas.hashicorp.com/search
Mailman: http://www.gnu.org/software/mailman/
Martin Fowler: http://www.martinfowler.com/
Memcached: http://danga.com/memcached/
Mercurial: http://mercurial.selenic.com
OpenPear: http://openpear.org/
Packagist: https://packagist.org
Phing: http://phing.info
PHPUnit: http://www.phpunit.de
PhpWiki: http://phpwiki.sourceforge.net
Pimple: http://pimple.sensiolabs.org/
PEAR: http://pear.php.net
PECL: http://pecl.php.net/
Phing: http://phing.info/
PHP: http://www.php.net
PhpWiki: http://phpwiki.sourceforge.net
PHPDocumentor: http://www.phpdoc.org/
PHP_CodeSniffer: https://github.com/squizlabs/PHP_CodeSniffer

http://venturebeat.com/2012/10/24/zends-andi-gutmans-on-php-6-being-a-developer-ceo-and-how-apple-is-the-biggest-barrier-to-the-future-of-mobile/
http://venturebeat.com/2012/10/24/zends-andi-gutmans-on-php-6-being-a-developer-ceo-and-how-apple-is-the-biggest-barrier-to-the-future-of-mobile/
http://www.devx.com/webdev/Article/10007/0/page/1
http://www.devx.com/webdev/Article/10007/0/page/1
https://www.ansible.com/
https://basecamp.com/
http://www.bugzilla.org/
https://bitbucket.org/
https://getcomposer.org/download/
https://www.chef.io/chef/
http://cruisecontrol.sourceforge.net/
http://www.cvshome.org/
http://www.wincvs.org/
http://www.cvsnt.org/wiki
http://wiki.splitbrain.org/wiki:dokuwiki
http://foswiki.org/
http://www.eclipse.org/
http://www.java.com/
http://jenkins-ci.org/
https://www.atlassian.com/software/jira
http://www.gnu.org/
http://git-scm.com/
http://danielkummer.github.io/git-flow-cheatsheet/
http://code.google.com/
https://atlas.hashicorp.com/search
http://www.gnu.org/software/mailman/
http://www.martinfowler.com/
http://danga.com/memcached/
http://mercurial.selenic.com/
http://openpear.org/
https://packagist.org/
http://phing.info/
http://www.phpunit.de/
http://phpwiki.sourceforge.net/
http://pimple.sensiolabs.org/
http://pear.php.net/
http://pecl.php.net/
http://phing.info/
http://www.php.net/
http://phpwiki.sourceforge.net/
http://www.phpdoc.org/
https://github.com/squizlabs/PHP_CodeSniffer


Chapter 23 ■ Appendix A: Bibliography

537

Pirum: http://pirum.sensiolabs.org
Portland Pattern Repository’s Wiki (Ward Cunningham): http://www.c2.com/cgi/wiki
Pro Git: https://git-scm.com/book/en/v2
PSR: http://www.php-fig.org/psr/
Pyrus: http://pear2.php.net
RapidSVN: http://rapidsvn.tigris.org/
Trello: http://www.trello.com
QDB: http://www.bash.org
Selenium: http://seleniumhq.org/
Semantic Versioning: https://semver.org
Slack: https://www.slack.com
SPL: http://www.php.net/spl
Subversion: http://subversion.apache.org/
Wordpress standards: https://make.wordpress.org/core/handbook/best-practices/coding- 
standards/php/
Vagrant: https://www.vagrantup.com/downloads.html
Virtualbox: https://www.virtualbox.org/wiki/Downloads
Ximbiot—CVS Wiki: http://ximbiot.com/cvs/wiki/
Xdebug: http://xdebug.org/
Xinc: http://code.google.com/p/xinc/
Zend: http://www.zen
d.com

http://pirum.sensiolabs.org/
http://www.c2.com/cgi/wiki
https://git-scm.com/book/en/v2
http://www.php-fig.org/psr/
http://pear2.php.net/
http://rapidsvn.tigris.org/
http://www.trello.com/
http://www.bash.org/
http://seleniumhq.org/
https://semver.org/
https://www.slack.com/
http://www.php.net/spl
http://subversion.apache.org/
https://make.wordpress.org/core/handbook/best-practices/coding-standards/php/
https://make.wordpress.org/core/handbook/best-practices/coding-standards/php/
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
http://ximbiot.com/cvs/wiki/
http://xdebug.org/
http://code.google.com/p/xinc/
http://www.zen/


539© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6_24

CHAPTER 24

Appendix B: A Simple Parser

The Interpreter pattern discussed in Chapter 11 does not cover parsing. An interpreter without a parser is 
pretty incomplete, unless you persuade your users to write PHP code to invoke the interpreter! Third-party 
parsers are available that could be deployed to work with the Interpreter pattern, and that would probably 
be the best choice in a real-world project. This appendix, however, presents a simple object-oriented parser 
designed to work with the MarkLogic interpreter built in Chapter 11. Be aware that these examples are no 
more than a proof of concept. They are not designed for use in real-world situations.

■■ Note   The interface and broad structure of this parser code are based on Steven Metsker’s Building Parsers 
with Java (Addison-Wesley Professional, 2001). The brutally simplified implementation is my fault, however, and 
any mistakes should be laid at my door. Steven has given kind permission for the use of his original concept.

The Scanner
In order to parse a statement, you must first break it down into a set of words and characters (known 
as tokens). The following class uses a number of regular expressions to define tokens. It also provides a 
convenient result stack that I will be using later in this section. Here is the Scanner class:

// listing 24.01
class Scanner
{
    // token types
    const WORD         = 1;
    const QUOTE        = 2;
    const APOS         = 3;
    const WHITESPACE   = 6;
    const EOL          = 8;
    const CHAR         = 9;
    const EOF          = 0;
    const SOF          = -1;

    protected $line_no    = 1;
    protected $char_no    = 0;
    protected $token      = null;
    protected $token_type = -1;

http://dx.doi.org/10.1007/978-1-4842-1996-6_11
http://dx.doi.org/10.1007/978-1-4842-1996-6_11


Chapter 24 ■ Appendix B: A Simple Parser

540

    // Reader provides access to the raw character data. Context stores
    // result data
    public function __construct(Reader $r, Context $context)
    {
        $this->r = $r;
        $this->context = $context;
    }

    public function getContext(): Context
    {
        return $this->context;
    }

    // read through all whitespace characters
    public function eatWhiteSpace(): int
    {
        $ret = 0;

        if ($this->token_type != self::WHITESPACE &&
            $this->token_type != self::EOL
        ) {
            return $ret;
        }

        while ($this->nextToken() == self::WHITESPACE ||
            $this->token_type == self::EOL
        ) {
            $ret++;
        }

        return $ret;
    }

    // get a string representation of a token
    // either the current token, or that represented
    // by the $int arg
    public function getTypeString(int $int = -1): string
    {
        if ($int < 0) {
            $int = $this->tokenType();
        }
        if ($int < 0) {
            return null;
        }

        $resolve = [
            self::WORD =>       'WORD',
            self::QUOTE =>      'QUOTE',
            self::APOS =>       'APOS',
            self::WHITESPACE => 'WHITESPACE',
            self::EOL =>        'EOL',



Chapter 24 ■ Appendix B: A Simple Parser

541

            self::CHAR =>       'CHAR',
            self::EOF =>        'EOF'
        ];

        return $resolve[$int];
    }

    // the current token type (represented by an integer)
    public function tokenType(): int
    {
        return $this->token_type;
    }

    // get the contents of the current token
    public function token()
    {
        return $this->token;
    }

    // return true if the current token is a word
    public function isWord(): bool
    {
        return ($this->token_type == self::WORD);
    }

    // return true if the current token is a quote character
    public function isQuote(): bool
    {
        return ($this->token_type == self::APOS || $this->token_type == self::QUOTE);
    }

    // current line number in source
    public function lineNo(): int
    {
        return $this->line_no;
    }

    // current character number in source
    public function charNo(): int
    {
        return $this->char_no;
    }

    // clone this object
    public function __clone()
    {
        $this->r = clone($this->r);
    }

    // move on to the next token in the source. Set the current
    // token and track the line and character numbers



Chapter 24 ■ Appendix B: A Simple Parser

542

    public function nextToken(): int
    {
        $this->token = null;
        $type;

        while (! is_bool($char = $this->getChar())) {
            if ($this->isEolChar($char)) {
                $this->token = $this->manageEolChars($char);
                $this->line_no++;
                $this->char_no = 0;
                $type = self::EOL;

                return ($this->token_type = self::EOL);
            } elseif ($this->isWordChar($char)) {
                $this->token = $this->eatWordChars($char);
                $type = self::WORD;
            } elseif ($this->isSpaceChar($char)) {
                $this->token = $char;
                $type = self::WHITESPACE;
            } elseif ($char == "'") {
                $this->token = $char;
                $type = self::APOS;
            } elseif ($char == '"') {
                $this->token = $char;
                $type = self::QUOTE;
            } else {
                $type = self::CHAR;
                $this->token = $char;
            }

            $this->char_no += strlen($this->token());

            return ($this->token_type = $type);
        }

        return ($this->token_type = self::EOF);
    }

    // return an array of token type and token content for the NEXT token
    public function peekToken(): array
    {
        $state = $this->getState();
        $type = $this->nextToken();
        $token = $this->token();
        $this->setState($state);

        return [$type, $token];
    }

    // get a ScannerState object that stores the parser's current
    // position in the source, and data about the current token



Chapter 24 ■ Appendix B: A Simple Parser

543

    public function getState(): ScannerState
    {
        $state = new ScannerState();
        $state->line_no      = $this->line_no;
        $state->char_no      = $this->char_no;
        $state->token        = $this->token;
        $state->token_type   = $this->token_type;
        $state->r            = clone($this->r);
        $state->context      = clone($this->context);

        return $state;
    }

    // use a ScannerState object to restore the scanner's
    // state
    public function setState(ScannerState $state)
    {
        $this->line_no      = $state->line_no;
        $this->char_no      = $state->char_no;
        $this->token        = $state->token;
        $this->token_type   = $state->token_type;
        $this->r            = $state->r;
        $this->context      = $state->context;
    }

    // get the next character from source
    // returns boolean when none left
    private function getChar()
    {
        return $this->r->getChar();
    }

    // get all characters until they stop being
    // word characters
    private function eatWordChars(string $char): string
    {
        $val = $char;

        while ($this->isWordChar($char = $this->getChar())) {
            $val .= $char;
        }

        if ($char) {
            $this->pushBackChar();
        }

        return $val;
    }

    // get all characters until they stop being space
    // characters



Chapter 24 ■ Appendix B: A Simple Parser

544

    private function eatSpaceChars(string $char): string
    {
        $val = $char;

        while ($this->isSpaceChar($char = $this->getChar())) {
            $val .= $char;
        }

        $this->pushBackChar();

        return $val;
    }

    // move back one character in source
    private function pushBackChar()
    {
        $this->r->pushBackChar();
    }

    // argument is a word character
    private function isWordChar($char): bool
    {
        if (is_bool($char)) {
            return false;
        }

        return (preg_match("/[A-Za-z0-9_\-]/", $char) === 1);
    }

    // argument is a space character
    private function isSpaceChar($char): bool
    {
        return (preg_match("/\t| /", $char) === 1);
    }

    // argument is an end of line character
    private function isEolChar($char): bool
    {
        $check = preg_match("/\n|\r/", $char);

        return ($check === 1);
    }

    // swallow either \n, \r or \r\n
    private function manageEolChars(string $char): string
    {
        if ($char == "\r") {
            $next_char=$this->getChar();

            if ($next_char == "\n") {
                return "{$char}{$next_char}";



Chapter 24 ■ Appendix B: A Simple Parser

545

            } else {
                $this->pushBackChar();
            }
        }

        return $char;
    }

    public function getPos(): int
    {
        return $this->r->getPos();
    }
}

// listing 24.02
class ScannerState
{
    public $line_no;
    public $char_no;
    public $token;
    public $token_type;
    public $r;
}

First, I set up constants for the tokens that interest me. I am going to match characters, words, 
whitespace, and quote characters. I test for these types in methods dedicated to each token: isWordChar(), 
isSpaceChar(), and so on. The heart of the class is the nextToken() method. This attempts to match the 
next token in a given string. The Scanner stores a Context object. Parser objects use this to share results as 
they work through the target text.

Note that there is a second class: ScannerState. The Scanner is designed so that Parser objects can 
save state, try stuff out, and restore if they’ve gone down a blind alley. The getState() method populates 
and returns a ScannerState object. setState() uses a ScannerState object to revert state if required.

Here is the Context class:

// listing 24.03

class Context
{
    public $resultstack = [];

    public function pushResult($mixed)
    {
        array_push($this->resultstack, $mixed);
    }

    public function popResult()
    {
        return array_pop($this->resultstack);
    }

    public function resultCount(): int



Chapter 24 ■ Appendix B: A Simple Parser

546

    {
        return count($this->resultstack);
    }

    public function peekResult()
    {
        if (empty($this->resultstack)) {
            throw new Exception("empty resultstack");
        }

        return $this->resultstack[count($this->resultstack) -1];
    }
}

As you can see, this is just a simple stack, a convenient noticeboard for parsers to work with. It performs 
a similar job to that of the context class used in the Interpreter pattern, but it is not the same class.

Notice that the Scanner does not itself work with a file or string. Instead, it requires a Reader object. 
This would allow me to easily swap in different sources of data. Here is the Reader interface and an 
implementation, StringReader:

// listing 24.04

interface Reader
{
    public function getChar();
    public function getPos(): int;
    public function pushBackChar();
}

// listing 24.05

class StringReader implements Reader
{
    private $in;
    private $pos;

    public function __construct($in)
    {
        $this->in = $in;
        $this->pos = 0;
    }

    public function getChar()
    {
        if ($this->pos >= strlen($this->in)) {
            return false;
        }

        $char = substr($this->in, $this->pos, 1);
        $this->pos++;



Chapter 24 ■ Appendix B: A Simple Parser

547

        return $char;
    }

    public function getPos(): int
    {
        return $this->pos;
    }

    public function pushBackChar()
    {
        $this->pos--;
    }

    public function string()
    {
        return $this->in;
    }
}

This simply reads from a string one character at a time. I could easily provide a file-based version, of 
course.

Perhaps the best way to see how the Scanner might be used is to use it. Here is some code to break up 
the example statement into tokens:

// listing 24.06

$context = new Context();
$user_in = "\$input equals '4' or \$input equals 'four'";
$reader = new StringReader($user_in);
$scanner = new Scanner($reader, $context);

while ($scanner->nextToken() != Scanner::EOF) {
    print $scanner->token();
    print "   {$scanner->charNo()}";
    print "   {$scanner->getTypeString()}\n";
}

I initialize a Scanner object and then loop through the tokens in the given string by repeatedly calling 
nextToken(). The token() method returns the current portion of the input matched. char_no() tells me 
where I am in the string, and getTypeString() returns a string version of the constant flag representing the 
current token. This is what the output should look like:

$       1       CHAR
input   6       WORD
        7       WHITESPACE
equals  13      WORD
        14      WHITESPACE
'       15      APOS
4       16      WORD
'       17      APOS
        18      WHITESPACE



Chapter 24 ■ Appendix B: A Simple Parser

548

or      20      WORD
        21      WHITESPACE
$       22      CHAR
input   27      WORD
        28      WHITESPACE
equals  34      WORD
        35      WHITESPACE
'       36      APOS
four    40      WORD
'       41      APOS

I could, of course, match finer-grained tokens than this, but this is good enough for my purposes. 
Breaking up the string is the easy part. How do I build up a grammar in code?

The Parser
One approach is to build a tree of Parser objects. Here is the abstract Parser class that I will be using:

// listing 24.07

abstract class Parser
{
    const GIP_RESPECTSPACE = 1;

    protected $respectSpace = false;
    protected static $debug = false;
    protected $discard = false;
    protected $name;
    private static $count=0;

    public function __construct(string $name = null, $options = [])
    {
        if (is_null($name)) {
            self::$count++;
            $this->name = get_class($this) . " (" . self::$count . ")";
        } else {
            $this->name = $name;
        }

        if (isset($options[self::GIP_RESPECTSPACE])) {
            $this->respectSpace=true;
        }
    }

    protected function next(Scanner $scanner)
    {
        $scanner->nextToken();

        if (! $this->respectSpace) {
            $scanner->eatWhiteSpace();



Chapter 24 ■ Appendix B: A Simple Parser

549

        }
    }

    public function spaceSignificant(bool $bool)
    {
        $this->respectSpace = $bool;
    }

    public static function setDebug(bool $bool)
    {
        self::$debug = $bool;
    }

    public function setHandler(Handler $handler)
    {
        $this->handler = $handler;
    }

    final public function scan(Scanner $scanner): bool
    {
        if ($scanner->tokenType() == Scanner::SOF) {
            $scanner->nextToken();
        }

        $ret = $this->doScan($scanner);

        if ($ret && ! $this->discard && $this->term()) {
            $this->push($scanner);
        }

        if ($ret) {
            $this->invokeHandler($scanner);
        }

        if ($this->term() && $ret) {
            $this->next($scanner);
        }

        $this->report("::scan returning $ret");

        return $ret;
    }

    public function discard()
    {
        $this->discard = true;
    }

    abstract public function trigger(Scanner $scanner): bool;

    public function term(): bool



Chapter 24 ■ Appendix B: A Simple Parser

550

    {
        return true;
    }

    protected function invokeHandler(Scanner $scanner)
    {
        if (! empty($this->handler)) {
            $this->report("calling handler: " . get_class($this->handler));
            $this->handler->handleMatch($this, $scanner);
        }
    }

    protected function report($msg)
    {
        if (self::$debug) {
            print "<{$this->name}> " . get_class($this) . ": $msg\n";
        }
    }

    protected function push(Scanner $scanner)
    {
        $context = $scanner->getContext();
        $context->pushResult($scanner->token());
    }

    abstract protected function doScan(Scanner $scan): bool;
}

The place to start with this class is the scan() method. It is here that most of the logic resides. scan() 
is given a Scanner object to work with. The first thing that the Parser does is defer to a concrete child class, 
calling the abstract doScan() method. doScan() returns true or false; you will see a concrete example later 
in this section.

If doScan() reports success, and a couple of other conditions are fulfilled, then the results of the 
parse are pushed to the Context object’s result stack. The Scanner object holds the Context that is used 
by Parser objects to communicate results. The actual pushing of the successful parse takes place in the 
Parser::push() method:

    protected function push(Scanner $scanner)
    {
        $context = $scanner->getContext();
        $context->pushResult($scanner->token());
    }

In addition to a parse failure, there are two conditions that might prevent the result from being pushed 
to the scanner’s stack. First, client code can ask a parser to discard a successful match by calling the 
discard() method. This toggles a property called $discard to true. Second, only terminal parsers (that is, 
parsers that are not composed of other parsers) should push their result to the stack. Composite parsers 
(instances of CollectionParser, often referred to in the following text as collection parsers) will instead 
let their successful children push their results. I test whether or not a parser is terminal using the term() 
method, which is overridden to return false by collection parsers.



Chapter 24 ■ Appendix B: A Simple Parser

551

If the concrete parser has been successful in its matching, then I call another method: 
invokeHandler(). This is passed the Scanner object. If a Handler (that is, an object that implements the 
Handler interface) has been attached to Parser (using the setHandler() method), then its handleMatch() 
method is invoked here. I use handlers to make a successful grammar actually do something, as you will see 
shortly.

Back in the scan() method, I call on the Scanner object (via the next() method) to advance its position 
by calling its nextToken() and eatWhiteSpace() methods. Finally, I return the value that was provided by 
doScan().

In addition to doScan(), notice the abstract trigger() method. This is used to determine whether a 
parser should bother to attempt a match. If trigger() returns false, then the conditions are not right for 
parsing. Let’s take a look at a concrete terminal, Parser. CharacterParse is designed to match a particular 
character:

// listing 24.08

class CharacterParse extends Parser
{
    private $char;

    public function __construct($char, $name = null, $options = null)
    {
        parent::__construct($name, $options);
        $this->char = $char;
    }

    public function trigger(Scanner $scanner): bool
    {
        return ($scanner->token() == $this->char);
    }

    protected function doScan(Scanner $scanner): bool
    {
        return ($this->trigger($scanner));
    }
}

The constructor accepts a character to match and an optional parser name for debugging purposes. 
The trigger() method simply checks whether the scanner is pointing to a character token that matches the 
sought character. Because no further scanning than this is required, the doScan() method simply invokes 
trigger().

Terminal matching is a reasonably simple affair, as you can see. Let’s look now at a collection parser. 
First, I’ll define a common superclass, and then go on to create a concrete example:

// listing 24.09

abstract class CollectionParse extends Parser
{
    protected $parsers = [];

    public function add(Parser $p): Parser
    {



Chapter 24 ■ Appendix B: A Simple Parser

552

        if (is_null($p)) {
            throw new Exception("argument is null");
        }

        $this->parsers[]= $p;

        return $p;
    }

    public function term(): bool
    {
        return false;
    }
}

// listing 24.10

class SequenceParse extends CollectionParse
{
    public function trigger(Scanner $scanner): bool
    {
        if (empty($this->parsers)) {
            return false;
        }

        return $this->parsers[0]->trigger($scanner);
    }

    protected function doScan(Scanner $scanner): bool
    {
        $start_state = $scanner->getState();

        foreach ($this->parsers as $parser) {
            if (! ($parser->trigger($scanner) && $parser->scan($scanner))) {
                $scanner->setState($start_state);
                return false;
            }
        }

        return true;
    }
}

The abstract CollectionParse class simply implements an add() method that aggregates Parsers and 
overrides term() to return false.

The SequenceParse::trigger() method tests only the first child Parser it contains, invoking its 
trigger() method. The calling Parser will first call CollectionParse::trigger() to see if it is worth 
calling CollectionParse::scan(). If CollectionParse::scan() is called, then doScan() is invoked, and 
the trigger() and scan() methods of all Parser children are called in turn. A single failure results in 
CollectionParse::doScan() reporting failure.



Chapter 24 ■ Appendix B: A Simple Parser

553

One of the problems with parsing is the need to try stuff out. A SequenceParse object may contain an 
entire tree of parsers within each of its aggregated parsers. These will push the Scanner on by a token or 
more and cause results to be registered with the Context object. If the final child in the Parser list returns 
false, what should SequenceParse do about the results lodged in Context by the child’s more successful 
siblings? A sequence is all or nothing, so I have no choice but to roll back both the Context object and the 
Scanner. I do this by saving state at the start of doScan() and calling setState() just before returning false 
on failure. Of course, if I return true, then there’s no need to roll back.

For the sake of completeness, here are all the remaining Parser classes:

// listing 24.11

class RepetitionParse extends CollectionParse
{
    private $min;
    private $max;

    public function __construct($min = 0, $max = 0, $name = null, $options = null)
    {
        parent::__construct($name, $options);

        if ($max < $min && $max > 0) {
            throw new Exception(
                "maximum ( $max ) larger than minimum ( $min )"
            );
        }

        $this->min = $min;
        $this->max = $max;
    }

    public function trigger(Scanner $scanner): bool
    {
        return true;
    }

    protected function doScan(Scanner $scanner): bool
    {
        $start_state = $scanner->getState();

        if (empty($this->parsers)) {
            return true;
        }

        $parser = $this->parsers[0];
        $count = 0;

        while (true) {
            if ($this->max > 0 && $count >= $this->max) {
                return true;
            }



Chapter 24 ■ Appendix B: A Simple Parser

554

            if (! $parser->trigger($scanner)) {
                if ($this->min == 0 || $count >= $this->min) {
                    return true;
                } else {
                    $scanner->setState($start_state);

                    return false;
                }
            }

            if (! $parser->scan($scanner)) {
                if ($this->min == 0 || $count >= $this->min) {
                    return true;
                } else {
                    $scanner->setState($start_state);

                    return false;
                }
            }

            $count++;
        }

        return true;
    }
}

// This matches if one or other of two subparsers match
// listing 24.12
class AlternationParse extends CollectionParse
{
    public function trigger(Scanner $scanner): bool
    {
        foreach ($this->parsers as $parser) {
            if ($parser->trigger($scanner)) {
                return true;
            }
        }

        return false;
    }

    protected function doScan(Scanner $scanner): bool
    {
        $type = $scanner->tokenType();

        foreach ($this->parsers as $parser) {
            $start_state = $scanner->getState();



Chapter 24 ■ Appendix B: A Simple Parser

555

            if ($type == $parser->trigger($scanner) && $parser->scan($scanner)) {
                 return true;
            }
        }

        $scanner->setState($start_state);

        return false;
    }
}

// this terminal parser matches a string literal
// listing 24.13
class StringLiteralParse extends Parser
{
    public function trigger(Scanner $scanner): bool
    {
        return (
            $scanner->tokenType() == Scanner::APOS ||
            $scanner->tokenType() == Scanner::QUOTE
        );
    }

    protected function push(Scanner $scanner)
    {
        return;
    }

    protected function doScan(Scanner $scanner): bool
    {
        $quotechar = $scanner->tokenType();
        $ret = false;
        $string = "";

        while ($token = $scanner->nextToken()) {
            if ($token == $quotechar) {
                $ret = true;
                break;
            }

            $string .= $scanner->token();
        }

        if ($string && ! $this->discard) {
            $scanner->getContext()->pushResult($string);
        }

        return $ret;
    }
}



Chapter 24 ■ Appendix B: A Simple Parser

556

// this terminal parser matches a word token
// listing 24.14
class WordParse extends Parser
{
    public function __construct($word = null, $name = null, $options = [])
    {
        parent::__construct($name, $options);
        $this->word = $word;
    }

    public function trigger(Scanner $scanner): bool
    {
        if ($scanner->tokenType() != Scanner::WORD) {
            return false;
        }

        if (is_null($this->word)) {
            return true;
        }

        return ($this->word == $scanner->token());
    }

    protected function doScan(Scanner $scanner): bool
    {
        return ($this->trigger($scanner));
    }
}

By combining terminal and nonterminal Parser objects, I can build a reasonably sophisticated parser. 
You can see all the Parser classes I use for this example in Figure 24-1.



Chapter 24 ■ Appendix B: A Simple Parser

557

The idea behind this use of the Composite pattern is that a client can build up a grammar in code that 
closely matches EBNF notation. Table 24-1 shows the parallels between these classes and EBNF fragments.

Figure 24-1.  The Parser classes

Table 24-1.  Composite Parsers and EBNF

Class EBNF Example Description

AlternationParse orExpr | andExpr Either one or another

SequenceParse 'and' operand A list (all required in order)

RepetitionParse ( eqExpr )* Zero or more required



Chapter 24 ■ Appendix B: A Simple Parser

558

Now it’s time to build some client code to implement the mini-language. As a reminder, here is the 
EBNF fragment I presented in Chapter 11:

expr     = operand { orExpr | andExpr }
operand  = ( '(' expr ')' | ? string literal ? | variable ) { eqExpr }
orExpr   = 'or' operand
andExpr  = 'and' operand
eqExpr   = 'equals' operand
variable = '$' , ? word ?

This simple class builds up a grammar based on this fragment and runs it:

// listing 24.15

class MarkParse
{
    private $expression;
    private $operand;
    private $interpreter;
    private $context;

    public function __construct($statement)
    {
        $this->compile($statement);
    }

    public function evaluate($input)
    {
        $icontext = new InterpreterContext();
        $prefab = new VariableExpression('input', $input);
        // add the input variable to Context
        $prefab->interpret($icontext);

        $this->interpreter->interpret($icontext);
        $result = $icontext->lookup($this->interpreter);

        return $result;
    }

    public function compile($statementStr)
    {
        // build parse tree
        $context = new Context();
        $scanner = new Scanner(new StringReader($statementStr), $context);
        $statement = $this->expression();
        $scanresult = $statement->scan($scanner);

        if (! $scanresult || $scanner->tokenType() != Scanner::EOF) {
            $msg  = "";
            $msg .= " line: {$scanner->line_no()} ";
            $msg .= " char: {$scanner->char_no()}";
            $msg .= " token: {$scanner->token()}\n";

http://dx.doi.org/10.1007/978-1-4842-1996-6_11


Chapter 24 ■ Appendix B: A Simple Parser

559

            throw new Exception($msg);
        }

        $this->interpreter = $scanner->getContext()->popResult();
    }

    public function expression(): Parser
    {
        if (! isset($this->expression)) {
            $this->expression = new SequenceParse();
            $this->expression->add($this->operand());
            $bools = new RepetitionParse();
            $whichbool = new AlternationParse();
            $whichbool->add($this->orExpr());
            $whichbool->add($this->andExpr());
            $bools->add($whichbool);
            $this->expression->add($bools);
        }

        return $this->expression;
    }

    public function orExpr(): Parser
    {
        $or = new SequenceParse();
        $or->add(new WordParse('or'))->discard();
        $or->add($this->operand());
        $or->setHandler(new BooleanOrHandler());

        return $or;
    }

    public function andExpr(): Parser
    {
        $and = new SequenceParse();
        $and->add(new WordParse('and'))->discard();
        $and->add($this->operand());
        $and->setHandler(new BooleanAndHandler());

        return $and;
    }

    public function operand(): Parser
    {
        if (! isset($this->operand)) {
            $this->operand = new SequenceParse();
            $comp = new AlternationParse();
            $exp = new SequenceParse();
            $exp->add(new CharacterParse('('))->discard();
            $exp->add($this->expression());
            $exp->add(new CharacterParse(')'))->discard();
            $comp->add($exp);



Chapter 24 ■ Appendix B: A Simple Parser

560

            $comp->add(new StringLiteralParse())
                ->setHandler(new StringLiteralHandler());
            $comp->add($this->variable());
            $this->operand->add($comp);
            $this->operand->add(new RepetitionParse())->add($this->eqExpr());
        }

        return $this->operand;
    }

    public function eqExpr(): Parser
    {
        $equals = new SequenceParse();
        $equals->add(new WordParse('equals'))->discard();
        $equals->add($this->operand());
        $equals->setHandler(new EqualsHandler());

        return $equals;
    }

    public function variable(): Parser
    {
        $variable = new SequenceParse();
        $variable->add(new CharacterParse('$'))->discard();
        $variable->add(new WordParse());
        $variable->setHandler(new VariableHandler());

        return $variable;
    }
}

This may seem like a complicated class, but all it is doing is building up the grammar I have already 
defined. Most of the methods are analogous to production names (that is, the names that begin each 
production line in EBNF, such as eqExpr and andExpr). If you look at the expression() method, you should 
see that I am building up the same rule as I defined in EBNF earlier:

// expr     = operand { orExpr | andExpr }
    public function expression()
    {
        if (! isset($this->expression)) {
            $this->expression = new SequenceParse();
            $this->expression->add($this->operand());
            $bools = new RepetitionParse();
            $whichbool = new AlternationParse();
            $whichbool->add($this->orExpr());
            $whichbool->add($this->andExpr());
            $bools->add($whichbool);
            $this->expression->add($bools);
        }

        return $this->expression;
    }



Chapter 24 ■ Appendix B: A Simple Parser

561

In both the code and the EBNF notation, I define a sequence that consists of a reference to an operand, 
followed by zero or more instances of an alternation between orExpr and andExpr. Notice that I am storing 
the Parser returned by this method in a property variable. This is to prevent infinite loops, as methods 
invoked from expression() themselves reference expression().

The only methods that are doing more than just building the grammar are compile() and evaluate(). 
compile() can be called directly or automatically via the constructor, which accepts a statement string and 
uses it to create a Scanner object. It calls the expression() method, which returns a tree of Parser objects 
that make up the grammar. It then calls Parser::scan(), passing it the Scanner object. If the raw code does 
not parse, the compile() method throws an exception. Otherwise, it retrieves the result of compilation as left 
on the Scanner object’s Context. As you will see shortly, this should be an Expression object. This result is 
stored in a property called $interpreter.

The evaluate() method makes a value available to the Expression tree. It does this by predefining 
a VariableExpression object named input and registering it with the Context object that is then passed 
to the main Expression object. As with variables such as $_REQUEST in PHP, this $input variable is always 
available to MarkLogic coders.

■■ Note  See Chapter 11 for more about the VariableExpression class that is part of the Interpreter pattern 
example.

The evaluate() method calls the Expression::interpret() method to generate a final result. 
Remember, you need to retrieve interpreter results from the Context object.

So far, you have seen how to parse text and how to build a grammar. You also saw in Chapter 11 how 
to use the Interpreter pattern to combine Expression objects and process a query. You have not yet seen, 
however, how to relate the two processes. How do you get from a parse tree to the interpreter? The answer 
lies in the Handler objects that can be associated with Parser objects using Parser::setHandler(). Let’s 
take a look at the way to manage variables. I associate a VariableHandler with the Parser in the variable() 
method:

$variable->setHandler(new VariableHandler());

Here is the Handler interface:

// listing 24.16

interface Handler
{
    public function handleMatch(
        Parser $parser,
        Scanner $scanner
    );
}

And here is VariableHandler:

// listing 24.17

class VariableHandler implements Handler
{

http://dx.doi.org/10.1007/978-1-4842-1996-6_11
http://dx.doi.org/10.1007/978-1-4842-1996-6_11


Chapter 24 ■ Appendix B: A Simple Parser

562

    public function handleMatch(Parser $parser, Scanner $scanner)
    {
        $varname = $scanner->getContext()->popResult();
        $scanner->getContext()->pushResult(new VariableExpression($varname));
    }
}

If the Parser with which VariableHandler is associated matches on a scan operation, then 
handleMatch() is called. By definition, the last item on the stack will be the name of the variable. I remove 
this and replace it with a new VariableExpression object with the correct name. Similar principles are used 
to create EqualsExpression objects, LiteralExpression objects, and so on.

Here are the remaining handlers:

// listing 24.18

class StringLiteralHandler implements Handler
{
    public function handleMatch(Parser $parser, Scanner $scanner)
    {
        $value = $scanner->getContext()->popResult();
        $scanner->getContext()->pushResult(new LiteralExpression($value));
    }
}

// listing 24.19

class EqualsHandler implements Handler
{
    public function handleMatch(Parser $parser, Scanner $scanner)
    {
        $comp1 = $scanner->getContext()->popResult();
        $comp2 = $scanner->getContext()->popResult();
        $scanner->getContext()->pushResult(new EqualsExpression($comp1, $comp2));
    }
}

// listing 24.20

class BooleanOrHandler implements Handler
{
    public function handleMatch(Parser $parser, Scanner $scanner)
    {
        $comp1 = $scanner->getContext()->popResult();
        $comp2 = $scanner->getContext()->popResult();
        $scanner->getContext()->pushResult(new BooleanOrExpression($comp1, $comp2));
    }
}

// listing 24.21



Chapter 24 ■ Appendix B: A Simple Parser

563

class BooleanAndHandler implements Handler
{
    public function handleMatch(Parser $parser, Scanner $scanner)
    {
        $comp1 = $scanner->getContext()->popResult();
        $comp2 = $scanner->getContext()->popResult();
        $scanner->getContext()->pushResult(new BooleanAndExpression($comp1, $comp2));
    }
}

Bearing in mind that you also need the Interpreter example from Chapter 11 at hand, you can work with 
the MarkParse class like this:

$input      = 'five';
$statement = "( \$input equals 'five')";

$engine = new MarkParse($statement);
$result = $engine->evaluate($input);
print "input: $input evaluating: $statement\n";

if ($result) {
    print "true!\n";
} else {
    print "false!\n";
}

This should produce the following results:

input: five evaluating: ( $input equals 'five')
true!

http://dx.doi.org/10.1007/978-1-4842-1996-6_11


565© Matt Zandstra 2016 
M. Zandstra, PHP Objects, Patterns, and Practice, DOI 10.1007/978-1-4842-1996-6

�       � A
Abstract Factory pattern, 179
add() method, 216, 335
addClean() method, 349
addDirty() method, 349
addNew() method, 349
addTest() method, 362
addToMap() method, 347, 356
addUnit() method, 213, 216–217
addUser() method, 437
anonymous classes, 95
Ant, 7
ApplicationRegistry::instance()  

method, 454

�       � B
BinaryCloud, 5
bombardStrength() method, 213–215, 221
BooleanAndExpression, 238
Bugzilla, 532
Build document composing

build.xml, 467
copy task

overwrite attribute, 483
tofile attribute, 482

delete task, 485
echo task, msg attribute, 482
fileset data type

excludes attribute, 478
fileset element attribute, 478
filterchain element, 480
includes attribute, 478
patternset element, 479

input task, 484
phing command, 467
project element, 468
property element

additional attribute, 471
condition task, 476

dbname, 472
dbpass, 472, 474
-D flag, 472
${env.DBPASS}, 474
if attribute, 471
name, 471
override attribute, 473
propertyfile option, 475
target element attribute, 473
unless attribute, 472
value, 471

targets
default attribute, 469
description attribute, 469
housekeeping function, 470
main target, 468
name attribute, 468
projecthelp, 470
runfirst, 469
runsecond, 469

-v flag, 466
XML comments, 467

buildStatement() method, 367
Business Logic Layer

domain model, 322
class diagram, 324
cut-and-paste coding, 323
static method, 325
Venue object, 324

transaction script
consequences, 322
database tables, 319
prepare() method, 321, 322
superclass, 319
VenueManager class, 320

�       � C
calculateTax() method, 56
chargeType() method, 166, 169
Code design, 133

Index



■ INDEX

566

Command pattern, 235
abstract base class, 268
AccessManager class, 269
AccessManager object, 268
client coding, 269
concrete Command class, 268
Command class, 267, 271
CommandContext implementation, 269
CommandFactory class, 270
LoginCommand class, 268, 269
login.php/feedback.php pages, 267
participants, 272
point-of-contact pages, 267
process() method, 271
refactoring, 269
Registry class, 269

Composer
autoload, 403
definition, 399
installation, 400
packages

installation, 401
.json file, 401
platform packages, 405
require-dev, 402
vendor name, 404
versions, 402

packagist, 406
composer.json file, 408
installattion, 408
package control panel, 407
version, 408

private package, 409
Composite pattern

abstract methods, 215
add/remove methods, 216, 220
Archer and LaserCannonUnit classes, 213, 215
Army and TroopCarrier classes, 215
class diagram, 214
CompositeUnit class, 220
explicit reach, 218
flexibility, 217
implicit reach, 218
inheritance hierarchies, 212
simplicity, 217
troop carriers, 214
unit types, 212

Condition task, 476
constant() method, 302
Constructor method, 21
Continuous integration (CI)

abstract cost() method, 166, 169
check coverage, 506
code coverage, 504
create() method, 66

createObject() method, 355
creation, 498
CVS, 531
definition, 497
install phpDocumentor, 503
Jenkins

building link, 516
definition, 508
Fedora distribution, 509
Git public key, 510
plugins, 509
project installation, 511
report configuration, 517
triggering builds, 520

phing, 499, 501
PHP_CodeSniffer task, 507
testreport.xml, 507
type xml, 507
unit tests, 501
version control, 499

�       � D
Database Pattern

domain object factory
classes, 356
Collection implementation, 357
createObject() method, 355
database decoupling, 357
objects on demand, 357
PersistenceFactory class, 358

identity object
classes, 360
client code, 364
consequences, 365
EventIdentityObject class, 365
IdentityObject class, 359, 362–364
problem, 359
WHERE clause, 360–361

Lazy Load
consequences, 355
DeferredEventCollection method, 355
doCreateObject() method, 353
EventCollection object, 354
notifyAccess() method, 354
SpaceCollection object, 352
SpaceMapper code, 353
Space object, 353

selection and update factory
base class, 367
buildStatement() method, 367
class diagram, 366
consequences, 370
newUpdate() method, 367
PersistenceFactory, 369



■ INDEX

567

problem, 366
SelectionFactory class, 368–369
newUpdate() method, 368
UpdateFactory class, 367
VenueUpdateFactory class, 368

Unit of Work
addClean() method, 349
addDirty() method, 349
addNew() method, 349
consequences, 352
constructor method, 350–351
database operations, 348
DomainObject class, 350
Mapper class, 351
markDirty(), 351
ObjectWatcher class, 349
ObjectWatcher object, 348
performOperations()  

method, 350, 352
SQL statements, 348
Venue and Space, 352

Data layer, 327
Data Mapper

base class, 329
Child classes, 330
Collection class, 335, 336
Collection object acquisition

Collection classes, 339
findAll() method, 341
findByVenue() method, 342
setSpaces() operation, 340
SpaceCollection, 342
SpaceMapper class, 341

consequences, 342
doCreateObject() method, 330
doInsert() method, 332
DomainObjectAssembler class, 370
find() method, 333
generator function, 336
getFinder() method, 372
getVenueMapper() method, 330
insert() method, 330
insertion and updation, 332
Iterator implementation, 333
Iterator interface, 333
Mapper classes, 328
persistence classes, 372
Registry class, 330
$raw argument, 335
relational database, 328
selectStmt(), 332
Update() method, 332
Venue objects, 372
VenueCollection class, 335
VenueCollection object, 336

Decorator pattern
class diagram, 223, 226
class hierarchy, 224
composition and delegation, 225
consequences, 229
DecorateProcess, 228
DiamondDecorator, 226
getWealthFactor() method, 223
hard-code variation, 222, 224
implementation, 227
Plains object, 223
Pollution and Diamond classes, 225
PollutionDecorator, 226
Tile class, 222

defensiveStrength()method, 214
Dependency Injection pattern, 179
Design patterns

Abstract Factory, 158
Abstract Factory pattern, 529
benefits of, 528
books, list of, 535
collaboration, 162
common vocabulary, 528
complementary patterns, 528
consequences, 160
definition, 157
definition of, 528
gang of four format, 160
half-baked nature of, 528
inscribe approaches, 158
language independent, 161
name, 159
nuances solution, 160
overuse of, 529
pattern language, 158, 159
PHP, 162
popular frameworks, 162
problem defines, 159, 161
promoting good design, 162
recognizing and context problems, 159
recursive descent parser, 158
tried-and-tested technique, 161, 162
vocabulary defines, 161–162
web sites, list of, 536

Design pattern principles
composition and inheritance

abstract class, 169
brute-force solution, 166–167
child classes, 166
class diagram, 169
CostStrategy implementation, 170
Lesson class, 166–168, 170
strategy pattern, 169

concept, 176
database patterns, 178



■ INDEX

568

decoupling, 165
client code, 175
DBAL package, 173
encapsulation, 172
implementation, 173
Lesson system, 173
Mailer class, 173
MySQL database, 172
RegistrationMgr, 174
reusability, 172
tight coupling, 172

enterprise patterns, 178
eXtreme Programming, 177
interface power, 165, 175
objects and classes, 177
pattern categories, 165
revelation, 165
task-oriented patterns, 177

doCreateObject() method, 330, 353
doInsert() method, 332
dointerpret() method, 242
Domain Specific Language (DSL), 235

�       � E
Encapsulation, 142
Enterprise patterns

architecture overview, 277
business logic layer, 277
presentation layer, 277
registry pattern, 277

Enterprise system
application controller, 278
architecture overview, 278
business logic layer, 279
command and control layer, 279
data layer, 279
domain model, 278
front controller, 278
HTML interface, 279
page controller, 278
participants, 280
presentation layer (see Presentation layer)
registry pattern

ApplicationHelper class, 281
code class, 282
configuration file, 284
consequences, 286
instance() method, 283
key-based system, 283
PHP, 285
Registry object, 282
scope, 285

Singletons, 280
static instance() method, 284
tradeoff, 281
TreeBuilder, 284

SOAP/RESTful API, 279
template view, 278
testing, 279
transaction script, 278
view layer, 279

Error-prone method, 70
EventMapper::findBySpaceId() method, 353
execute() method, 433
exists() method, 346
expectException() method, 443
Extended Backus-Naur Form (EBNF), 237
Extreme Programming (XP), 438

�       � F
Facade pattern

consequences, 232
implementation, 231
procedural code, 230
subsystems, 230

Factory Method pattern, 179, 197
fatal error, 75
FilterChain element

build/lib/Config.php, 481
PHP comment, 480
replacetokens, 481
src/lib/Config.php, 481
StripPhpComments, 480
todir attribute, 480
XSLT transformation, 481

findAll() method, 341
findByVenue() method, 342
findElement() method, 463
Flexible object programming

composite pattern, 211
decorator pattern, 211, 222
facade pattern, 211, 229

forward() method, 315

�       � G
generateId() method, 58
getApptEncoder() method, 189
getCommand() method, 292
getComposite() method, 219–220
getDepth() method, 262
getDescriptor() method, 305
getFinder() method, 372
getFooterText() method, 190
getFromMap() method, 347, 356

Design pattern principles (cont.)



■ INDEX

569

getHeaderText() method, 190
getInstance() method, 138, 184
getKey() method, 238, 240
getPlayLength()method, 54
getPrice()method, 55
getProducer() method, 20
getProduct() function, 114
getRow() method, 335
getStatus() method, 255
getTaxRate() method, 63
getUser() method, 437, 452
getVenueMapper() method, 330
getWealthFactor() method, 223, 226
Git server

add directories, 424, 425
cloning, 420
command/FeedbackCommand.php file, 428
documentation, 421
execute() method, 433
feedbackcommand, 433
git branch command, 427
GitHub tag, 413–415, 426
git push command, 428
installation, 412
megaquiz project, 417
pull request, 430, 431
quizobjects/User.php vs. file, 421–422
remote repository, 415

local user, 416
shell access, 417
SSH access, 416

remove directory, 425, 426
version control, 411

globalKey() method, 346

�       � H
handleLogin() method, 252, 254
handleRequest() method, 288

�       � I
Identity Map

addToMap() method, 347
consequences, 347
exists() method, 346
getFromMap() method, 347
globalKey() method, 346
integration, 345
object information, 344
ObjectWatcher class, 346
targetClass() method, 347
test code, 343

Inheritance
class switching (polymorphism), 529
problem

books and CDs, 31
first approach, 31
getProducer() methods, 34
getSummaryLine() method, 34
numPages and $playLength properties, 32
ShopProduct class, 30
ShopProductWriter class, 35

public, private and protected access
accessor methods, 41, 42
elements, 41
getPrice() method, 42
ShopProduct classes, 43
private $price property, 42

working
constructors, 38
getPlayLength() and getNumberOfPages() 

methods, 35
getSummaryLine() method, 37
overridden method, 40
$title property, 38

init() method, 204, 288–289, 453
insert() method, 330
instance() method, 283, 284
interpret() method, 238, 240–242
InterpreterContext class, 240
InterpreterContext object, 238, 240
Interpreter pattern, 235

add() method, 552
BooleanAndExpression class, 242
Boolean logic, 236
BooleanOrExpression class, 242, 243
BooleanOrExpression object, 243–244
CharacterParse class, code listing, 551
class diagram, 245
CollectionParse class, code listing, 551
compile() method, 561
complexity issue, 236
composite parsers, 550
composite pattern, 557
Context class, code listing, 545
disadvantages, 245
discard() method, 550
dointerpret() method, 242
doScan() method, 550–553
DSL, 235
eatWhiteSpace() method, 551
EBNF, 237
EqualsExpression class, 242
EqualsExpression objects, 243
equals operator, 236



■ INDEX

570

evaluate() method, 561
expression implementation, 238–239
expression() method, 560–561
getKey() method, 238
getState() method, 545
grammar description, 237
handleMatch() method, 551, 562
interface design, 235
interpret() method, 238, 561
InterpreterContext class, 240
InterpreterContext object, 238
invocation internals, 244
invokeHandler() method, 551
isSpaceChar() method, 545
isWordChar() method, 545
LiteralExpression object, 243
lookup() method, 240
MarkLogic Grammar, 236, 237
MarkLogic interpreter, 539
MarkParse class, code listing, 558
Metsker, Steven, 539
mini-language, 235, 236
next() method, 551
nextToken() method, 545, 547, 551
OperatorExpression class, 241, 242
Parser class, code listing, 548
Parser classes, illustration of, 556
parsing statement, 539
push() method, 550
Reader interface, 546
replace() method, 240
scan() method, 550–552
Scanner class, code listing, 539
ScannerState class, 545
security issue, 236
setHandler() method, 551, 561
setState() method, 545, 553
StringReader class, 546
terminal parsers, 550
term() method, 550, 552
tokens, 539
tree of, Parser objects, 548
trigger() method, 551–552
VariableExpression object, 243–244
VariableExpression class, 240–241
VariableHandler class, 561
variable() method, 561

is_array() function, 452
isNull() method, 276

�       � J, K
joinExisting() method, 221

�       � L
Late static bindings, 66
LibXmlError class, 73
LiteralExpression class, 240
LiteralExpression object, 238, 240
LoginAnalytics class, 255
lookup() method, 240

�       � M
mail() function, 379
Mailman, 532
Mapper::createObject() method, 335
mark() method, 246–247, 250
Matcher methods, 448
MatchMarker, 249
Megaquiz project, 416
method() method, 448
ModuleRunner::handleMethod() method, 130
ModuleRunner’s init() method, 129
movementRange()method, 214
myMethodName() function, 389

�       � N
NastyBoss::addEmployee() method, 180
newUpdate() method, 367, 368
Notifier::getNotifier() method, 174
notifyAccess() method, 335, 354
notifyPasswordFailure() method, 447–448
Null Object pattern, 235

isNull() method, 276
NullUnit class, 275
TileForces constructor, 273, 275
UnitAcquisition class, 273, 276

�       � O
Object generation

abstract factory pattern
BloggsCal, 194
BloggsCommsManager class, 196
CommsManager class, 196
concrete creator and products, 195, 197
consequences, 197
factory method, 197
MegaCal, 194
product families, 194

AppConfig class, 204, 208
AppointmentMaker, 206, 207
assembler class, 207
BloggsApptEncoder object, 205
delegate object instantiation, 182

Interpreter pattern (cont.)



■ INDEX

571

Employee class, 182, 183
factory method pattern

abstract class ApptEncoder, 191
abstract class CommsManager, 192
abstract creator, 188
ApptEncoder class, 188
BloggsApptEncoder class, 191
BloggsCal, 188
BloggsCommsManager class, 192
CommsManager class, 189–190
Concrete creator, 191
consequences, 193
generalizations, 187
getFooterText() method, 190
MegaCal classes, 192
product classes, 188
terminology, 188

getInstance() method, 184
hard-code configuration, 203
init() method, 204
NastyBoss class, 181–182
polymorphism, 181
protocol types, 203
prototype object, 205
prototype pattern

benefits, 200
Civilization-style web game, 199
class diagram, 199
clone() method, 199, 202, 203
$navigability property, 202
parallel inheritance hierarchies, 199
TerrainFactory object, 199, 202
TerrainFactory class, 202

Singleton pattern
consequences, 187
DSN strings, 184
global variables, 184
implementation, 187
$instance property, 186
Preferences class, 184–185
Preferences object, 184
private constructor, 185
static method, 185–186
well-designed systems, 184

static method, 182
string and instantiates, 179
TerrainFactory class, 207

Object-oriented design
aesthetics of, 527
automated build, 531
code duplication, 526
Continuous Integration (CI), 532
decoupling, definition of, 526
encapsulation, 526, 530
global variables, 526

metasystem, 530
multiple projects, 527
phpDocumentor, 532
polymorphism, 526
public interface, 529
reusability, promoting, 527
test frameworks, benefits of, 531
tight coupling, causes of, 526

Object-oriented system, 133
Objects and design

abstract base class, 136
addParam()method, 136
classes, 139
code design, 133
Cohesion, 138
coupling, 139
encapsulation, 142
file extension, 138
getInstance() method, 137
illustrative code, 136
interface, 143
orthogonality, 139
persistence method, 140
polymorphism

abstract base class, 141
conditional statement, 140
definition, 140
return type, 142
subclasses, 141

procedural code, 134
readParams function, 134, 136, 138
responsibility, 138
signposts

code duplication, 143
conditional statements, 144
global variables, 144
responsibility, 144

static method, 137
UML (see Unified modeling language (UML))
writeParams() function, 135, 136, 138
XML mode, 135

$objects array, 335
Object tools and techniques

autoload
default behavior, 109
functions, 108, 109, 111
mechanisms, 111
replaceUnderscores() function, 110
ShopProduct class, 108
spl_autoload() function, 108
spl_register_function(), 110
spl_unregister_function(), 111

class and object functions
BookProduct/CdProduct class, 114
callable(), 116



■ INDEX

572

class_exists() function, 113
fully qualified string reference, 115
get_class() function, 114
get_class_methods(), 116
get_declared_classes() function, 113
getProduct() function, 114
inheritance, 117
method_exists() function, 117
method invocation, 118
properties, 117

file system, 105
include paths, 107
PEAR way, 106
PHP packages and namespaces

alias explicit, 103
backslash accesses, 104
classes, functions, and variables, 101
Debug class, 102
global space, 103
helloWorld(), 102
__NAMESPACE__ constant, 104
naming collisions, 99
organization/project identifier, 101
URL and filepaths, 102

Reflection API
application, 124
classes, 120
cloneable method, 124
examining methods, 124, 126
execute() method, 127
handleMethod(), 130
implementation, 129
init() method loops, 129, 130
module interface, 128
module object’s setter methods, 130
multidimensional array, 129
$params array argument, 131
quick-and-dirty method, 124
ReflectionClass, 123–124, 130
ReflectionClass object, 123
ReflectionFunction class, 120
ReflectionMethod, 131
static export() method, 120
var_dump() function, 122

Observer pattern, 235
abstract superclass, 255
attach() method, 253–255, 259
class diagram, 257
detach() method, 253–254, 259
getStatus() method, 255
handleLogin() method, 252, 254
implementation, 257
Login class, 252
LoginObserver class, 256

notify() method, 253, 254
Observer class interface, 253, 254
rand() function, 252
SPL, 257
SplObjectStorage, 257–258
SplObserver, 257–258
SplSubject, 257–258
Update() method, 259
user access, 251

OperatorExpression, 238
Orthogonality, 250
Overloading, 79

�       � P, Q
Packages

build tool, 380
clients vs. developers, 379
cloud products, 380
composer, 378
good mail() function, 379
packagist website, 378–379
PEAR, 378, 381
Phing application, 380
standards, 381
third-party packages, 378
version control system, 379–380

ParamHandler class, 138, 143
parse() method, 302
Pattern Language, 158
PatternSet

attributes, 479
exc_test, 479
inc_code, 479
refid attribute, 479

PEAR, 531
Pear application, 500
performOperations() method, 350, 352
Phing, 531

Ant, 465
definition, 465
installation tool, 466
package creation, 466
PHP application, 466
PHP tool, 465
tar/gzipped package, 466
tasks, 482

PHP
client code, 526
Zend Engine 2, 525

PHP 5, 7
PHP CODEBASE

Apache module ModRewrite, 4
BinaryCloud, 5
design pattern, 4

Object tools and techniques (cont.)



■ INDEX

573

Java language, 5
object-oriented design, 4
objects, 6
patterns, 6
practice, 6–7
presentation layer, 4
testing, 5
XP’s principles, 5
Zend 2 Engine, 5

php_codesniffer task, 508
PHP Extension and Application  

Repository (PEAR), 106, 378
PHP Framework Interop Group (PHP-Fig), 386
PHP objects

advocacy and agnosticism, 12
Andi Gutmans, 9
change embraced, 11
features, 9
inheritance, 10
PHP 7, 12
PHP/FI, 9
quiet revolution, 10
Zeev Suraski, 9

PHP’s core object-oriented features
abstract class, 51
anonymous classes, 95
arguments and types

AddressManager class, 24
hint types, 26
outputAddresses() method, 23–25
primitive types and checking functions, 23

Built-in Error classes, 79
callbacks, anonymous functions  

and closures, 91–95
classes, 15
__clone(), 87
constant properties, 51
destructor methods, 85–86
final classes and methods, 77
handling errors

Conf class, 69
error flag, 70
exception, 70–71
simplexml:load_file(), 70
subclassing exception, 72
throw exception, 71–72
try/catch clauses, 75–76

inheritance (see PHP’s core Inheritance)
interceptor methods

Address::$streetaddress property, 85
__call() method, 82–83
composite property, 84
get() method, 80, 84, 85
getName() method, 81
__isset() method, 81

$name property, 80
overloading, 79
Person class, 82–83
__set() method, 80–82, 84
setName() method, 82
__unset(), 82

interfaces, 53
internal error class, 78
late static bindings

abstract classes, 65
create() method, 66
definition, 66
DomainObject, 65
DomainObject class, 67
getGroup() method, 68
self keyword, 66
SpreadSheet class, 68
static factory method, 66

methods
constructor method, 21
getProducer() method, 20
method body, 19
object variable, 20
visibility keyword, 19

objects, 16
setting properties, 17
static methods and properties, 47
__toString() method, 90
traits

abstract method, 63
access rights changing, 64–65
calculateTax() method, 59–60
host class properties, 62–63
insteadof operator, 60
interfaces, 58–59
overridden methods, 61
PriceUtilities and IdentityTrait, 58
problem, 56
ShopProduct and UtilityService, 57
static methods, 61–62

PHP Standards
design pattern, 385
PSR-1

class file, 389
class naming, 389
opening and closing tags, 388
read_conf() method, 390
side effects, 388

PSR-2
calling methods and functions, 392
class declaration, 391
flow control keywords, 393
lines and indentation, 392
multi line declaration, 392
namespace declarations, 390



■ INDEX

574

PHP_CodeSniffer, 393–394
properties declaration, 391
single line declaration, 391

PSR-4
additional/inventory directories, 397
Autoloading Standard, 395
index.php, 397
json file, 396
LibraryCatalogue class, 396
popp\library namespace, 397
popp\library class, 396
popp\library\inventory\Book class, 397
popp\Services class, 396
require_once(), 398

PSRs, 386–387
recommendations, 386

PHPUnit, 7
PHPUnit_Framework_TestCase method, 448
PHPUnit testing

acceptance tests, 435
assertion methods, 441
benefits, 463
client class, 437
constraint methods, 446
exceptions, 442
functional tests, 435
in-memory database, 464
mocks and stubs, 447, 464
.phar file, 438
refactoring web applications, 452
Selenium

AddSpace page, 462
AddVenue page, 461
boilerplate test class, 458
browser window, 462
components, 457
documentation, 458
factory methods, 461
php-webdriver, 458
RemoteWebDriver class, 459
sendKeys() method, 463
web pages, 460

SUnit framework, 438
testing by hand, 436
unit tests, 435–436
UserStore class, 439, 449
ValidatorTest class, 444
WOO system, 455
xUnit family, 438

Portland Pattern Repository, 160
Presentation layer

application controller
AddSpace command, 297
AddVenue command, 297, 300

AppController class, 304
CliRequest, 307
Command/status element, 300
Command class, 299, 308
ComponentDescriptor, 303
Concrete Command, 309
configuration directives, 299
consequences, 310
Front Controller, 298
getDescriptor() method, 305
high-level process, 307–308
initialization process, 303
pattern, 298
processView() method, 302
resolveCommand() method, 304
TemplateViewComponent, 305
TemplateViewDisplay, 306
view element, 300
ViewComponentCompiler  

class, 301
Front Controller, 286

ApplicationHelper class, 288, 289
CliRequest class, 294–295
Command class, 292, 295
CommandResolver, 290–291
consequences, 296
Controller class, 287
execute() method, 295
handleRequest() method, 288
HttpRequest class, 294
implementation, 287
init() method, 288
Request superclass, 292
run() method, 288
sequence diagram, 296

Page Controller
AddVenueController class, 313
base class, 311
child class, 312
consequences, 315
forward() method, 315
new venue, 312
pattern, 314
process() method, 313
relationship management, 310
view element, 311

Template View, 315
consequences, 317
render() method, 316
Security issues, 316
sponsorList() method, 317
View Helper class, 316

process() method, 228, 271, 313
processView() method, 302
Prototype pattern, 179

PHP Standards (cont.)



■ INDEX

575

�       � R
rand() function, 252
$raw array, 335
recruit() method, 183
RegexpMarker, 249
registerCallback(), 92
remove() method, 216
removeUnit() method, 217
render() method, 316
replace() method, 240
resolveCommand() method, 304
run() method, 454
runCommand() method, 455–456
Runner.php class, 452

�       � S
sale() method, 92
sendKeys() method, 463
Service Locator pattern, 179
setDepth() method, 262
setMaximumStart() method, 361
setUp() method, 439, 457
setValue() method, 241, 244
ShopProduct classes, 140
Singleton pattern, 179
SpaceIdentityObject, 360
spl_autoload_register()  

function, 395
sponsorList() method, 317
Standard PHP Library (SPL), 257
Strategy pattern, 235

defining subclasses
marking strategies, 246
two forces, 246

extracting algorithms, 247
increasing flexibility, 247
inheritance hierarchy, 247
mark() method, 246
marker objects, 248
MarkLogic statement, 249
MarkParse object, 249
Question class

AVQuestion, 248
coding, 247
TextQuestion, 248

reducing subclassing, 247
TextQuestion object, 250

SUnit framework, 438

�       � T
targetClass() method, 335, 347
tearDown() method, 440
Template Method, 256
TestCase class, 448
testgetUser() method, 441
Test harness, 381

�       � U
Unified modeling language (UML)

class diagrams
abstract classes, 146
aggregation, 149–150
association, 149
attributes, 146
clarification, 153
composition, 150–151
inheritance and implementation, 148
interfaces, 146
operations, 147
relationship, 151
representing classes, 145
visibility symbols, 146

constraints, 146
definition, 144
sequence diagram, 151–153

Unified Modeling Language (UML), 6
Update() method, 259, 332
UserStore::addUser() method, 443
UserStore class, 439

�       � V
Vagrant, 381

commands, 496
mounting, 490
provisioning process

chkconfig, 493
hostname configuration, 494
MySQL, 493
mysqladmin command, 493
poppch20.conf file, 492
Vagrantfile document, 491

search interface, 488
Vagrantfile document, 489
VirtualBox installation, 488
virtualization, 488

validateUser() method, 438, 452, 522



■ INDEX

576

VariableExpression class, 238, 240–241
VenueMapper::doCreateObject()  

method, 341
Version control

benefits of, 531
branching, 531
rolling back by date, 531

visitArmy() method, 266
Visitor pattern, 235

accept() method, 261–262, 264, 266
addUnit() method, 264
ArmyVisitor object, 262–263
class diagram, 266
CompositeUnit class, 260
disadvantages, 266
getDepth() method, 262
getReport() method, 266
getTax() method, 266
setDepth() method, 262
TaxCollectionVisitor object, 266
TextDumpArmyVisitor object, 264
Unit classes, 260, 262

visit() method, 262, 264
visitArmy() method, 266
visitor class, 264–265

�       � W
warnAmount() method, 94, 95
wikis

DokuWiki, 533
PhpWiki, 533

workWithProducts() method, 142
write() method, 75
writeHTML() methods, 140
writeXML() methods, 140

�       � X, Y
xUnit, 7

�       � Z
Zend Engine, 10


	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Objects
	Chapter 1: PHP: Design and Management
	The Problem
	PHP and Other Languages
	About This Book
	Objects
	Patterns
	Practice
	What’s New in the Fifth Edition

	Summary

	Chapter 2: PHP and Objects
	The Accidental Success of PHP Objects
	In the Beginning: PHP/FI
	Syntactic Sugar: PHP 3
	PHP 4 and the Quiet Revolution
	Change Embraced: PHP 5
	PHP 7: Closing the Gap

	Advocacy and Agnosticism: The Object Debate
	Summary

	Chapter 3: Object Basics
	Classes and Objects
	A First Class
	A First Object (or Two)

	Setting Properties in a Class
	Working with Methods
	Creating a Constructor Method

	Arguments and Types
	Primitive Types
	Primitive Types Matter: An Example

	Taking the Hint: Object Types

	Inheritance
	The Inheritance Problem
	Working with Inheritance
	Constructors and Inheritance
	Invoking an Overridden Method

	Public, Private, and Protected: Managing Access to Your Classes
	Accessor Methods
	The ShopProduct Classes


	Summary

	Chapter 4: Advanced Features
	Static Methods and Properties
	Constant Properties
	Abstract Classes
	Interfaces
	Traits
	A Problem for Traits to Solve
	Defining and Using a Trait
	Using More than One Trait
	Combining Traits and Interfaces
	Managing Method Name Conflicts with insteadof
	Aliasing overridden trait methods
	Using static methods in traits
	Accessing Host Class Properties
	Defining Abstract Methods in Traits
	Changing Access Rights to Trait Methods

	Late Static Bindings: The static Keyword
	Handling Errors
	Exceptions
	Throwing an Exception
	Subclassing Exception
	Cleaning Up After try/catch Clauses with finally


	Final Classes and Methods
	The Internal Error Class
	Working with Interceptors
	Defining Destructor Methods
	Copying Objects with __clone()
	Defining String Values for Your Objects
	Callbacks, Anonymous Functions, and Closures
	Anonymous Classes
	Summary

	Chapter 5: Object Tools
	PHP and Packages
	PHP Packages and Namespaces
	Namespaces to the Rescue
	Using the File System to Simulate Packages
	Naming the PEAR Way
	Include Paths

	Autoload

	The Class and Object Functions
	Looking for Classes
	Learning About an Object or Class
	Getting a Fully Qualified String Reference to a Class
	Learning About Methods
	Learning About Properties
	Learning About Inheritance
	Method Invocation

	The Reflection API
	Getting Started
	Time to Roll up Your Sleeves
	Examining a Class
	Examining Methods
	Examining Method Arguments
	Using the Reflection API

	Summary

	Chapter 6: Objects and Design
	Defining Code Design
	Object-Oriented and Procedural Programming
	Responsibility
	Cohesion
	Coupling
	Orthogonality

	Choosing Your Classes
	Polymorphism
	Encapsulation
	Forget How to Do It
	Four Signposts
	Code Duplication
	The Class Who Knew Too Much
	The Jack of All Trades
	Conditional Statements

	The UML
	Class Diagrams
	Representing Classes
	Attributes
	Operations
	Describing Inheritance and Implementation
	Associations
	Aggregation and Composition
	Describing Use
	Using Notes

	Sequence Diagrams

	Summary


	Part II: Patterns
	Chapter 7: What Are Design Patterns? Why Use Them?
	What Are Design Patterns?
	A Design Pattern Overview
	Name
	The Problem
	The Solution
	Consequences

	The Gang of Four Format
	Why Use Design Patterns?
	A Design Pattern Defines a Problem
	A Design Pattern Defines a Solution
	Design Patterns Are Language Independent
	Patterns Define a Vocabulary
	Patterns Are Tried and Tested
	Patterns Are Designed for Collaboration
	Design Patterns Promote Good Design
	Design Patterns are Used By Popular Frameworks

	PHP and Design Patterns
	Summary

	Chapter 8: Some Pattern Principles
	The Pattern Revelation
	Composition and Inheritance
	The Problem
	Using Composition

	Decoupling
	The Problem
	Loosening Your Coupling

	Code to an Interface, Not to an Implementation
	The Concept that Varies
	Patternitis
	The Patterns
	Patterns for Generating Objects
	Patterns for Organizing Objects and Classes
	Task-Oriented Patterns
	Enterprise Patterns
	Database Patterns

	Summary

	Chapter 9: Generating Objects
	Problems and Solutions in Generating Objects
	The Singleton Pattern
	The Problem
	Implementation
	Consequences

	Factory Method Pattern
	The Problem
	Implementation
	Consequences

	Abstract Factory Pattern
	The Problem
	Implementation
	Consequences

	Prototype
	The Problem
	Implementation

	Pushing to the Edge: Service Locator
	Splendid Isolation: Dependency Injection
	The Problem
	Implementation
	Consequences

	Summary

	Chapter 10: Patterns for Flexible Object Programming
	Structuring Classes to Allow Flexible Objects
	The Composite Pattern
	The Problem
	Implementation
	Consequences
	Composite in Summary

	The Decorator Pattern
	The Problem
	Implementation
	Consequences

	The Facade Pattern
	The Problem
	Implementation
	Consequences

	Summary

	Chapter 11: Performing and Representing Tasks
	The Interpreter Pattern
	The Problem
	Implementation
	Interpreter Issues

	The Strategy Pattern
	The Problem
	Implementation

	The Observer Pattern
	Implementation

	The Visitor Pattern
	The Problem
	Implementation
	Visitor Issues

	The Command Pattern
	The Problem
	Implementation

	The Null Object Pattern
	The Problem
	Implementation

	Summary

	Chapter 12: Enterprise Patterns
	Architecture Overview
	The Patterns
	Applications and Layers

	Cheating Before We Start
	Registry
	The Problem

	Implementation
	Registry, Scope, and PHP
	Consequences


	The Presentation Layer
	Front Controller
	The Problem
	Implementation
	ApplicationHelper
	CommandResolver
	Request
	A Command
	Overview

	Consequences

	Application Controller
	The Problem
	Implementation
	The Front Controller
	Implementation Overview
	The Configuration File
	Parsing the Configuration File
	Managing the Component Data
	The Command Class
	A Concrete Command

	Consequences

	Page Controller
	The Problem
	Implementation
	Consequences

	Template View and View Helper
	The Problem
	Implementation
	Consequences


	The Business Logic Layer
	Transaction Script
	The Problem
	Implementation
	Consequences

	Domain Model
	The Problem
	Implementation
	Consequences


	Summary

	Chapter 13: Database Patterns
	The Data Layer
	Data Mapper
	The Problem
	Implementation
	Handling Multiple Rows
	Using a Generator in Place of the Iterator Interface
	Acquiring Collection Objects


	Consequences

	Identity Map
	The Problem
	Implementation
	Consequences

	Unit of Work
	The Problem
	Implementation
	Consequences
	Lazy Load
	The Problem
	Implementation
	Consequences

	Domain Object Factory
	The Problem
	Implementation
	Consequences

	The Identity Object
	The Problem
	Implementation
	Consequences

	The Selection Factory and Update Factory Patterns
	The Problem
	Implementation
	Consequences

	What’s Left of Data Mapper Now?
	Summary


	Part III: Practice
	Chapter 14: Good (and Bad) Practice
	Beyond Code
	Borrowing a Wheel
	Playing Nice
	Giving Your Code Wings
	Standards
	Vagrant
	Testing
	Continuous Integration
	Summary

	Chapter 15: PHP Standards
	Why Standards?
	What Are PHP Standards Recommendations?
	Why PSR in Particular?
	Who Are PSRs for?

	Coding with Style
	PSR-1 Basic Coding Standard
	Opening and Closing Tags
	Side Effects
	Naming
	More Rules and an Example

	PSR-2 Coding Style Guide
	Starting and Ending a PHP Document
	Starting and Ending a Class
	Declaring Properties
	Starting and Ending a Method
	Single Line Declarations
	Multi-line Declarations

	Lines and Indentation
	Calling Methods and Functions
	Flow of Control

	Checking and Fixing your Code

	PSR-4 Autoloading
	The Rules that Matter to Us

	Summary

	Chapter 16: PHP Using and Creating Components with Composer
	What Is Composer?
	Installing Composer
	Installing a (Set of) Package(s)
	Installing a Package from the Command Line
	Versions
	require-dev

	Composer and Autoload
	Creating Your Own Package
	Adding Package Information
	Platform Packages

	Distribution Through Packagist
	Keeping it private
	Summary

	Chapter 17: Version Control with Git
	Why Use Version Control?
	Getting Git
	Using an Online Git Repository
	Configuring a Git Server
	Creating the Remote Repository
	Preparing the Repository for Local Users
	Providing Access to Users
	Closing Down Shell Access for the git User


	Beginning a Project
	Cloning the Repository

	Updating and Committing
	Adding and Removing Files and Directories
	Adding a File
	Removing a File
	Adding a Directory
	Removing Directories

	Tagging a Release
	Branching a Project
	Summary

	Chapter 18: Testing with PHPUnit
	Functional Tests and Unit Tests
	Testing by Hand
	Introducing PHPUnit
	Creating a Test Case
	Assertion Methods
	Testing Exceptions
	Running Test Suites
	Constraints
	Mocks and Stubs
	Tests Succeed When They Fail

	Writing Web Tests
	Refactoring a Web Application for Testing
	Simple Web Testing
	Introducing Selenium
	Getting Selenium
	PHPUnit and Selenium
	Introducing php-webdriver
	Creating the Test Skeleton
	Connecting to Selenium
	Writing the Test


	A Note of Caution
	Summary

	Chapter 19: Automated Build with Phing
	What Is Phing?
	Getting and Installing Phing
	Composing the Build Document
	Targets
	Properties
	Conditionally Setting Property Values with the Condition Task

	Types
	FileSet
	PatternSet
	FilterChain

	Tasks
	Echo
	Copy
	Input
	Delete


	Summary

	Chapter 20: Vagrant
	The Problem
	A Little Setup
	Choosing and Installing a Vagrant Box

	Mounting Local Directories on the Vagrant Box
	Provisioning
	Setting Up the Web Server
	Setting Up MySQL
	Configuring a Host Name

	Wrapping It Up
	Summary

	Chapter 21: Continuous Integration
	What Is Continuous Integration?
	Preparing a Project for CI
	CI and Version Control
	Phing
	Unit Tests
	Documentation
	Code Coverage
	Coding Standards
	Installing Jenkins

	Installing Jenkins Plug-ins
	Setting up the Git Public Key
	Installing a Project
	Running the First Build
	Configuring the Reports
	Triggering Builds
	Test Failures


	Summary

	Chapter 22: Objects, Patterns, Practice
	Objects
	Choice
	Encapsulation and Delegation
	Decoupling
	Reusability
	Aesthetics

	Patterns
	What Patterns Buy Us
	Tried and Tested
	Patterns Suggest Other Patterns
	A Common Vocabulary
	Patterns Promote Design

	Patterns and Principles of Design
	Favor Composition over Inheritance
	Avoid Tight Coupling
	Code to an Interface, Not an Implementation
	Encapsulate the Concept that Varies


	Practice
	Testing
	Standards
	Version Control
	Automated Build
	Continuous Integration
	What I Missed

	Summary

	Chapter 23: Appendix A: Bibliography
	Books
	Articles
	Sites

	Chapter 24: Appendix B: A Simple Parser
	The Scanner
	The Parser


	Index



